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Preface

This book is intended as the textbook for a first course in electric circuits. It has

evolved from notes that I developed over several years, while I taught the

introductory circuits course to sophomore electrical- and computer-engineering

students at North Carolina State University.

As the chapter titles indicate, the major topics are those covered in almost all books

of this kind. But selection and treatment of topics was guided not only by what is

traditional for the target course, but also by the meaning and purpose of circuit

analysis and (ultimately) design. This book reflects the views that circuit analysis is

concerned primarily with finding and interpreting the relation a circuit establishes

between excitation and response, that circuit design is concerned primarily with

creating a circuit that enforces a specified relation between excitation and response,

and that in design in particular, the devil is in the details. These perspectives led to

somewhat different approaches to some aspects of the subject and to including some

topics not treated in outwardly similar books. As a bonus, these topics give a practical

flavor to and stimulate interest in some otherwise dry subjects.

Compared with other books for the same audience, this book gives more attention

to transfer functions, input and output impedance, and two-port models; to power

dissipation and power transfer, topics whose importance in practice is far greater than

their treatment in most books would suggest; to the physical origins of capacitance

and inductance, so students can gain some understanding of the origins of stray,

residual, and parasitic capacitance and inductance, and how consideration of such

effects influences component selection and placement; and to other ways in which

physical components differ from idealized components, such as variation of

parameters with temperature and frequency. Treatment of op amps is not limited to

the ideal model, but covers topics such as output swing, output current limit, slew

rate, bias-current compensation, power dissipation, stability, and gain-bandwidth

product, all of which are important in any practical design. One unfamiliar with

these topics cannot understand an op-amp data sheet or intelligently select an op amp

for any particular application.

The book contains more than 1,100 problems and more than 800 examples. Many

of the problems are assemblages of similar problems; for example, “find the input

impedance and output impedance of each circuit in Fig. ___.” So there are really

many more than 1,100 problems. There is an adequate number of problems calling

for numerical answers, through which students can gain confidence. But consistent

with the focus on excitation-response relations, most problems ask the student to

obtain an expression for a quantity or a relation among quantities. Some problems

go further, and ask for an analysis or discussion of the influence of one or more
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parameters on a relation of interest. There is an adequate number of design

problems in which there are fewer specifications than free parameters, requiring

students to exercise some judgment.

Different instructors approach this subject in different but equally valid ways, so I

will not presume to suggest a syllabus. I note only that the book contains ample

material for a two-semester or three-quarter course, but can be used selectively in a

one-semester or two-quarter course. Most chapters and the book as a whole are

organized such that topics generally included in a one-semester course are covered

first.

The only prerequisite for successful study of this book is facility with differential

and integral calculus. Some exposure to electricity and magnetism, such as provided

by a freshman physics course, might be helpful, but is not required. Some problems

require use of a mathematics package such as Matlab# or Mathcad#, and some

require use of a simulation package such as Pspice# or Electronics Workbench#.

Problems requiring computer assistance are identified by the symbol :. There is no

preference for or attempt to teach any particular software package, and it is possible

to avoid these requirements altogether by simply not assigning such problems.

A companion website provides solutions to all exercises and errata and (for faculty

members that adopt the book) solutions to all problems in the book, selected

supplementary material, and a mechanism for submitting corrections, suggestions,

and comments.

I have many to thank for whatever is good about the book, and only myself to blame

for everything else. Thanks to James Kang and Bruno Osorno for their helpful

comments on an early draft; to Art Davis, John Hauser, S.C. Dutta Roy, Joel

Trussell, and Gary Ybarra for their thorough and helpful reviews; to Chris Lunsford

for his contributions to several chapters; to Hari Chandrasekar, Vinodh Kotipalli,

Misha Kumar, Christina Lee, and Satish Naidu, all excellent graduate students who

spent many hours proofreading the text and checking my solutions to examples,

exercises, and problems; and to all the companies, publishers, and individuals that

permitted me to use or adapt parts of their intellectual property. Thanks to Jeff Kahler

of Nuhertz Technologies and Siegfried Linkwitz for allowing me to use several of their

designs in examples and problems. Special thanks to Art Davis and John Hauser for

many correspondences and discussions that helped clarify or otherwise refine my

presentations of various topics. Special thanks also, to those at Springer: Mark de

Jongh, Senior Publishing Editor for Electrical Engineering; Cindy Zitter, his Senior

Assistant; and Project Manager R. Samuel Devanand, for being so capable and helpful.

Raleigh, North Carolina Tildon H. Glisson Jr.
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4.4 Thévenin and Norton Equivalent Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.5 Notation: Constant and Time-Varying Current and Voltage . . . . . . . . 100

4.6 Significance of Terminal Characteristics and Equivalence . . . . . . . . . . 101

4.7 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5 Work and Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.1 Instantaneous Power and the Passive Sign Convention . . . . . . . . . . . . 114

5.2 Instantaneous Power Dissipated by a Resistor: Joule’s Law . . . . . . . 116

5.3 Conservation of Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.4 Peak Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.5 Available Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.6 Time Averages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.7 Average Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.8 Root Mean Squared (RMS) Amplitude of a Current or Voltage . . . 130

5.9 Average Power Dissipated in a Resistive Load . . . . . . . . . . . . . . . . . . . . . 131

5.10 Summary: Power Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.11 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.12 Measurement of RMS Amplitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.13 Dissipation Derating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.14 Power Dissipation in Physical Components and Circuits . . . . . . . . . . 139

5.15 Active and Passive Devices, Loads, and Circuits . . . . . . . . . . . . . . . . . . . 141

5.16 Power Transfer and Power Transfer Efficiency . . . . . . . . . . . . . . . . . . . . . 142

5.17 Superposition of Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5.18 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6 Dependent Sources and Unilateral Two-Port Circuits . . . . . . . . . . . . . . . . 163

6.1 Input Resistance and Output Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

6.2 Dependent Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

6.3 Linear Two-Port Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

6.4 Two-Ports in Cascade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

6.5 Voltage, Current, and Power Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

6.6 Transfer Characteristics, Transfer Ratios, and Gain . . . . . . . . . . . . . . . . . 178

6.7 Power Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

x Contents



6.8 Gains and Relative Values in Decibels (dB) . . . . . . . . . . . . . . . . . . . . . . . . 184

6.9 Design Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

6.10 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

7 Operational Amplifiers I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

7.1 Operational Amplifier Terminals and Voltage Reference . . . . . . . . . . 199

7.2 DC Circuit Model for an Op Amp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

7.3 The Ideal Op Amp and Some Basic Op-Amp Circuits at DC . . . . . . 202

7.4 Feedback and Stability of Op-Amp Circuits . . . . . . . . . . . . . . . . . . . . . . . . 207

7.5 Input Resistance and Output Resistance of Op-Amp Circuits . . . . . . 210

7.6 Properties of Common Op-Amp Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

7.6.1 Inverting Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

7.6.2 Non-inverting Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

7.6.3 Voltage Follower . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

7.7 Op Amp Structure and Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

7.8 Output Current Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

7.9 Input Offset Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

7.10 Input Bias Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

7.11 Power Dissipation in Op Amps and Op-Amp Circuits . . . . . . . . . . . . . 219

7.12 Design Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

7.13 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

8 Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

8.1 Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

8.2 Capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

8.3 Terminal Characteristics of an Ideal Capacitor . . . . . . . . . . . . . . . . . . . . . 242

8.4 Charge-Discharge Time Constant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

8.5 Capacitors in Series and Parallel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

8.6 Leakage Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

8.7 Stray and Parasitic Capacitance; Capacitive Coupling . . . . . . . . . . . . . 255

8.8 Variation of Capacitance with Temperature . . . . . . . . . . . . . . . . . . . . . . . . 258

8.9 Energy Storage and Power Dissipation in a Capacitor . . . . . . . . . . . . . 260

8.10 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

8.10.1 Differentiating Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

8.10.2 Integrating Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

8.10.3 Bypass Capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

8.10.4 Bypass Capacitors (Filter Capacitors) in Rectifier Circuits . . . 268

8.10.5 Bypassing in Digital Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270

8.10.6 Coupling Capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

8.10.7 Input Bias Current Compensation in Capacitively

Coupled Amplifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276

8.10.8 Switched Capacitor Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

8.10.9 Power Dissipation in Switched-Capacitor Circuits . . . . . . . . . 281

8.11 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284

9 Inductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301

9.1 Magnetic Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301

9.2 Self Inductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302

9.3 Inductance of Air-Core Coils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303

Contents xi



9.4 Inductors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304

9.5 Terminal Characteristic of an Inductor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305

9.6 Time Constant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307

9.7 Inductors in Series and Parallel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312

9.8 Energy Storage and Power dissipation in an Inductor . . . . . . . . . . . . . . 313

9.9 Parasitic Self-Inductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314

9.10 Reducing Ripple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316

9.11 Inductive Kick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318

9.12 Magnetically Coupled Coils and Mutual Inductance . . . . . . . . . . . . . . . 319

9.13 Parasitic Mutual Inductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323

9.14 Transformers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324

9.15 Ideal Transformers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326

9.16 Applications of Transformers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328

9.16.1 Source and Load Transformations: Matching Transformers . . 328

9.16.2 Step-Up and Step-Down Transformers . . . . . . . . . . . . . . . . . . . . . 330

9.16.3 Isolation Transformers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331

9.16.4 Center-Tapped Transformers and Balanced Power . . . . . . . . . 332

9.17 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333

9.18 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334

10 Complex Arithmetic and Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345

10.1 Complex Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345

10.2 Complex Arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345

10.3 Conjugate of a Complex Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346

10.4 Magnitude of a Complex Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347

10.5 Arithmetic in a Complex Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347

10.6 Polar Form of a Complex Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348

10.7 Eulers Identity and Polar Arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349

10.8 The Symbols ∠ and ∡ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351

10.9 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351

11 Transient Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353

11.1 Unit Step Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353

11.2 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354

11.3 Initial Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354

11.4 First-Order Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355

11.5 Second-Order Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360

11.5.1 Summary: Second-Order Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . 365

11.5.2 Dominant Time Constant (or Characteristic Root) . . . . . . . . . 369

11.5.3 Damping Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370

11.5.4 Extrema of the Unforced Component of an Underdamped

Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371

11.6 Time Invariance, Superposition, and Pulse Response . . . . . . . . . . . . . . 373

11.7 Operator Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375

11.8 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377

12 Sinusoids, Phasors, and Impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383

12.1 Sinusoidal Voltages and Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383

12.2 Time Origin, Phase Reference, and Initial Phase . . . . . . . . . . . . . . . . . . . 385

xii Contents



12.3 Phasors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388

12.4 Phasor Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390

12.5 Impedance and Generalized Ohm’s Law . . . . . . . . . . . . . . . . . . . . . . . . . . 391

12.6 Admittance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395

12.7 Impedance and Admittance Ratios in dB . . . . . . . . . . . . . . . . . . . . . . . . . . 396

12.8 A Fundamental Relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397

12.9 Circuit Reduction: Elements in Series and Parallel . . . . . . . . . . . . . . . 399

12.10 Time Domain and Frequency Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402

12.11 Sinusoidal and DC Steady State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404

12.12 Frequency-Domain Circuit Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405

12.13 Reactance and Effective Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407

12.14 Susceptance and Effective Conductance . . . . . . . . . . . . . . . . . . . . . . . . . . 412

12.15 Impedance and Admittance Triangles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414

12.16 Linearity and Superposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414
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Chapter 1

Introduction

Electrical engineering is among the largest and most

diverse professions. The Institute of Electrical and

Electronic Engineering (IEEE), which is the principal

technical and professional organization for electrical

engineers, is the largest professional organization in

the world. Within the IEEE alone, there are more than

40 technical societies, each focused on a sub-area of

electrical engineering. These are listed in Table 1.1.

Electrical engineers are employed in every major

industry, working not only with other electrical engi-

neers, but also with people from all walks of life. Their

work ranges from very applied to highly theoretical.

They work indoors and out, in government and in

private industry, alone and in large groups. They con-

tribute to the design and manufacture of virtually

every product you can name. In short, almost anyone

inclined toward engineering can find an exciting, ful-

filling, and rewarding career in electrical engineering.

You have chosen well.

1.1 Electric Circuits

The one thing that almost all electrical engineers have

in common is the fact that they design, manufacture,

maintain, teach about, or sell devices, equipment, or

systems whose operation depends primarily upon

manipulation of electricity. In such systems, electricity

is the primary means for conveying or converting

energy, transmitting or processing data, monitoring

or controlling other equipment or processes, or mea-

suring or observing various phenomena. Manipulating

electricity toward useful ends is what circuits are all

about. Thus it is no accident that almost all introduc-

tory EE courses and textbooks focus on circuits.

In the broadest sense, a circuit is something that

makes electricity do something useful. Circuits in

computers use electricity to store, retrieve, transmit,

and process data at unimaginable speed. Circuits

deliver tremendous quantities of electrical energy to

our homes and industries at bargain-basement prices.

Circuits allow us to transmit and receive hundreds of

radio and TV programs. Circuits make our automo-

biles run cleaner and more efficiently. They help us

store and prepare our food, wash our clothes, and cool

our homes. They help aircraft, ships, and space shut-

tles navigate. They help us defend our borders and

warn us of impending danger. They help monitor and

predict the weather and help physicians monitor our

health and perhaps save our lives. It is difficult to think

of anything we do in which we are not assisted by one

or more electric circuits. Certainly there are other

important subjects in EE, but without circuits, most

of those subjects would either not exist or have no

practical application. We might be able to imagine a

world without circuits, but few of us would want to

live there. All in all, study of circuits is an excellent

way to begin study of electrical engineering.

The principal quantities of interest in circuit analy-

sis and design are current, voltage, and power, none of

which is visible.1 For the most part, not even the

effects of currents and voltages in the innards of a

circuit are visible. Indeed, without a powerful micro-

scope, we cannot even see the innards of many modern

circuits. We must rely on measurements and mathe-

matics to tell us whether a circuit is working as it

should. Thus it might appear that circuit analysis and

1Current in an arc is visible, but unless we are designing an

electric welder, we usually try to avoid arcs.

T.H. Glisson, Introduction to Circuit Analysis and Design,
DOI 10.1007/978-90-481-9443-8_1, # Springer ScienceþBusiness Media B.V. 2011
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design is inherently more abstract than, for example,

mechanism analysis and design. We can see mechan-

isms operate, whereas most electric circuits look the

same whether operating or not. Unless something is

seriously wrong, the components of a circuit do not

jump about, make clanking noises, emit smoke, or

squirt messy fluids here and there.

But in truth, the level of abstraction of circuit analy-

sis and design relative to that of other subjects is over-

stated. It is true that we cannot see current or voltage,

but we cannot see force, pressure, or temperature,

either. Nor can we see a mechanism we have not yet

designed. Any extraordinary difficulties with circuits

probably arise more from lack of familiarity than level

of abstraction. Almost everyone has some intuitive

understanding of fluid flow and pressure and the func-

tions of pipes, pumps, and valves. But few laypersons

have an equally well-developed intuition regarding

current and voltage and the functions of circuit compo-

nents such as resistors, transistors, and capacitors.

In the beginning, analogies can be helpful. Current

is flow of electric charge and is analogous to fluid flow

(flow of molecules) in a hydraulic system. Voltage is

analogous to pressure, in that voltage can cause current

in a wire, much like pressure can cause fluid flow in a

pipe. Circuit components and circuits themselves are

described in terms of the current-voltage relationships

they establish at their terminals, just as hydraulic com-

ponents are described in terms of flow and pressure at

their terminals (inlets and outlets); for example, a

pump can be described by the flow it can provide at

one or more pressures (e.g., 3 gal/min at 100 lb/in.2)

and a generator can be described by the current it can

provide at the specified terminal voltage (e.g., 50 A at

120 V). If we know the flow-pressure characteristics of

each component in a hydraulic system, we can calcu-

late flow and pressure anywhere in the system. Like-

wise, if we know the current-voltage characteristics of

each component in a circuit, we can calculate current

and voltage anywhere in the circuit.

Although analogies can be helpful, they also can be

misleading if carried too far. There are circuits and

devices in which current does not behave like fluid

flow. Also, circuits can do many things that hydraulic

systems cannot (and vice versa), in which case there is

no analogy to fall back on. Ultimately, if we are to

design circuits, we must come to understand current,

voltage, and circuits on their own terms.

Table 1.1 IEEE technical societies

IEEE Aerospace and Electronic Systems Society IEEE Instrumentation and Measurement Society

IEEE Antennas and Propagation Society IEEE Lasers & Electro-Optics Society

IEEE Broadcast Technology Society IEEE Magnetics Society

IEEE Circuits and Systems Society IEEE Microwave Theory and Techniques Society

IEEE Communications Society IEEE Nanotechnology Council

IEEE Components Packaging, and Manufacturing

Technology Society

IEEE Nuclear and Plasma Sciences Society

IEEE Computational Intelligence Society IEEE Oceanic Engineering Society

IEEE Computer Society IEEE Photonics Society

IEEE Consumer Electronics Society IEEE Power Electronics Society

IEEE Control Systems Society IEEE Power and Energy Society

IEEE Council on Superconductivity IEEE Product Safety Engineering Society

IEEE Dielectrics and Electrical Insulation Society IEEE Professional Communication Society

IEEE Education Society IEEE Reliability Society

IEEE Electromagnetic Compatibility Society IEEE Robotics & Automation Society

IEEE Electron Devices Society IEEE Sensors Council

IEEE Engineering Management Society IEEE Signal Processing Society

IEEE Engineering in Medicine and Biology Society IEEE Society on Social Implications of Technology

IEEE Geoscience & Remote Sensing Society IEEE Solid-State Circuits Society

IEEE Industrial Electronics Society IEEE Systems, Man, and Cybernetics Society

IEEE Industry Applications Society IEEE Ultrasonics, Ferroelectrics, and Frequency Control

Society

IEEE Information Theory Society IEEE Vehicular Technology Society

IEEE Intelligent Transportation Systems Society
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When you have mastered the material presented in

this book, you will have a basic understanding of what

current and voltage are and how they behave. You will

be able to analyze and design a number of basic (but

important) kinds of circuits. You will have accumu-

lated a repertoire of physical laws and mathematical

procedures that are essential in study of more advanced

circuits and systems for communication, control, com-

puting, and other applications. You will have begun to

speak the language of electrical engineering, which is

the first step toward becoming an electrical engineer

and enjoying a challenging and rewarding career.

1.2 How to Study This Book

Because this is presumably one of your first engineer-

ing courses, you might be receptive to some advice

about how to study an engineering subject – and this

book, in particular. Most engineering subjects have

pretty much the same anatomy, illustrated by Fig. 1.1:

• At the core are (usually very few) undefined quan-

tities; for example, time and charge, and essential

properties of those quantities.2

• Next are definitions. These include definitions of

important quantities, such as current and voltage, in

terms of the core undefined quantities. Also

included here are important symbols, terminology,

and notation associated with the subject.

• Physical laws prescribe relations among defined

quantities; for example, in circuits, important phys-

ical laws are Ohm’s law and Kirchhoff’s laws.

• Derived results are important relations among the

defined quantities that are obtained using physical

laws, definitions, and mathematics; Thévenin’s the-

orem (Chapter 4) is an example of an important

derived result.

• Computational procedures systematically use

physical laws, derived results, and mathematics to

solve problems (e.g., to analyze or design circuits).

Examples are the node-voltage and mesh-current

methods for finding voltages and currents in circuits.

As you make your way through this book, note

whether each new thing you encounter as a definition,

a law, a derived result, or a procedure. Establish in your

mind the relation of the new thing to things learned

previously.

• You should memorize each definition, when it is

first encountered, before proceeding. If you do

not, chances are you will have difficulty under-

standing subsequent text, derivations, and exam-

ples. Definitions are given for a reason, the reason

being frequent subsequent use of the thing defined.

Special symbols comprise an important class of

defined terms and also should be memorized; for

example, in this book the letters i and v always

stand for current and voltage, respectively. Certain

dimensions and units also are defined quantities and

must be committed to memory.

• You must also memorize physical laws, because

they do not necessarily follow from anything else

presented in this book.3 Fortunately, there are rela-

tively few laws to be memorized.

• Derived results are obtained using definitions, laws,

limiting assumptions, and other derived results.

You should be sure you understand important lim-

iting assumptions before proceeding. In almost all

subjects, there are many more derived results than

physical laws. Your teacher can guide you regard-

ing which derived results you should memorize and

which you should be able to derive, yourself, pos-

sibly under slightly different conditions.

Undefined
Quantities

Definitions

Physical Laws

Derived Results

Computational 
Procedures

Fig. 1.1 Anatomy of a technical subject

2The essential property of time is perhaps best captured by Yogi

Berra’s definition: “Time is what keeps everything from hap-

pening all at once.” The essential properties of charge are given

in Chapter 2.

3One subject’s laws can be another subject’s derived results; for

example, Ohm’s law (a law in circuits courses) is a derived

result in some more fundamental courses.
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• A procedure is essentially a recipe for solving a class

of problems, based upon certain laws and derived

results. The class of problems to which a procedure

can be applied is defined by the conditions under

which the underlying laws and derived results apply.

For example, mesh analysis, which is a procedure

for finding voltages and currents in a circuit, is based

upon Kirchhoff’s voltage law, which in turn is appli-

cable only under certain restrictions on the natures

(e.g., wavelengths) of the voltages and currents

applied to the circuit.

Exercise 1.1. Recall from your study of phys-

ics that electric charge is conserved. In absence

of any further information, would you regard

this claim as a definition, a physical law, or a

derived result?

Viewing the content of a subject in the manner

illustrated by Fig. 1.1 can help you organize your

notes and thinking, especially at the end, when you

are preparing for a final examination. From the outset,

it can help you plan your outline and identify what is

truly important or general and what is less important or

specific as you proceed through the text. Before each

exam, for example, you might be sure that you can

answer the following questions:

• What quantities have been defined or described and

what are the definitions or defining properties?

Include symbols, terms, and basic units.

• What fundamental laws have been presented and what

relations do they establish among defined quantities?

• What derived results have been obtained and under

what conditions do they apply? What are the dimen-

sions and units of derived quantities and how are they

related to the dimensions and units of quantities

defined or derived previously? What laws and math-

ematical operations are needed to derive the results?

• What procedures have been presented and under

what conditions are they useful?What laws, derived

results, and mathematical operations do they use?

• What is a paradigm example4 for each law, derived

result, and procedure?

If you can do all that, you can be confident that you

have a good grasp of the material. The only thing left to

do is to hone your skills through practice; e.g., by

reworking homework problems and other problems

that are like those your teacher assigned or recom-

mended. As you work through examples and problems,

attempt to discern what definitions, laws, derived

results, and procedures the example or problem is

intended to reinforce.

1.3 Dimensions and Units

A quantity is something that is quantifiable; i.e.,

something that can be counted, measured, or calcu-

lated. In everyday life and especially in engineering

and science, we deal with many different quantities;

for example, time, length, weight, temperature, pres-

sure, speed, area, and cost. A quantity has a numerical

value and a dimension and is expressed by a number

and a unit. Both the numerical value and the unit are

necessary. One dollar and 1 yen have the same numer-
ical value (one) but have quite different values in the

marketplace.

A quantity can be expressed in various units; for

example, length can be expressed in inches, meters,

miles, furlongs, yards, angstroms, rods, light-years,

and other units. No matter how it is expressed, length

remains length. Length is what is being measured or

specified. The unit describes how (on what scale)

length is expressed. Length is a dimension and the

meter is a unit of length. Similarly, time is a dimension

and the second is a unit of time.

Exercise 1.2. Which of the following are quan-

tities (dimensioned or dimensionless), which are

units, and which are neither? (a) Time, (b) cen-

trifugal force, (c) electron-volt, (d) Newton-

meter, (e) light-year, (f) age, (g) checking

account balance, (h) purple, (i) longitude, (j)

relative humidity, (k) north pole, (l) virtue, (m)

valor, (n) micron.

There are many different quantities, but only seven

basic dimensions (basic quantities). The dimensions

of all other known quantities can be expressed in terms

of these seven and are called derived dimensions.

4A paradigm example is one that illustrates application of a law,
derived result, or procedure in the simplest possible setting,

uncluttered by need for other laws, results, or procedures.
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Derived dimensions and units also are called com-

pound dimensions and compound units because they

are products and quotients of basic dimensions and

units; for example, the dimension of area is length

squared and the dimension of speed is length/time.

The dimensions of area and speed are derived (com-

pound) dimensions.

Choosing the seven basic dimensions, the asso-

ciated basic units, and names of units for important

derived quantities establishes a system of units. The
official system of units for engineering and science is

the SI system,5 which was adopted by a number of

very important people at a long meeting in Paris in

1960. In the SI system, the seven basic dimensions are

length, time, mass, electric current, temperature,

amount of substance, and luminous intensity.6 So far

as we know, none of the seven can be expressed in

terms of the other six. Of the seven basic quantities,

only five are used in this book. These five and the

associated SI units are given in Table 1.2.

Note that electric current is the basic electrical quan-

tity in the SI system. Electric chargewould serve aswell,

and because current in a circuit is flow of charge (charge

per unit time), charge would seem to be the more logical

choice. But there is a good reason for choosing current,

rather than charge, as a fundamental quantity. It turns out

that there are two kinds of current: Conduction current,

which is flow of charge, and displacement current,
which can exist where no charge is present, as in a

time-varying electromagnetic field (e.g., a radio wave).

Thus, from an engineering perspective, current appears

to be a more basic quantity than charge.

In any particular discipline, many quantities of

interest are derived quantities; for example, in EE,

we deal not only with current and time, but also with

voltage, work (or energy), power, and many other

quantities. Repeated use of compound units for all

these quantities, such as kgm2 s�2 for energy, is cum-

bersome. Compound units for important derived quan-

tities are given their own names, most of which are

chosen in honor of great engineers or scientists some-

how associated with the quantity. Table 1.3 gives the

names, symbols, and SI units for quantities (both basic

and derived) used in this book, in alphabetical order.

Table 1.3 also gives compound equivalents for derived

units. Compound equivalents are useful in checking

expressions for dimensional correctness (see below).

Quantities used only occasionally in this book are not

included in the table but are defined and discussed

appropriately where they are introduced.

There are two kinds of dimensionless quantities:

(1) Those whose definitions do not involve any dimen-

sioned quantities, such as atomic number and valence;

and (2) those defined in terms of dimensioned quan-

tities, but in such a way that all of the basic units

involved cancel, such as the fine-structure constant

and an angle. We use angles extensively in this book,

so a little discussion of their nature is in order.

Fundamentally, an angle is the quotient of two

lengths (arc length/radius). The dimensions of length

cancel from the quotient, so an angle is dimensionless

(the compound unit of an angle is unity). Most dimen-

sionless quantities are expressed without units. Angles

are exceptions because an angle can be specified in

either radians (rad) or degrees (deg), where p rad ¼
180 deg. Although dimensionless, radians and degrees

are different scales of measurement. In absence of any

prior agreement, we must attach the correct one of

those units to the numerical specification of an angle.

Except in Chapter 14, we specify angles in radians, so
we do not attach the dimensionless unit rad to any such

specification. In this book, specifying an angle as (e.g.)

y ¼ 1:47 means y ¼ 1:47 radians.

Exercise 1.3. Give a simpler unit for each of

the following: (a) J s–1, (b) V A s, (c) C s–1, (d)

A2 O, (e) O H F2 s�2, (f) kg m2 s�2.

Table 1.2 Basic SI quantities and units

Quantity (basic dimension) Name of SI unit SI abbreviation

(symbol) for unit

Length Meter m

Time Second s

Mass Kilogram kg

Electric current Ampere A

Temperature Kelvin K

5SI System is redundant, because SI stands for Systeme Inter-

nationale, which (obviously) is French for international system.

Nonetheless, “the SI system” is what everyone calls it.
6Actually, which seven dimensions are defined as basic is a

matter of choice. Any seven independent dimensions would

do, but history and common sense have ruled in favor of

the seven given here. There is much wider agreement on

which seven quantities are basic than on the standard units for

those seven.
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There are several important conventions and rules

regarding dimensioned quantities:

• The symbol for a quantity stands for both the

numerical value and the associated unit, as in x ¼
10 m and t ¼ 5 s. Constructions such as “x meters”

and “t seconds” are redundant.

• Reserved symbols for quantities (e.g., t for time)

carry subscripts where more than one such quantity

is of interest. For example, times at which various

events occur in a circuit might be designated t0, t1,
t2, and so on. The presence of a subscript does not

alter the dimension or unit of a quantity.

• Terms that are equated, compared (using < or >),

added, or subtracted must have the same dimension

and, if numerical, must be expressed in the same

unit.

• In particular, all equations must be dimensionally

homogeneous; that is, all terms in an equation must

have the same dimension.

• The dimension of the product of quantities is the

product of the dimensions of the quantities.

• The dimension of the quotient of quantities is the

quotient of the dimensions of the quantities. The

quotient of like quantities is dimensionless.

Table 1.3 Symbols and SI units. Names of basic dimensions are in bold type

Quantity Symbol(s) SI unit (symbol) Equivalent unit(s)

Admittance Y siemen (S) O�1, A V�1

Angle y, f, a, b, F, Y radian (rad) None

Angular frequency o radians per second (rad/s) s�1

Capacitance C farad (F) AsV�1: CV�1

Charge q coulomb (C) A·s

Complex frequency s radians per second (rad/s) s�1

Complex power S volt·ampere (VA) J s�1, W

Conductance G, g siemens (S) O�1, A V�1

Conductivity s siemens per meter (S m�1) Omð Þ�1

Current i, I ampere (A) Basic dimension; Cs�1; VO�1

Distance or length x, y, z, h, d, l meter (m) Basic dimension

Electric potential F volt (V) J C�1

Electric field strength E newtons per coulomb or volts per meter NC�1 or Vm�1

Energy w joule (J) V C, N m, W s

Force f, F newton (N) kg m s�2, V C m�1

Frequency f hertz (Hz) s�1

Impedance Z ohm (O) V A�1

Inductance L henry (H) V s A�1; WbA�1

Magnetic flux f weber (Wb) Vs

Mass m kilogram (kg) Basic dimension

Period or interval T second (s) S

Permeability m henries per meter (H m�1) V s A�1 m�1

Permittivity e farads per meter (F m�1) A s V�1 m�1

Pole p radians per second s�1

Power p, P watt (W) J s�1, V A

Reactance X ohm (O) V A�1

Reactive power Q volt ampere reactive (VAR) J s�1, V A, W

Resistance R, r ohm (O) V A�1

Resistivity r ohm meter (O m) V A�1 m

Speed or velocity u meters per second (m s�1) m s�1

Susceptance B siemen (S) O�1, A V�1

Temperature T kelvin (K) Basic dimension

Time t second (s) Basic dimension

Time constant t second (s) S

Voltage v,V volt (V) J C�1, A O
Work w joule (J) V C, N m, W s

Zero z radians per second s�

6 1 Introduction



• The dimension of a differential is that of the asso-

ciated variable; e.g., the dimension of dt is that of t.
• Dimensionally, a derivative is a quotient and an

integral is a product; e.g., the dimension of dq/dt

is that of q/t and the dimension of
R
i dt is that of i·t.

• Definite limits of integration must have the dimen-

sion of the differential; for example, in
R b
a f ðxÞ dx,

both a and b must have the dimension of x.

A similar condition applies to limits in general.

• The units of infinite limits of integration �1ð Þ
are understood to be those of the differential; e.g.,

in
R t1
�1 iðtÞ dt it is understood that �1 stands for

an exceedingly large and negative time. A similar

condition applies to limits in general.

• With very few exceptions, arguments of functions

must be dimensionless; for example, we cannot take

the logarithm of 50 kg. The reason why is that ln (x)

can be expressed as an infinite power series, and we

cannot (e.g.) add kg to kg2 to kg3 . . . .7

• Finally, voltage, current, power, and time, if zero or

infinite, are zero or infinite in any system of units.

We do not attach units to those quantities when

they are zero or infinite; for example, we say

t!1, not t!1 s, because if time approaches infin-

ity, it does so whether measured in seconds, min-

utes, or weeks.8 Similarly, we say v ¼ 0, not v ¼
0 V, because if a voltage equals zero, it is zero in

any system of units.

It is poor practice to write statements such as “v ¼
v0e

�t, where time t is expressed in milliseconds.” Such

practice makes it impossible to check relations for

dimensional consistency and thereby robs us of an

opportunity to catch careless errors. Further, such

practice robs us of many opportunities for developing

insight; e.g., by hiding the all-important time constant

in the exponential relation above. It is far better to

adopt the convention that t always stands for time in

seconds and to write the statement above as

“v ¼ v0e
�t=t, where t ¼ 1 ms.”

Units and dimensions are not only essential parts of

the values of physical quantities, but also provide

insight into the meaning and reasonableness of derived

results. Sometimes they even guide derivations of

new relations. They also provide a powerful means of

checking correctness of equations and answers. An

equation that is dimensionally inconsistent is incor-

rect. There is no reason to proceed with a solution until

the error is found and corrected.

Make it a habit to check all derived equations and

relations for dimensional consistency. An equation is

dimensionally consistent if all terms have the same

unit. We use SI units exclusively, so you may check

units instead of dimensions, which is somewhat easier,

because it is easier to remember the units of quantities

than it is to remember the (usually compound) dimen-

sions for the quantities. We use SI bð Þ to denote the SI
unit of a quantity b, where

SI bð Þ ¼ the SI unit of b; if b is dimensioned;

1; if b is dimensionless;

(

(1.1)

and

SI abð Þ ¼ SI að Þ SI bð Þ; SI
a
b

� �
¼ SI að Þ

SI bð Þ : (1.2)

Example 1.1. We wish to show that the dimen-

sion of the quantity RC (resistance times capac-

itance) is that of time. From Table 1.3,

SI RCð Þ ¼ SI Rð ÞSI Cð Þ ¼ VA�1
� �

A � sV�1
� �¼ s:

Thus the unit of the quantity RC is seconds

(s) and the dimension of RC is time.

Example 1.2. We wish to show that the

expression

i ¼ C
dv

dt

is dimensionally consistent, where i is current,

C is capacitance, v is voltage, and t is time.

7Of course, the coefficients of a Taylor series can be dimen-

sioned, and one could define different series for (e.g.) the loga-

rithm of different physical quantities. Such an approach would

be cumbersome, at best.
8Some mathematical software (e.g., Mathcad) that allow units to

be used insist that they be attached to all quantities, even those

having zero magnitude. For example, if you ask Mathcad to

compare 10 s to 0, you will get an error. You must compare

10 s to 0 s.
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Current i stands alone on the left, so we seek to

reduce the unit of the term on the right to the

ampere. From Table 1.3

SI C
dv

dt

� �
¼ SI Cð ÞSI vð Þ

SI tð Þ ¼ AsV�1
� � V

s

� �
¼A:

Thus the equation is dimensionally consis-

tent.

Exercise 1.4. Show that the relation

i ¼ 1

L

ðt
�1

vðt0Þdt0

where i is current, L is inductance, v is voltage,

and t is time, is dimensionally consistent.

Exercise 1.5. Check each relation for dimen-

sional consistency.

ðaÞ L di
dt

þ Ri� 1

RC

ðt
�1

i t0ð Þdt0 ¼ 5v1;

ðbÞV
I
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ oLð Þ2

q
1þ oRC

:

As an aside, the SI system includes no unit for

weight. Weight is force due to gravity and is approxi-

mately a fixed multiple of mass everywhere on the

earth’s surface, given by f ¼ mg, where m is mass and

g is acceleration due to gravity. Thus, on the earth’s

surface, mass serves as well as weight to express how

heavy one thing is relative to others; that is, if one

thing has twice the mass of another, it also has twice

the weight of the other (in the same location). Conse-

quently, there is really no need for a quantity called

weight. Mass serves just as well. Conversions from

mass in kilograms to weight in pounds build in the

acceleration due to gravity (approximately 9.8 m s–2)

and are really conversions from mass to force on the

mass due to gravity. The conversion factor works out

to be about 0.454 kg lb–1, so 1 kg (mass) of butter

weighs about 2.2 lb.9

The size (scale) of a unit often is inappropriate to a

particular problem or even to an entire discipline; for

example, the meter is much too large a unit to use in

atomic physics and much too small a unit to use in

astrophysics. Even though the SI system is the official

system of units, other units that have proved useful

remain in use (e.g., the angstrom and the light-year).

Also, engineers must communicate effectively with

those in other professions and trades, not all of whom

have embraced the SI system so warmly, and it often is

necessary to convert one unit of measure to another (e.g.,

meters to inches). We use the SI system almost exclu-

sively in this book so we omit a table of conversion

factors. Such tables can be found in most standard

handbooks.10

In the SI system, very large multiples and very

small fractions of units are made more manageable

by using named prefixes that denote multiplication by

a power of ten. The power of ten denoted by most

prefixes is a positive or negative whole multiple of

three. Those that are not are not widely used in elec-

trical engineering, except for the centimeter (0.01 m)

and angstrom (10�10m). Table 1.4 gives selected SI

prefixes.

Table 1.4 SI prefixes

Prefix Abbreviation Value

Femto f 10�15

Pico p 10�12

Nano n 10�9

Micro m 10�6

Milli m 10�3

Centi c 10�2

Kilo k 103

Mega M 106

Giga G 109

Tera T 1012

Peta P 1015

9The abbreviation lb stands for libra, an ancient Roman unit of

weight which was presumably the predecessor to the English

pound. See Yunus A. Cengel and Michael Boles, Thermodynam-
ics: An Engineering Approach (3rd Ed.), McGraw-Hill, 1998.
10An especially complete table of conversion factors is given in

the Handbook of Chemistry and Physics (76th Ed.), edited by

David R. Lide, CRC Press, New York, 1995.
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There are three basic rules regarding use of

prefixes:

• Prefixes are not to be repeated or used with other

prefixes; e.g., use pF, not mmF and ns, not mms.

• Where a prefix is used with a symbol, the prefix and

the symbol become one quantity that can be raised

to a power or used in a fraction without parenth-

eses; for example, 1 cm2 ¼ 10�4m2 and 4 m/ms ¼
4000 m s�1.

• Prefixes are never used alone, even for purely

numerical quantities.

These rules are designed to eliminate ambiguity;

for example, although the symbol m for meter and the

prefix m for milli are identical, there is no possibility

for confusion because m for milli is never used alone

or repeated (mm always stands for millimeter, never

milli-milli).

Nonetheless, there remain possibilities for confusion.

For example, does mV mean millivolt or meter-volt? In

this case, we can avoid confusion by writing mV for

millivolt and Vm for volt-meter. But what about Vms?

Does it mean volt-millisecond or volt-meter-second? In

such cases we can use spaces, hyphens, dots, or par-

entheses to avoid ambiguity. For example, Vms means

volt-millisecond and Vm s, Vm-s, Vm s, and (Vm)s all

mean volt-meter-second.

There is no need (at present) tomemorize any entries

in the tables above. You will learn many of them

through repeated use in subsequent sections. But you

should learn the three rules above and become profi-

cient at checking dimensions (units) using the proce-

dure illustrated in the examples above. Again, you

should form the habit of checking units with reasonable

frequency as you work through a problem. Doing so

will help you catch many careless errors and help you

avoid the fruitless labor of solving incorrect equations.

Exercise 1.6. Express each of the following

without prefixes: (a) 100 mAs�1 (b) 10 V ms�1,

(c) 100 kV A, (d) 10 mm ms�2.

Exercise 1.7. Using prefixes, express each

of the following in at least two other ways:

(a) 5 mVs�1, (b) 25 kAms, (c) 100 mJms�1.

Exercise 1.8. Specify whether each m stands

for meter or milli in each of the following:

(a) Vms�1, (b) m Ams�1, (c) Nm·s�1,

(d) m2s�1, (e) mms�1.

1.4 Symbols and Notation

Symbols for quantities and units used in this book are

those in Table 1.3. Because the alphabet is finite, some

symbols have more than one meaning. To the extent

possible, we avoid conflicts as follows:

• Symbols for quantities are always in italics and

symbols for units are always in roman; e.g., C
(italic) is the symbol for capacitance (a quantity)

and C (roman) is the symbol for the coulomb (the

SI unit of charge). This convention is not entirely

satisfactory because it is difficult to distinguish

italic and roman letters in handwritten notes and

assignments. Where conflicts arise (and confusion

is possible), we suggest using an underscore to

denote roman (e.g., C for coulomb).

• Symbols for complex representations of currents

and voltages are printed under a tilde; for example,

Ĩ and ~V denote complex quantities called phasors,

defined in Chapter 12, and used to represent sinu-

soidal currents and voltages. We use a tilde in these

cases because V and I (no tilde) denote associated

real quantities (the magnitudes of the corresponding

complex quantities).

• We rely on context when there is no tolerable

alternative; for example, the symbols for period

and temperature are identical, and we must rely

on context to tell us what T stands for.

• The principal quantities of interest in circuit analy-

sis and design are time, current, voltage, work, and

power. In this book, t always stands for time and

i and v and their italic capitals always stand for

current and voltage, respectively.

• To avoid clutter, explicit time dependence often is

omitted; for example, v and i alone denote v(t) and

i(t), respectively and dv/dt stands for dv(t)/dt.

The mathematical notation used in the text is gen-

erally that used in standard prerequisite mathematics
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courses. Table 1.5 gives symbols and abbreviations

used throughout the text. For example, we might

write that 3xþ 4 ¼ 10 ) x ¼ 2, which reads as

“three x plus four equals ten implies that (or yields) x

equals two.”

Equations are numbered only for cross-reference.

A numbered equation is not necessarily an important

equation.

Boldface type is used when an important quantity

or term is introduced or defined. Italic type is used to

highlight secondary definitions, identify important

terms, and emphasize important comments.

As is standard in technical works, we use a number

of Greek letters. Table 1.6 gives the Greek alphabet and

the usual meaning (if any) assigned to each Greek letter

in this book. For the most part, these choices reflect the

meanings assigned to symbols in practice. Some (such

as d) have multiple meanings, whereas others are not

used. Also, the usual meaning is not necessarily the

onlymeaning used in this book.We occasionally assign

a meaning not given in Table 1.6 for temporary use in a

particular development or section.

1.5 Symbols Versus Numbers

In general, symbolic relations among quantities are

much more valuable than particular numerical values.

For example, Newton’s law f ¼ ma is much more

valuable and informative than would be a table of

particular values for force, mass, and acceleration.

The symbolic relation f ¼ ma tells us that acceleration

is proportional to force, whereas knowing only that a

1 kg mass subjected to a 2 N force experiences an

acceleration of 2 ms�2 is of little general value. In

engineering and especially in conceptual design, rela-

tions among quantities are of far more interest than

particular numerical values for those quantities. Indeed,

much of electrical engineering focuses on designing

things (such as circuits) that create desirable relations

among physical quantities, such as voltages.

Resist the urge to prematurely replace quantities by

their numerical values, even when those values are

known and fixed. Instead, form the habit of working

with symbols until the desired relation is obtained,

checking units along the way. Only when you are

certain you have a correct relation should you seek a

particular numerical answer (with correct units), if that

is what is called for in the problem. Jumping to num-

bers too quickly eliminates the possibility of checking

dimensions, greatly limits the implications that can be

drawn from the solution, and multiplies the number of

different problems that must be solved by a large

factor. To encourage you to use symbols and symbolic

relations and to help you become proficient in that

regard, many of the problems in this book ask you to

obtain relationships among or (symbolic) expressions

for quantities.

Also, put your years ofmathematics study to good use.

Assign symbols to quantities that occur frequently in a

development. For example, if you find the quantityoL/R
occurs repeatedly in a particular development, you might

define Q ¼ oL/R to simplify further manipulations.

Where possible, use a symbol that suggests the dimension

of the quantity; for example, if the quantity RC occurs

repeatedly in a particular analysis, you might let t0 or t
denote RC, because the dimension of RC is time.

1.6 Presentation of Calculations

Intermediate steps in the calculation of a value from a

symbolic expression can be presented in basically two

ways: The first (and generally best for students) is to

exhibit both the value and the unit of each quantity in

the expression. The second is to simply exhibit values,

attaching the correct unit to only the final expression.

For example, suppose we must calculate the value of

Zj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ 2pf Lð Þ2

q
;

where R ¼ 1 kO, f ¼ 10 kHz, and L ¼ 10 mH. Any

of the following presentations would be considered

Table 1.5 Notation used in the text

Symbol Meaning

! Approaches

ffi Is approximately equal to

� Is identically equal to

) Implies or yields

, Implies and is implied by

iff if and only if

e.g. For example

i.e. Namely, or that is, or in other words
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acceptable by most publishers of technical journals

and textbooks:

Zj j¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1;000O½ �2þ 2p 104Hz

� �
10�2H
� �� �2q

¼1;181O;

Zj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 kO½ �2 þ 2p 10 kHzð Þ 10mHð Þ½ �2

q
¼ 1:18 kO;

Zj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1; 000½ �2 þ 2p 104

� �
10�2
� �� �2q

¼ 1; 181O ¼ 1:18 kO
:

In the first two of the three presentations above, the

units of the quantities involved are shown throughout.

In the third, the unit is attached to only the ultimate

result, and the unit (O) transcends the equal sign. All

three presentations are considered dimensionally cor-

rect. Which of these presentations you use will depend

upon your instructor’s preference, your confidence in

the dimensional correctness of the symbolic expres-

sion, and your familiarity with units and prefixes (e.g.,

you might recognize that the k in kHz and the m in

mH in the second of the two presentations cancel).

Generally, it is good to use the first form in the

beginning, progressing to the third as you gain famil-

iarity with various expressions and the quantities

involved.

1.7 Approximations

Approximations are valuable and even inherent in

engineering analysis and design. They are valuable

because they can simplify computations and aid

insight. In many cases, engineers employ without hes-

itation approximations that can introduce errors as

large as 10%. Approximations are inherent because

circuit parameters are imprecise. For example, the

actual capacitance of a 10 nF capacitor might be

anywhere in the range 10 nF� 20%. As a reminder,

we use the symbol ffi to denote is approximately equal

to; e.g., p ffi 3:14.

Opportunities for approximation arise repeatedly in

circuit analysis and design. Almost all approximations

are based in some way upon the basic approximation:

x1j j>> x2j j ) x1 þ x2 ffi x1: (1.3)

Table 1.6 Greek alphabet and common uses for characters

Lower-case Name Usual meaning Upper-case Usual meaning

a Alpha Peaking factor A Not used

b Beta Tolerance B Not used

w Chi Not used X Not used

d Delta skin depth; damping factor; loss angle D Increment prefix; e.g., Dx means a small

increase in a quantity x

e Epsilon Error, permittivity, energy E Not used

f Phi Angle F Angle, electric potential

g Gamma Ripple factor G Not used

� Eta Efficiency H Not used

i Iota Not used I Not used

k Kappa Not used K Not used

l Lambda Wavelength L Not used

m Mu Permeability; voltage gain M Not used

n Nu Not used N Not used

o Omicron Not used O Not used

p Pi 3.14159. . . P Product

y Theta Angle Y Angle

r Rho Resistivity P Not used

s Sigma Conductivity; damping ratio S Sum

t Tau Time constant T Not used

u Upsilon Not used U Not used

o Omega Angular frequency O Ohm (unit)

x Xi Not used X Not used

c Psi Angle C Angle

z Zeta Not used Z Not used
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In many cases, the basic approximation (1.3) is

acceptable if x1j j � 10 x2j j (error ffi 10%) because, as

it turns out, values of circuit parameters often are even

more uncertain than that.

Example 1.3. Assume R1j j 	 R2j j and find

the approximate value of

G ¼ 1

R1

þ 1

R2

:

Solution:

G ¼ 1

R1

þ 1

R2

¼ R1 þ R2

R1 R2

ffi R1

R1 R2

¼ 1

R2

:

Or

R1j j 	 R2j j ) 1

R1


 1

R2

) 1

R1

þ 1

R2

ffi 1

R2

:

Example 1.4. Assume xj j 
 1 and find the

approximate value of y ¼ sinðxÞ.
Solution: Using Taylor’s expansion gives

y ¼ sinðxÞ ¼ x� x3

3!
þ x5

5!
� � � �;

which can be written

y ¼ sinðxÞ ¼ x 1� x2

3!
þ x4

5!
� � � �

	 

:

Because xj j 
 1,

1� x2

3!
þ x4

5!
� � � �

	 

ffi 1;

and so

y ¼ sinðxÞ ffi x; xj j 
 1:

Example 1.5. Certain irrational numbers such

as p and
ffiffiffi
2

p
arise often in expressions for quan-

tities of interest in circuit analysis. Faced with

such an expression, and needing to make a

quick mental or pencil-and-paper calculation,

we might use

p ¼ 3:0000þ 0:1416 � � � ffi 3 ðerror < 5%Þ;ffiffiffi
2

p
¼ 1:000þ 0:4142 � � � ffi 1:5 ðerror ffi 6%Þ:

Certainly the wide availability of pocket calcula-

tors and personal computers has greatly reduced need

for hand computation and therefore the need for

approximations in numerical computations. On the

other hand, ability to make approximations that sim-

plify symbolic expressions is valuable, because such

simplifications often facilitate insight; e.g., in identi-

fying which components of a circuit are critical to

performance. Judicious use of approximations can

foster insights that even the most careful computer

calculation cannot reveal.

Example 1.6. It is found that a performance

measure called voltage gain for a certain elec-

tronic circuit is given by

Av ¼ bRC RL

RB þ rb þ RSð Þ RC þ RLð Þ ;

where all quantities on the right are circuit para-

meters. It is known that RB 	 rb, RB 	 RS, and

RL 	 RC. Using reasonable approximations,

simplify the expression on the right and identify

the circuit parameters that are critical to obtain-

ing a specified voltage gain.

Solution: Using (1.3), we have

RB 	 rb ) RB þ rb þ RS ffi RB þ RS;

RB 	 RS ) RB þ RS ffi RB;

RL 	 RC ) RL þ RC ffi RL:

Thus
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Av ¼ bRC RL

RB þ rb þ RSð Þ RC þ RLð Þ ffi
bRC RL

RB RC þ RLð Þ

ffi bRC RL

RB RL
¼ bRC

RB
:

Under the conditions given, the critical para-

meters are b, RC, and RB. The parameters RS, RL

and rb have relatively little influence on voltage

gain.

Exercise 1.9. The voltage gain of a certain

circuit is given by

Av ¼ a

1þ a b
;

where a and b are circuit parameters. Assume

a bj j 	 1 and give an approximate expression

for Av. If this assumption holds, which circuit

parameter determines the voltage gain of the

circuit?

Some care is required in applying (1.3) to quantities

raised to powers. For example, even if xj j 
 1, it is not

necessarily true that 1þ xð Þn ffi 1, especially if nj j is
large. In such cases, the binomial series expansion

1þxð Þn¼1þnxþn n�1ð Þ
2!

x2þn n�1ð Þ n�2ð Þ
3!

x3þ���

often justifies the approximation

1þ xð Þn ffi 1þ n x: (1.4)

The approximation (1.4) is justified if the quadratic

term is much smaller (in magnitude) than the linear

term; i.e., if

n� 1ð Þ xj j 
 2: (1.5)

For example, the true value of (1.05)4 is

1.21550625. Equation (1.4) gives

1:05ð Þ4 ¼ 1þ 0:05ð Þ4 ffi 1þ ð4Þð0:05Þ ¼ 1:2;

which is within 1.3% of the true value.

An asymptotic approximation to a function is

the limiting form of the function for either exceed-

ingly large or exceedingly small values of the inde-

pendent variable. As an example, functions of the

form

f ðxÞ ¼ 1� ex

are encountered frequently in electrical engineering.

Such functions arise in analysis of circuits containing

capacitors and inductors, where (usually) x < 0 and

in analysis of semiconductor devices, such as diodes

and transistors where (often) x > 0. Thus two asymp-

totic approximations of this function are important:

x< 0; jxj 	 1 ) 1� ex ffi 1;

x 	 1 ) 1� ex ffi � ex: (1.6)

In some cases, these approximations are deemed

valid if xj j � 3, because e3 ffi 20 is 20 times larger

than one (5% error) and e�3 ffi 0:05 is only about 5%

of one. In others, we might require xj j � 5 or more, in

which case the error in (1.6) is less than 1%.

Exercise 1.10. An asymptotic approximation

used extensively in a subsequent chapter is

log xþ 1ð Þ ffi log xð Þ; x 	 1:

For what values of x is the error in this

approximation less than 10%?

Approximations for elementary functions can

be obtained from Taylor series expansions. For

example,

exp xð Þ ¼ 1þ xþ x2

2!
þ � � � ffi 1þ x; xj j 
 1

cos xð Þ ¼ 1� x2

2!
þ x4

4!
� � � � ffi 1; xj j 
 1

sin xð Þ ¼ x� x3

3!
þ x5

5!
� � � � ffi x; xj j 
 1

ln xþ 1ð Þ ¼ x� x2

2
þ x3

3
� � � � ffi

0; xj j 
 1

ln xð Þ; x 	 1

( )

(1.7)
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Exercise 1.11. Without using a calculator or

computer, give approximate values for (a)
1

2:02
, (b) ln 1þ e5

� �
, (c) sin 0:501pð Þ, (d)

2þ e0:02, (e)
1

5
þ 1

0:02
:

Exercise 1.12. A particular current in an elec-

tric circuit is found to be

i1 ¼ R2

R1 þ R2

i0:

Find approximations for i1 (a) if R2 	 R1

and (b) as R1 becomes arbitrarily large (i.e., as

R1 ! 1).

You should cultivate your ability to make reason-

able approximations, partly because approximations

will help you determine whether a particular answer

or expression is reasonable, but mainly because

approximations often foster useful insight; e.g., as to

which components of a circuit are critical to accept-

able performance.

1.8 Precision and Tolerance

Values of circuit components are never known with

infinite precision. Rather, there is a precision asso-

ciated with every such value; for example, the value

of a resistance might be specified as 1 kO� 5%, mean-

ing that the actual value is somewhere between 950.0

and 1,050.0 O. Thus, there also are precisions asso-

ciated with calculated values of functions of circuit

parameters.

Example 1.7. In the expression I¼V/R, the
value of V is known to be in the range

V0 � 2% and the value of R is known to be in

the range R0 � 10%. What is the precision of

the calculated value of I?

Solution: Let V0, R0 denote the nominal (zero-

error) values for V and V, and let I0 ¼ V0/R0

denote the zero-error value for I. The maximum

error occurs if V has its maximum value and

R has its smallest value. The minimum error

occurs if V has its minimum value and R has its

maximum value. Thus

Imax ¼ Vmax

Rmin

¼ 1:02V0

0:90R0

¼ 1:13I0;

Imin ¼ Vmin

Rmax

¼ 0:98V0

1:10R0

¼ 0:89I0:

It follows that 0:89I0 � I � 1:13I0, or

I ¼ I0 þ 13% or� 11%, which might be writ-

ten I ¼ I0 þ 13%/�11%.

In electrical engineering, limits on precision (e.g.,

the þ13% and �11% in Example 1.7) are called tol-

erances. For example, if the resistance of a resistor is

known with precision �5%, we say that the tolerance

of the resistor is �5%. Tolerances can be symmetric,

as in �5%, but often are not. Capacitances often have

asymmetric tolerances; e.g., C ¼ C0 þ 20%=� 10%.

1.9 Engineering Notation

In engineering notation (a special kind of scientific

notation), values are typically written using the appro-

priate number of significant digits and a multiplier of

ten raised to a power that is a whole multiple of three;

for example, 1.56 � 106 and 67.0 � 10�3. Usually, the

factor 10n is then replaced by a prefix on whatever unit

is associated with the value written (see Table 1.4). For

example, we would write 62.63 � 103 V(volts) as

62.63 kV (kilovolts). Using engineering notation can

avoid ambiguity associated with trailing zeros on a

whole number. For example, whereas the significance

of the trailing zero in 320 is ambiguous, it is clear that

3.2 � 102 has two significant digits. Similarly, 3200 is

ambiguous, but 3.20 � 103 has three significant digits.

Exercise 1.13. Write each number using engi-

neering notation. Assume trailing zeros are not

significant. (a) 2015, (b) 16,380,000, (c) 0.759,

(d) 0.000462, (e) 47.92 � 102.
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Circuit components are available only in certain

standard sizes and tolerances; for example, standard

carbon-film resistors11 are readily available in toler-

ances of �10% and �5%, meaning that the actual

resistance is within those percentages of the specified

value. One can obtain high-precision components, such

as metal-film resistors having tolerances of 0.1% or

less; however, normal variations in ambient tempera-

ture and humidity or heating during soldering can cause

the actual values to drift by 1% or 2% or more from the

specified values. In general, actual values of circuit

parameters are seldom within even �1% of specified

values. Thus, when analyzing or designing circuits, it is

almost always unnecessary and sometimes misleading

to specify more than three significant figures in the

numerical value of any quantity. Using too many sig-

nificant figures can also cause you to miss opportunities

for laborsaving approximations; for example, by lead-

ing you to believe that two resistors having resistances

of 1:01256 kO and 1:01274 kO are different.

It would be troublesome and distracting to give the

precision of every computed value throughout our

introduction to linear circuits, so unless otherwise stated

in a problem or example, we shall for the most part treat

values as if they are known exactly. Again, this is a

relatively harmless practice in instructional material, so

long as you are forewarned that numerical results are

often specified more precisely than is truly justified. In

actual practice, however, it is usually essential to spec-

ify the precision of circuit parameters, based upon the

accuracy required of various currents and voltages.

1.10 Problems

Section numbers in shaded boxes indicate prerequisite

sections for problems that follow.

Section 1.2 is prerequisite for the following

problems.

P 1.1 Pick one of the IEEE technical societies from

the list on page 1.1 that sounds interesting to you. Visit

the IEEE website (www.ieee.org) to find out more

about the society. Briefly summarize the interests and

purpose of the society, and give an example of an item

that is related to the society’s work.

P 1.2 Use the procedure described in Section 1.2 to

outline the content of this chapter; i.e., list (or give a

reference to) the defined quantities (e.g., symbols,

special notation), physical laws, derived results, and

procedures (if any).

Section 1.3 is prerequisite for the following

problems.

P 1.3 The symbols in each quantity below are as

defined in Table 1.2. Determine the SI unit of the

quantity.

(a)
1

C

ðt
�1

iðt0Þdt0, (b) VI cos yð Þ, (c)
dq

dt
, (d) Ri2,

(e)
v2

R
, (f)

Rv
~Z
, (g)

L

R

di

dt
, (h) Cv.

P 1.4 Check each equation for dimensional

consistency.

(a)
R1R2

R1 þ R2

iþ R1C
dv

dt
¼ 0,

(b)
1

C

ðt
�1

iðt0Þdt0 þ L
di

dt
þ Ri ¼ v,

(c) C
dv

dt
þ v

R
þ 1

L

ðt
�1

vðt0Þdt0 ¼ i,

(d) R1R2C1C2

d2v

dt2
þ R1

L

dv

dt
þ R2i ¼ I,

(e)
~Z1
~Z2

Rþ ~Z1

~I þ
~V
~Y
¼ ~V0,

(f) LC
d2v

dt2
þ RC

dv

dt
þ v ¼ RC

di

dt
.

P 1.5 Each quantity below is dimensionless.

Express the SI unit of the variable a in terms of the

SI units for current (A), voltage (V), and time (s).

ðaÞ aV

RL
ðbÞ I V

a LC
ðcÞ a V2 dv

dt
ðdÞ aR I

L
di

dt

� �

ðeÞ 1

a

ðt0
0

vðtÞ dt ðfÞ a
ffiffiffiffiffiffiffi
LC

p

RC

ðgÞ a p t

C v2
ðhÞ a2

C
dv

dt

� �

L
di

dt

� �
2
664

3
775
2

11Resistance is defined in Chapter 2.
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P 1.6 Express the speed of light in furlongs per

fortnight. (Refer to your dictionary for definitions of

furlong and fortnight.)

P 1.7 What is the SI equivalent of one light-year?

P 1.8 Express 1 kV/MHz in V/Hz.

P 1.9 Express the speed of light in m/ms.
P 1.10 Obtain the dimension and SI unit of

ffiffiffiffiffiffi
LC

p
,

where L is inductance and C is capacitance.

P 1.11 Obtain the dimension and SI unit of L/R,

where L is inductance and R is resistance.

P 1.12 Obtain the dimension and unit of ~I Z, where ~I

is current and Z is impedance.

P 1.13 Obtain the dimension and unit of
ffiffiffiffiffi
me

p
,

where m is permeability and e is permittivity.

P 1.14 Express the charge of an electron in mC, n C,
and p C.

P 1.15 Electrical utilities (and power-system engi-

neers) often express energy in kWh (kilowatt-hours).

Express 1 kWh in J (joules).

P 1.16 Find the mass, in kilograms, of a man that

weighs 200 lb.

P 1.17 List as many units as you can for each of

the following quantities and name disciplines in which

such units would be used: (a) length, (b) area, (c)

volume, (d) energy.

P 1.18 The fine-structure constant is a ¼
1
2
m0 c qe

2 h�1, where m0 is the permeability of a vacuum,

c is the speed of light in a vacuum, qe is the charge of an
electron, and h is Planck’s constant. Show that the fine-

structure constant is dimensionless.

P 1.19 The Stefan-Boltzmann constant is

s ¼ ðp2=60Þ k4 h�3 c�2, where k is the Boltzmann

constant, h is Planck’s constant, and c is the speed of

light in a vacuum. (a) Express the unit of the Stefan-

Boltzmann constant in terms of basic SI units. (b)

Show that the unit of the Stefan-Boltzmann constant

can be expressed as W m�2 K�4.

P 1.20 The SI unit for resistivity is the Om, but this

unit is inconvenient (too large) in many cases, so

resistivity is often expressed in mO cm. Find the factor

that converts O m to mO cm.

P 1.21 Show that

i tð Þ ¼ 1

L

ðt
�1

vðt0Þdt0

is dimensionally consistent.

P 1.22 Show that 1Vm�1 ¼ 1N C�1.

Section 1.7 is prerequisite for the following

problems.

P 1.23 For each function given below: (i) Find

the small-x and large-x linear asymptotes. (ii) If

the asymptotes intersect, calculate the values of the

function and either asymptote at that point. (iii) Sketch

a graph of the function, using the asymptotes as guides.

(a) f ðxÞ ¼ tan�1 xð Þ, (b) f ðxÞ ¼ 1

1þ x2
,

(c) f ðxÞ ¼ 1

x
, (d) f ðxÞ ¼ 0; x< 0;

e�x; x � 0;

(

(e) f ðxÞ ¼ 0; x< 0;

1� e�x; x � 0:

(

P 1.24 A certain voltage Vout is expressed in terms

of another voltage Vn by

Vout ¼ Rout � mR1

Rout þ R1

Vn;

where R1, Rout are resistances and m is dimensionless.

It is known that R1 	 Rout and m 	 1. Find a reason-

able approximation for Vout.

P 1.25 A certain voltage VL in an electric circuit is

found to be

VL ¼ RL

RT þ RL
VT ;

(a) Find a reasonable approximation forVL ifRL 	 RT .

(b) Find a reasonable approximation forVL ifRT 	 RL.

(c) Find VL as RT becomes arbitrarily large (i.e., as

RT ! 1).

P 1.26 A performance measure called current gain

for a particular circuit is found to be

Ai ¼ RinRoutRSg

Rout þ RLð Þ Rin þ RSð Þ ;

where all quantities on the right are circuit parameters.

(a) Find a reasonable approximation for Ai if

Rout 	 RL.

(b) Find a reasonable approximation for Ai if

Rin 	 RS.

(c) Find a reasonable approximation for Ai if both

Rout 	 RL and Rin 	 RS.
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(d) The current gain Ai is dimensionless. What is the

SI unit of g?

P 1.27 Give asymptotic approximations to

log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f=f0ð Þ2

q
for (a) 0 < f 
 f0 and

(b) f 	 f0 > 0.

P 1.28 Given that R1 	 R2 	 R3, obtain an

approximation to
1

R2

þ R1 þ R3

R1R3

.

P 1.29 Given that R1 	 R2 	 R3, obtain an

approximation to
R1R2R3

R1R2 þ R1R3 þ R2R3

.

P 1.30 Let

Gð f Þ ¼ � log 1þ f=f0ð Þ2
h i

þ log 1þ f=f1ð Þ2
h i

� log 1þ f=f2ð Þ2
h i ;

where 0 
 f0 
 f1 
 f2. Give asymptotic approxima-

tions for G(f) for (a) f0 
 f 
 f1, (b) f1 
 f 
 f2, and

(c) f 	 f2
P 1.31 Let

H fð Þ ¼
K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f=f1ð Þ2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f=f0ð Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f=f2ð Þ2

q ; f0 
 f1 
 f :

Give asymptotic approximations for H(f) for (a)

f0 
 f 
 f1, (b) f1 
 f 
 f2, and (c) f 	 f2
P 1.32 Show that if x and y are both positive, then

1

x
þ 1

y
>

1

xþ y
:

Section 1.8 is prerequisite for the following

problems.

P 1.33 Estimate the precision of the indicated

quantity:

(a)
R1

R2

, where the precision of each R is � 5%

(b)
R1R2

R1 þ R2

, where the precision of each R is � 5%

(c) f=f0ð Þ2, where the precision of f0 is � 1%. Does

the magnitude of the error depend upon the vari-

able f?

(d) 20 log½1þ f=f0ð Þ2�, where f is known exactly,

f 	 f0, and the precision of f0 is � 5%. Does

the magnitude of the error depend upon the

variable f ?

(e) expð�t=RCÞ for t ¼ 20 ms, where R ¼ 1 kO� 5%

and C ¼ 20 nF� 20%.

(f)
R1R2R3

R1R2 þ R1R3 þ R2R3

, where the precision of

each R is � 1%

Section 1.9 is prerequisite for the following

problems.

P 1.34 Express each of the following using engi-

neering notation. Omit ambiguous zeros.

(a) 14,600 V, (b) 9,870,000W, (c) 48:3� 108, (d) Five

million people, (e) 0.0056, (f) 0.0001, (g) 0.000708.

P 1.35 Express each of the following using unit

prefixes; for example, as in 47; 000O ¼ 47kO.

(a) 12 million volts, (b) 4:2� 10�6 A, (c) 56� 105 W,

(d) 0.050 V, (e) 0.0002 A, (f) 4:8� 63:4� 109:0m,

(g) 0:0506 g 2048, (h) 10� 109 Hz, (i) 34:7�
1013 O.

P 1.36 Express each of the following using engi-

neering notation, without using unit prefixes; for

example, 123 kW ¼ 123� 103 W.

(a) 55GHz, (b) 12 ns, (c) 100 MW, (d) 2:2 kOs,
(e) 100nF, (f) 14:6 ms, (g) 12mm, (h) 47 mF, (i) 12pF
(j) 108 mO cm, (k) 75 kVA, (l) 100 TO, (m) 1 fA.
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Chapter 2

Current, Voltage, and Resistance

In this chapter, we define current and voltage, which

are among the principal quantities of interest in circuit

analysis. We present Ohm’s law, which is one of the

fundamental laws of electrical engineering, and which

is the defining relation for resistance and conductance.

2.1 Charge and Current

Charge is a property of electrons and protons, which

are building blocks of atoms. The SI unit of electric

charge is the coulomb (C).1 A quantity of charge is

represented by the symbol q and is in general a func-

tion of time.

Physicists are still hard at work trying to determine

what charge is made of, but we do not need to await

the results. We already know enough about how

charge behaves to make it do many useful things. We

accept charge as an undefined quantity whose proper-

ties are well understood. For electrical engineers, the

important properties of charge are the following:

• There are two kinds of charge: The negative charge

of an electron and the positive charge of a proton.

The charge of an electron is qe ffi �1:602� 10�19C:

The charge of a proton is qp ¼ �qe:
• Like charges (charges having the same sign) repel

each other and unlike charges attract each other.

The force on a point charge2 q1 due to the presence

of another point charge q2 is given (in a vacuum) by

Coulomb’s law

f ðxÞ ¼ q1q2
4 p er e0 x2

¼ k
q1 q2
x2

; (2.1)

where x is the distance between the charges and

k ¼ 4 p er e0ð Þ�1
is a constant whose value depends

upon the medium. In free space, k is approximately

9� 109 N m2 C�2: The force on q1 given by (2.1)

is attractive (directed toward q2) if q1 and q2 have

opposite signs and repulsive (directed away from

q2) if q1 and q2 have the same sign. The fact that

charges exert forces on one another allows us to

establish conditions under which some charges

make other charges do useful things.

• The charge of an electron (or proton) is the smal-

lest unit of charge and all charges are whole multi-

ples of that fundamental unit. This fact is

unimportant in ordinary circuit analysis, where so

many electrons and/or ions are involved in the

processes of interest that we can treat quantity of

charge as a real variable–one that can assume any

value. But it might be important in future ultra-

small devices, where relatively few electrons will

be involved in processes of interest.

• Charge can be neither created nor destroyed; that is,

total charge is conserved.3 If we enclose a volume

1After the French physicist Charles Augustin de Coulomb

(1736–1806).
2In practical applications, two charges can be considered point

charges if their radii are much smaller than their separation.

3Total charge is the algebraic sum of charge. Thus, the net

charge of a hydrogen atom, which consists of one electron and

one proton, is zero.

T.H. Glisson, Introduction to Circuit Analysis and Design,
DOI 10.1007/978-90-481-9443-8_2, # Springer ScienceþBusiness Media B.V. 2011
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with a surface and monitor the charge passing

through the surface, any increase or decrease in

the net charge enclosed in the volume will be

accounted for by passage of charge through the

surface. It is good that charge is conserved, because

if charge could suddenly appear (or disappear) here

and there, it would be difficult to keep track of and

control.

• A moving charge creates a magnetic field and a

magnetic field exerts a force on a moving charge.

These facts make electric generators, motors, and a

host of other devices possible.

Because of the properties above, charge can be

made to do useful work. We can use electric charge

to move enormous amounts of energy easily from one

place to another, transmit information from one place

to another, perform computations at unimaginable

speed, convert mechanical energy to electrical form

(and vice versa), and do many other useful things.

To do work, charge must move under the influence

of a force. Consequently, moving charge usually is of

more interest to electrical engineers than charge itself.

Motion or flow of charge is called current, denoted by

i. By convention, the positive direction of current is

opposite to the direction of electron flow.4 Current i
through a plane (e.g., a cross section of a wire) is

defined by5

i ¼ dq

dt
; (2.2)

where dq is a quantity of charge passing through the

plane in time dt and i is the current through the plane in

the direction of the flow of positive charge. Alterna-

tively, if q is a quantity of charge in an enclosed space,

then (2.2) gives the current passing into the space

through the enclosing surface. The SI unit of current

is the ampere (A),6 where 1 A equals 1 C s�1.

Example 2.1. A steady flow of 1020 electrons per

second is directed from left to right through a

cross section of a wire, as illustrated in Fig. 2.1.

The current from left to right through the cross

section is constant and equals

i¼ 1020
electrons

second

� �
�1:602�10�19 coulombs

electron

� �
¼�16:02Cs�1¼�16:02A

:

The current from left to right is negative

because negative charge is moving from

left to right. The current from right to left

is positive and equals +16.02 A.

Exercise 2.1. An electric current is estab-

lished in a tank of salt water, as shown in

Fig. 2.2. The positively charged sodium ions

are drawn left to the negative electrode and the

negatively charged chlorine ions are drawn

right to the positive electrode. Each ion is

singly charged and N ions reach each electrode

during each interval T. Give an expression for

the current I. Show that the expression is

dimensionally consistent.

electron flow

positive current

Fig. 2.1 The direction of positive current is opposite to the

direction of electron flow. See Example 2.1

4We have Ben Franklin to thank for this unfortunate accident of

history. He decided to call the static charge induced on glass by

rubbing the glass with silk positive and stated that the direction
of current is from positive to negative (from glass to silk). Had

he made either of these choices the other way, the positive

direction of current would be in the direction of electron flow.
5Explicit time-dependence often is omitted for the sake of brev-

ity. Thus, in (2.2) q stands for q(t) and i for i(t). Also, current
defined by (2.2) is called conduction current. When you study

electromagnetism, you will learn about another kind of current

called displacement current, that does not involve flow of

charge. Conduction current is the current of interest in ordinary

circuit analysis, where we are relatively unconcerned with the

inner workings of circuit elements.

6After the French Mathematician and Physicist André Marie

Ampére (1775–1836), who discovered basic laws of electro-

magnetism.
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2.2 Electric Field

In this section, we review the definition of work and

define the electric field established by a charge, draw-

ing on an analogy with gravity and the gravitational

field. This section is preparation for the next, where

voltage is defined in terms of work done on a charge

by an electric field.

Recall from physics that potential energy is capac-

ity for doing work and that the work w done by a force

f(x) on an object as the object moves from x1 to x2 is

given by7

w ¼
ðx2
x1

f ðxÞ dx: (2.3)

The work done by the force is positive if the force is

in the direction of motion and negative if the force is

opposite to the direction of motion. Another way to

say this is that the force does work on the object if the

force and motion are in the same direction and work is

done on whatever provides the force if the force and

motion are in opposite directions. The SI unit of work

is the joule (J),8 where (in mechanical units) 1 J equals

1 N-m.

Work and energy are expressed in the same unit (J)

and are physically the same thing. The distinction

between work and energy is semantic, but useful.

Energy describes the state of something; for example,

we might speak of the potential energy of a mass that

has been raised to some height or the kinetic energy of

a moving mass. Work is a quantity of energy trans-

ferred from one thing to another or converted from
one form to another; for example, w in (2.3) is work

because it is a quantity of energy transferred from

whatever supplies the force f to an object acted on by

the force. Similarly, a quantity of electrical energy

converted to mechanical form by an electric motor is

called work.

An electric field and its interaction with charge are

analogous to a gravitational field and its interaction

with mass. On or near the earth’s surface, the gravita-

tional force f on a mass m is nearly independent of

position, is directed toward the center of the earth, and

is given by f ¼ mg, where g is the acceleration due to

gravity (approximately 9.8 m s–2 at sea level). For

purposes of ordinary (non-relativistic) mechanics, we

can define gravitational field strength F (a vector) near

the earth’s surface as the force per unit mass due to

gravity; that is, as the gravitational force on a mass

divided by the mass. Thus, the magnitude of the field

strength F is F ¼ f=m ¼ mgð Þ=m ¼ g and its direction

is toward the center of the earth.

A gravitational field possesses potential energy

because it does work on a mass that is allowed to

fall. The work done on the mass by the gravitational

field as the mass falls from height h to the ground is

w ¼ force x distance ¼ mgh. To put this another way,

the work w ¼ mgh is the amount of energy transferred

from the field to the mass as the mass falls from height

h. The work the gravitational field can do on the mass

(the energy that can be transferred from the field to the

mass) increases with the height of the mass. Thus,

energy is stored in the gravitational field when a

mass is raised and energy is released by the field

(transferred to the mass) when the mass falls.9 The

gravitational potential at a distance h above (but near)

the earth’s surface is defined by ’ðhÞ ¼ g h and equals
the work done per unit mass as a mass falls from or is

I

Battery

Fig. 2.2 See Exercise 2.1

7To avoid using vector notation, we assume the force f(x) is

directed along the x-axis, in either the same direction as the

motion or opposite to the direction of motion.
8After the English physicist James Prescott Joule (1818–1889).

9In this discussion, we are concerned only with energy

exchanged between the gravitational field and a single mass.

There may be other forces acting on the mass in addition to that

due to gravity, but they do not affect the energy exchange

between the mass and the field; for example, we can throw a

mass toward the ground, in which case additional energy is

transferred to the mass, but the energy transferred to the mass

from the field is unaffected by the throwing.
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raised to a height h. Thus the work w done is given by

w ¼ m’ðhÞ: If the mass falls, work is done by the field

(energy is transferred from the field to the mass). If the

mass is raised, work is done on the field (energy is

transferred from the mass to the field).

Example 2.2. An object having mass m ¼
2 kg is raised from the ground to a height h ¼
10 m and released. The potential energy stored

in the field when the object is raised is

w¼mghffi 2kgð Þ 9:8m � s�2
� �

10mð Þ¼ 196 J:

When the object is released, this energy is

given back to the object as kinetic energy. The

kinetic energy of the object when it hits the

ground is 196 J. When the object is raised, 196

J are stored in the field. When the object is

released, the field gives up the stored energy by

doing work w ¼ 196 J on the object.

Exercise 2.2. An object having mass m is

tossed up. When it strikes the ground, its veloc-

ity (downward) is u. Give an expression for the

height attained by the object. Show that the

expression is dimensionally consistent.

Below, by analogy with gravitation, we define elec-

tric field strength and electric potential. We illustrate

these definitions using the field and potential due to a

point charge. The stated definitions are general, but

the expressions given apply to a point charge only.

Consider the situation shown in Fig. 2.3, where

positive point charges q1 and q2 are separated by a

distance x. We assume the charge q2 is fixed and we

can somehow move the charge q1 about.
By Coulomb’s law (2.1), the force f(x) on q1 due to

the presence of q2 is given by

f xð Þ ¼ k
q1 q2
x2

;

where k ¼ 9� 109 Nm2C�2: Because like charges

repel, the force given by (2.1) is repulsive; that is,

the force is positive if the charges have the same

sign. A positive (repulsive) force on q1 is directed

away from q2 along a line from q2 through q1, as
shown in Fig. 2.3.

The force given by (2.1) is attributed to an electric

field produced by the charge q2. The electric field

strength E (vector) at a point is defined as the force

per unit charge on a positive charge at that point.

Thus, the electric field strength at a distance x from

an isolated point charge q2 is given by

E xð Þ ¼ k
q2
x2
: (2.4)

The coulomb force given by (2.1) and the electric

field strength given by (2.4) for a point charge depend

only upon distance from the charge; that is, electric

field strength is directed radially outward from a posi-

tive charge, as illustrated in Fig. 2.4. If q2 were nega-

tive, the electric field strength given by (2.4) would

be negative, meaning the force on a positive charge

is directed radially inward toward q2. Note that (2.4)

gives electric field strength a distance x from a point

charge. It is not a general result. Other charge distri-

butions lead to different expressions for electric field

strength.

If the charge q1 in Fig. 2.3 is free to move, and if

both charges have the same sign, then the charge q1
will accelerate away from q2, taking energy from the

electric field as it accelerates. On the other hand, if we

somehow force the charge q1 toward the charge q2, we

q2 q1

x

f

Fig. 2.3 Coulomb force

E E

Fig. 2.4 Electric field due to a point charge. Electric field lines

of force emanate from positive charge and terminate on negative

charge
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store potential energy in the field because we increase

the capacity of the field to do work on the charge q1. If
a positive charge moves in the direction of electric

field strength, then the motion and the force are in the

same direction and energy is transferred from the field
to the charge. If a positive charge moves opposite to

the field, energy is transferred to the field from what-

ever moves the charge.

Recall that a mass moving toward the earth’s sur-

face (in the direction of the gravitational field) takes

energy from the gravitational field and a mass moving

away from the earth’s surface (opposite to the direc-

tion of the gravitational field) gives energy to the

gravitational field. Similarly, a positive charge moving

in the direction of an electric field takes energy from

the field and a positive charge moving opposite to the

direction of the field gives energy to the field. Currents

in electric circuits are due primarily to electron flow,

but we may treat a flow of electrons in one direction as

a flow of positively charged particles in the opposite

direction. Thus energy is taken from an electric field

by a current moving in the direction of the field and
energy is given to the field by current moving opposite

to the direction of the field.

Continuing the point-charge example, we can cal-

culate the work done on the charge q1 by the field

using (2.3), where the force f(x) is the product of the

charge q1 and the electric field strength (the force per

unit charge). From (2.4), the force on the charge is

given by

f ðxÞ ¼ EðxÞ q1 ¼ k
q1 q2
x2

:

Suppose both charges have the same sign, q2 is

stationary, and the charge q1 moves from point a to

point b on a line drawn from point a to q2. From (2.3),

the work done on the charge by the field is given by

w ¼
ðb
a

f ðxÞ dx ¼ k q1 q2

ðb
a

dx

x2

¼ k q1 q2 � 1

x

� �b
a

¼ �k q1 q2
1

b
� 1

a

� �
: (2.5)

If a< b; the charge q1 moved away from q2 (in the

direction of the field), the work w is positive, and the

field has done work on the charge. If a> b; the charge

q1 moved toward q2 (opposite to the direction of the

field), w is negative, and work has been done on the

field. In the first case, energy is removed from the field

(transferred to the charge). In the second, energy is

stored in the field.

Example 2.3. In Fig. 2.3, the movable charge

q1 ¼ 1 mC and the fixed charge q2 ¼ 5 mC. If

q1 moves from a ¼ 10m to b ¼ 20m (away

from q2), the work done by the field on q1 is

given by (2.5) and equals

w ¼ �k q1 q2
1

b
� 1

a

� �

ffi � 45� 103N �m2
� � 1

20m
� 1

10m

� �
¼ 2; 250 J

which is approximately the work done in lift-

ing a 225 kg mass to a height of 1 m (a 225 kg

mass weighs about 496 lb).

Exercise 2.3. Point charges q, –q are a dis-

tance d apart. Obtain an expression for the

charge q in terms of the separation d and the

force f each charge exerts on the other. Show

that the expression is dimensionally consistent.

2.3 Electric Potential and Voltage

We continue with the point-charge example. From the

discussion above, the potential energy of the field due

to q2 depends upon the position of q1 relative to that of

q2. The closer is q1 to q2, the greater is the potential

energy of the field and the farther is q1 from q2, the

smaller is the potential energy of the field.

The electric potential at a point is denoted by F
and is defined as the work done on an electric field (or

by an external force) per unit charge when a positive

charge is brought from infinity (where the electric field

strength is assumed to be zero) to the point.10 Thus the

electric potential at a point is numerically (but not

10Note that electric potential is not the same as potential energy.

The unit of electric potential is that of energy divided by charge.
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dimensionally) equal to the work required of an exter-

nal force to bring a one-coulomb positive charge from

infinity to the point. The work done and thus the

potential can be positive or negative, depending upon

whether the charge is forced to move against the

electric field or is allowed to drift in the direction of

the field. The SI unit of electric potential is the volt

(V),11 where 1 V equals 1 J C–1.

Equation (2.5) gives the work done by the field on a

point charge when the charge is moved from a to b in

the neighborhood of another point charge. The work

done on the field is just the negative of the work done

by the field. Changing the sign of the right side of (2.5),
dividing by q1, and taking the limit as a ! 1, we find

that the electric potential (the work done on the field

per unit charge) in bringing a charge from x ! 1 to

x ¼ b is given by

FðbÞ ¼ k q2
b

: (2.6)

Point b can be any point (any distance from q2), so

the electric potential at distance x from a point charge

q2 is given by

FðxÞ ¼ k q2
x

: (2.7)

For a point charge, the electric field strength given

by (2.4) and the electric potential given by (2.7) are

related as

EðxÞ ¼ FðxÞ
x

: (2.8)

Electric field strength is defined as force per unit

charge, so electric field strength can be expressed in

units of newtons per coulomb (N C–1). Equation (2.8)

for electric field strength is specific to a point charge,

but illustrates the fact that electric field strength also

can be expressed in volts per meter (V m–1), which is

the preferred unit in electrical engineering (both are SI

units).

Example 2.4. From (2.4) the electric field

strength at a point 10 m from a 5 mC point

charge is

E¼ kq

x2
ffi 9�109N �m2 �C�2
� �

5�10�6C
� �

10mð Þ2

¼ 450NC�1 ¼ 450Vm�1:

From (2.7), the electric potential at the point

is

F ¼ k q

x
ffi 9� 109N �m2 � C�2

� �
5� 10�6C
� �

ð10mÞ
¼ 4:50 kV:

Exercise 2.4. Equal point charges are fixed in

space as shown in Fig. 2.5 and exert a force

f on one another. Find an expression for the

electric potential due to the charges at the point

x1 > x0> 0 in terms of the distances x0; x1: and

the force f Show that the expression is dimen-

sionally consistent. Hint: The total electric

potential due to two point charges is the sum of

the potentials due to each charge individually.

What causes water to flow through a pipe is a pres-

sure difference from one end of the pipe to the other. It

is pressure difference that causes flow, not absolute

pressure at either end. Similarly, what causes charge to

flow is a potential difference. In electric circuits, we

are interested in potential differences, not absolute

potentials.

The voltage at point a with respect to point b,
denoted by vab; is the potential difference

vab ¼ FðaÞ � FðbÞ; (2.9)

x0 x10

x

q

q q

Fig. 2.5 See Exercise 2.4

11After Count Alessandro Volta (1745–1827), an Italian inven-

tor who discovered hydrolysis and invented the battery and the

electric condenser (now called a capacitor).
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where F að Þ is the potential at point a and F bð Þ is the
potential at point b The SI unit for electric potential is

the volt, so the SI unit of voltage is also the volt (V).

Note that the voltage vab is thework done on the field per

unit charge in moving a charge from point b to point a.
The difference of two potentials can be formed in

two ways and the order of the subscripts a and b is

significant. Two points are required to specify (or

calculate, or measure) a voltage and one of the points

must be identified as the reference. By convention, the

second subscript on the voltage defined by (2.9) iden-

tifies the reference point; e.g., in (2.9) the potential

F bð Þ is the reference potential. To measure vab with a
voltmeter, we would touch the black (–) probe to the

reference point b and the red (+) probe to point a. If we

made the measurement the other way around, we

would be measuring the negative of vab because, by

comparison with (2.9),

vba ¼ FðbÞ � FðaÞ ¼ �vab: (2.10)

Example 2.5. From (2.9) and (2.7), the volt-

age at a point a with respect to another point b
in the neighborhood of an isolated point charge

q2, is given by

vab ¼ k q2
xa

� k q2
xb

¼ k q2
1

xa
� 1

xb

� �
;

where xa is the distance from point a to q2 and
xb is the distance from point b to q2. If q2 is

positive, the voltage vab is positive if a is

nearer q2 than b (if xa< xb) and negative if a
is farther from q2 than b (if xa > xb).

Exercise 2.5. The point a is at a distance xa
from an isolated point charge q, as shown in

Fig. 2.6. Let vab denote the voltage between a
and another point b. Express the distance d in

terms of q, xa, and vab. Show that the expres-

sion is dimensionally consistent.

If a voltage vab is positive, the potential energy of a
positive charge is greater at the point a than it is at

point b. In that case, a positive charge experiences a

voltage drop in moving from a to b and a voltage rise

in moving from b to a.12 If vab is negative, the reverse

is true. Thus current from a to b goes through a voltage
drop if vab is positive and a voltage rise if vab is

negative. Figure 2.7 illustrates these definitions.

2.4 Ohm’s Law and Resistance

Ohm’s law states that the voltage across a piece of

material is proportional to the current through the

material; for example, if the object in Fig. 2.8 repre-

sents a sample of conducting material, the voltage v

across the sample is related to the current i through the

sample according to13

v ¼ R i; (2.11)

where R is called the resistance of the sample. The SI

unit of resistance is the ohm (O),14 where 1 O equals 1

V/A (1 VA�1). Despite its simplicity, Ohm’s law is

one of the most important laws in all of electrical

engineering.

ba

voltage drop

voltage rise

Φ(a) > Φ(b)
vab > 0

Fig. 2.7 Definitions of voltage rise and voltage drop

v+ –

i

Fig. 2.8 Voltage polarity and current direction in Ohm’s law

q

xa d

a b

Fig. 2.6 See Exercise 2.5

12The terms rise and drop arise from analogy with gravity,

where a mass gains potential energy if we raise it and loses

potential energy if we lower (or drop) it.
13In general (and usually), both voltage and current vary with

time.
14After the German physicist Georg Simon Ohm (1787–1854).
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In Ohm’s law (2.11) the positive direction of

current is in the direction of a voltage drop (from a

higher to a lower potential), as shown in the figure. If

either the assumed voltage polarity or the assumed

current direction is opposite to that shown in

Fig. 2.8, the right side of (2.11) must be negated.

Example 2.6. In Fig. 2.8, the current i is equal
to 5 A in the direction shown and the resistance

of the sample is 100 O. From (2.11), the volt-

age v is 500 V.

Exercise 2.6. Refer to Fig. 2.9. Find the cur-

rent i2 if the voltage v is 10 V and the resistance

of the sample is 1 kO.

2.5 Resistivity

The resistance of a sample of material depends upon

the kind and state of the material (e.g., copper at 20�C)
and upon the size and shape of the sample. The effects

of the kind and state of the material can be separated

from those of size and shape. A material can be char-

acterized by its resistivity, denoted by r, which is

independent of size and shape. The resistance of a

homogeneous sample of material having resistivity r,
length l, and uniform cross-sectional area A is given by

R ¼ r l
A
: (2.12)

The SI unit of resistivity is the ohm meter (Om).15

Depending upon the material, resistivity can depend

strongly or weakly upon the state of the material (e.g.,

temperature and pressure).

Example 2.7. The resistivity of pure copper at

20�C is 1:72� 10�8 Om: At 20�C, the resis-

tance of a pure copper cylindrical wire having

diameter d ¼ 0:2 cm and length l ¼ 5km is

R ¼ rl
A
ffi 1:72� 10�8Om

� �
5000mð Þ

pð Þ 0:001mð Þ2 ffi 27:4 O:

If the current in the wire is 15 A, the voltage

drop from end to end is

v ¼ R i ffi ð27:4OÞð15AÞ ffi 411V:

Exercise 2.7. A certain conductor on a printed

circuit board has a rectangular cross section.

The conductor has width w0 and is built from a

material having resistivity r0: Suppose we

want to build the conductor from a different

material having resistivity r1: Find an expres-

sion for the new width w1 if we want to main-

tain the length, height, and resistance of the

original conductor

Many materials are classified according to their

resistivity as insulators (very high resistivity) or

conductors (very low resistivity). Materials having

resistivities between these extremes are called semi-
conductors. Glass and air are good insulators. Most

metals are good conductors.16 Silicon containing cer-

tain impurities is a semiconductor.

2.6 Conductance and Conductivity

The reciprocal of resistance is called conductance and

is denoted by G:

G ¼ 1

R
: (2.13)

v

R

+ – i2

Fig. 2.9 See Exercise 2.6

15In reference works, resistivity often is specified in mO cm

(10–8 O m).

16Metals are good conductors because the outer electrons of

metal atoms are only loosely held and are relatively free to

“drift” through the solid under the influence of an applied

voltage.
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The unit of conductance is the siemen (S), where

1 S ¼ 1 O�1. The reciprocal of resistivity is called

conductivity, denoted by s:

s ¼ 1

r
: (2.14)

The unit of conductivity is siemens per meter

(S m�1). From (2.12)–(2.14), the conductance of a

homogeneous piece of material having conductivity s,
length l and uniform cross-sectional area A is given by

G ¼ sA
l
: (2.15)

Using conductance, Ohm’s law is written

i ¼ Gv: (2.16)

Conductance often is used symbolically in place of

resistance when writing circuit equations that would

otherwise contain many terms of the form v=R; how-
ever, in specifications of values, resistance is almost

always the quantity specified.

2.7 Resistors

Resistance is introduced (intentionally) in circuits

using components called resistors. Resistors are

made of various materials and in various configura-

tions. A composition resistor is essentially a cylindri-

cal core of material consisting of very fine carbon or

metallic granules imbedded in a non-conducting or

semi-conducting material and incased in plastic. The

resistance is determined by the concentration of car-

bon or metal in the core material. There are two main

types of film resistors. One kind is made by depositing

a film of metal or carbon on a non-conducting cylin-

drical core and then cutting away some of the material

to leave a spiral ribbon of the material. The other kind

consists of a thin film of (usually) metal or certain

metal oxides on a planar surface. Many chip resistors

and surface-mount resistors are of this kind, as are

resistors in integrated circuits. A wirewound resistor

is just what the name suggests: A wire wound on a

non-conducting core. The resistance of a wirewound

resistor is determined by the resistivity, cross-sectional

area, and length of the wire. If adjacent windings are in

contact, the wire is insulated.

Resistors are fixed (have fixed values) or variable.

Variable resistors can be continuously variable, like

potentiometers and rheostats, or have contacts at only

certain angular or linear positions. A continuously

variable resistor incorporates a tap or a slide that can

be positioned and repositioned along a strip of con-

ducting material or wirewound core. Those having

only a limited set of possible values sometimes are

called encoders because they provide a precise relation

between position and resistance. Figures 2.10 and 2.11

show assorted fixed and variable resistors.

Years ago, carbon-composition resistors were the

most common (numerous) kinds of resistors. Nowa-

days, the most numerous resistors are film resistors,

and carbon-composition resistors have almost disap-

peared. Chip resistors, most small axial-lead resistors,

and resistors in integrated circuits are constructed of

thin carbon or metallic films (often, nichrome or tan-

talum nitride). In chip and integrated resistors, the film

is deposited on an insulating substrate and joined to

contact pads or conductors at each end, as illustrated in

Fig. 2.12. The resistance of a thin-film resistor is given

by the usual relation

R ¼ rl
A

¼ rl
w h

: (2.17)

where w and h are the width and thickness, respec-

tively, of the strip, r is the resistivity of the film, and l

is the length of the strip.

It is conventional and convenient to define the

sheet resistance of a film resistor as

r
h
¼ sheet resistance: (2.18)

Sheet resistance has the dimension of resistance

and usually is expressed in either ohms or ohms per

square. With this definition (2.17) becomes

R ¼ r
h

� �
l

w

� �
¼ sheet resistanceð Þ � number of squaresð Þ:

(2.19)

The number of squares in a film resistor is dimen-

sionless and is obtained by dividing the length of the

film into squares having sides equal to the width of the

film, as illustrated by Fig. 2.13.
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The resistance of a thin-film resistor is determined

by the sheet resistance, which is a function of the

material and film thickness, and the number of squares.

The resistance is independent of the size of a square.

For example, a film 2 mm wide by 10 mm long has the

same resistance as one 200 nm wide and 1mm long, as

illustrated by Fig. 2.14, if both have the same sheet

resistance.

Tantalum nitride (TaN) is widely used for thin-film

resistors, partly because the resistivity of TaN can

be varied over a wide range by varying the composi-

tion. A common composition has a resistivity of about

250 mO cm at 25�C: A common thickness for thin-film

resistors is 50 nm. A 50 nm film of 250 mO cm TaN

has a sheet resistance of 50O=sq; which proves to be a
convenient value.

Fig. 2.11 Variable Resistors

(not to scale) (Photos courtesy

Rapid Electronics, Ltd.)

Fig. 2.10 Fixed resistors (not

to scale): (a) Aluminum-

encased wirewound, (b)

power wirewound, (c) metal-

oxide, (d) carbon-film, (e)

metal-film, (f) carbon

composition, (g) surface-

mount chip (Photographs

courtesy Rapid Electronics,

Ltd.)
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Exercise 2.8. The resistivity of a certain com-

position of nichrome is108 mO cm at 25�C:
What is the thickness of a layer of this material

that will have a sheet resistance of 75O=sq at

25�C?

Exercise 2.9. The length of the film in a 500O
thin film resistor is fixed while its width is

halved. What is the new resistance?

Exercise 2.10. The resistivity of a certain

material at 25�C is 95 mO cm: (a) What is the

sheet resistance of a 100 nm thick film of the

material? (b) What is the resistance at 25�C of

a thin film resistor made of 100 nm film that is

75 nm wide and 1mm long?

The natural tolerances of thin film resistors are at

best about � 10%; however, a thin film resistor can

be trimmed to a very precise value by monitoring the

resistance while using a laser to cut one or more

notches in the film, as illustrated by Fig. 2.15. It is

difficult to specify the width and depth of the notch

because of variations in the thickness and even the

composition of the film (which is why the natural

tolerances are relatively poor). Ability to trim thin

film resistors to such precise values is important to

design and construction of high-precision electronic

circuits.

2.8 E Series, Tolerance, and Standard
Resistance Values

It is impossible for parts suppliers to stock resistors in

every possible value, so a convention for defining a

reasonable set of standard values is necessary. The

convention used is based on what are called E series,

which are approximately logarithmic divisions of a

decade. Table 2.1 gives the values of the E12, E24,

E48, E96, and E192 series, which are the most com-

monly used series for resistors. The E12 series divides

1 decade into 12 values, the E24 series divides 1

decade into 24 values, and so on. The E3 and E6 series

are seldom used for resistors and are not shown here.

The E3 series contains every other value from the E6

series, which contains every other value from the E12

series, which contains every other value from the E24

series. Similarly, the E48 series contains every other

value from the E96 series, which contains every other

value from the E192 series. The E24 series does not

contain every other value from the E48 series, because

E48 values have three significant digits, whereas E24

values have only two. But one can say that the E24

series contains rounded-off values from the E48 series.

The resistance of a resistor from any particular E

series consists of a number from the series, multiplied

by an integer power of ten. For example, the value 133

appears in the E48 series, so one can readily obtain

resistors having nominal resistances of (e.g.) 133O;
13:3 kO; and 1:33MO: Every standard (off-the-shelf)

resistor value equals the product of a number from an E

series and an integer power of ten, but not all such

values are necessarily available from a higher or lower

series. For example, one can buy � 10% and � 5%

(E12 and E24) resistors having values of 33, 330 O,
3.3 kO, and so on, but none of these values are available

top view

w

contact pads

nichrome film
l

h
edge view

Fig. 2.12 Thin-film resistor

1
2

sq1 sq 1 sq 1 sq

Fig. 2.13 Thin-film resistor squares
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in the higher-precision (E48, E96, and E192) series. As

another example, resistors having values 383� 10nO;
with n ¼ �1; 0; 1; 2; � � � are available in the E48, E96,

and E192 series, but not in the E12 or E24 series.

A standard tolerance is associated with each value

from an E series. Standard tolerances for off-the-shelf

resistors are � 20% (E6 – rarely used, nowadays),

� 10% (E12), � 5% (E24), and � 1% (E96). Stan-

dard tolerances for high-precision resistors (obtainable

from some large suppliers and manufacturers) are

� 0:5%; � 0:1%; and � 0:05%: Resistors having

tolerances as tight as � 0:001% are available in

selected resistances from certain manufacturers. How-

ever, high-precision resistors are not bulk-produced in

every value from any particular E series, but typically

are produced in only certain values having wide appli-

cation (e.g., in precision instrumentation and measure-

ment systems).

Some manufacturers can produce special-order

resistors having virtually any nominal value, with tol-

erances of better than 0.05%. Ordering a batch of such

resistors might be justified if a particular value and

tight tolerance are required for a circuit being pro-

duced in quantity.

Example 2.8. A calculation indicates that a

resistor having resistance R¼ 61:7kO is needed

in a certain circuit. Refer to Table 2.1 and give

the nearest standard value from each series.

Solution: The E12 value nearest to the speci-

fied value is 56 kO. The E24 value nearest to

the specified value is 62 kO. The value from

the E48, E96, and E192 series nearest to the

specified value is 61.9 kO.

Example 2.9. One kind of ammeter measures

the current in a wire by measuring the voltage

across a precision resistor called a shunt

connected in series with the wire. In a particular

case, the shunt has resistance R ¼ 0:05O�
0:05% and the voltage across the shunt is

V ¼ 1:872mV: What is the current I through

the shunt?

Solution: The current is in the range

Imin � I � Imax; where

Imin ¼ V

Rmax

¼ 1:872mV

0:05Oð Þ 1:0005ð Þ ¼ 37:421mA;

Imax ¼ V

Rmin

¼ 1:872mV

0:05Oð Þ 0:9995ð Þ ¼ 37:459mA:

Exercise 2.11. A calculation indicates that a

resistor having resistance R ¼ 50 kO� 1% is

needed in a certain application. What value

would you specify and from which series?

2.9 Resistor Marking

Axial-lead composition, coated wire-wound, carbon-

film, and metal-film resistors are color-coded for resis-

tance and tolerance by either 4-band or 5-band codes

10 μm

2 μm

2 μm

5 squares

1 μm = 1000nm

200nm

5 squares

200nm

Fig. 2.14 Illustrating

calculation of sheet resistance

Fig. 2.15 Trimmed thin-film resistor
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as defined in Table 2.2. A 4-band code is used for

resistors from the E24 and lower series. A 5-band

code is used for resistors from the E48 and higher

series. The first band is closer to one end of the resistor

than the last band is to the other. The first two bands

denote the first two significant digits of the resistance.

In a 4-band code, the third band is the multiplier,

which is an integer power of ten, and the fourth band

denotes the tolerance. In a 5-band code, the third

band denotes the third significant digit, the fourth

band denotes the multiplier, and the fifth band is the

tolerance.

Example 2.10. Give the resistance of resistors

marked as follows:

(a) Red, violet, yellow, green; (b) red, vio-

let, brown, orange, violet.

Answers: (a) 270 kO� 0:5%; (b) 271 kO
�0:1%.

Exercise 2.12. Give the resistance of resistors

marked as follows:

(a) Yellow, orange, red, gold; (b) yellow,

green, white, orange, violet.

In addition to resistance and tolerance, properies of

resistors include power-dissipation rating, self-heating

coefficient (described in Chapter 5), maximum

operating temperature, and temperature coefficient of

resistance (described in the next section). Most manu-

facturers and vendors provide that information in data-

sheets for their offerings.

Table 2.2 Resistor color codes

Color Value Multiplier Precision

Black 0 100

Brown 1 101 �1%

Red 2 102 �2%

Orange 3 103

Yellow 4 104

Green 5 105 �0.5%

Blue 6 106 �0.25%

Voilet 7 107 �0.1%

Grey 8 108 �0.05%

White 9 109

Gold 10�1 �5%

Silver 10�2 �10%

None �20%

Table 2.1 E series for standard resistor values

E192 E96 E48 E24 E12

� 0:5% � 1% � 2% � 5% � 10%

100 178 316 562 100 316 100 10 10

101 180 320 569 102 324 105 11 12

102 182 324 576 105 332 110 12 15

104 184 328 583 107 340 115 13 18

105 187 332 590 110 348 121 15 22

106 189 336 597 113 357 127 16 27

107 191 340 604 115 365 133 18 33

109 193 344 612 118 374 140 20 39

110 196 348 619 121 383 147 22 47

111 198 352 626 124 392 154 24 56

113 200 357 634 127 402 162 27 68

114 203 361 642 130 412 169 30 82

115 205 365 649 133 422 178 33

117 208 370 657 137 432 187 36

118 210 374 665 140 442 196 39

120 213 379 673 143 453 205 43

121 215 383 681 147 464 215 47

123 218 388 690 150 475 226 51

124 221 392 698 154 487 237 56

126 223 397 706 158 499 249 62

127 226 402 715 162 511 261 68

129 229 407 723 165 523 274 75

130 232 412 732 169 536 287 82

132 234 417 741 174 549 301 91

133 237 422 750 178 562 316

135 240 427 759 182 576 332

137 243 432 768 187 590 348

138 246 437 777 191 604 365

140 249 442 787 196 619 383

142 252 448 796 200 634 402

143 255 453 806 205 649 422

145 258 459 816 210 665 442

147 261 464 825 215 681 464

149 264 470 835 221 698 487

150 267 475 845 226 715 511

152 271 481 856 232 732 536

154 274 487 866 237 750 562

156 277 493 876 243 768 590

158 280 499 887 249 787 619

160 284 505 898 255 806 649

162 287 511 909 261 825 681

164 291 517 919 267 845 715

165 294 523 931 274 866 750

167 298 530 942 280 887 787

169 301 536 953 287 909 825

172 305 542 965 294 931 866

174 309 549 976 301 953 909

176 312 556 988 309 976 953
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Exercise 2.13. Using a search engine of your

choosing, do a search on “resistors” and locate

several manufacturers’ web sites. Visit each

site and examine the technical data they pro-

vide on their offerings. Identify the technolo-

gies that provide (a) the lowest temperature

coefficient of resistance, (b) the highest pre-

cision, and (c) the highest power-dissipation

ratings.

2.10 Variation of Resistivity and
Resistance with Temperature

Resistivities of materials and thus resistances of con-

ductors and resistors vary with temperature.17 Tem-

perature dependence of resistivities of certain metals is

of interest because conductors in electric circuits are

metallic. Figure 2.16 shows resistivity as a function

of temperature for aluminum (Al), copper (Cu), and

gold (Au).18 The scales on the axes are logarithmic.

The vertical (resistivity) scale is logðr=r0Þ; where

r0 ¼ 10�8 Om (1 mO cm). The horizontal (tempera-

ture) scale is logðT=T0Þ; where T0 ¼ 1K (one kelvin).

For example, for logðT=T0Þ ¼ 2; we have T=T0 ¼
100 and the temperature is T ¼ 100 T0 ¼ 100K: At

that temperature, the resistivity of copper is given by

logðr=r0Þ¼�0:5; so r¼ r0� 10�0:5 ¼ 0:316 mOcm:

The vertical reference line indicates T ¼ 298 K ¼
25�C (77�F), where the values are rAl=r0 ¼ 2:709;

rCu=r0 ¼ 1:712; and rAu=r0 ¼ 2:255:

Figure 2.16 suggests that resistivity is very nearly

a linear function of temperature for temperatures

above about 102:25 K ffi 178K; which is approxi-

mately �95�C: Operating temperatures at or above

room temperature are common for linear circuits, so

we are particularly interested in temperatures above

about 298 K ¼ 20�C or so. Figure 2.17 shows graphs

of resistivity versus temperature (both K and �C)
for silver (Ag), aluminum (Al), gold (Au), copper

(Cu), and tungsten (W). For 200K � T � 900K

(25�C � T � 673�C), resistivity is very nearly a linear
function of temperature. Actually, the linear range for

these metals extends from about �100�C to almost

1000�C.
For a sufficiently small change DT in temperature,

the derivative of resistivity with respect to temperature

can be approximated by

dr Tð Þ
dT

ffi rðT þ DTÞ � r Tð Þ
DT

;

which gives, for the variation of resistivity with

temperature,

rðT þ DTÞ ffi r Tð Þ þ dr Tð Þ
dT

DT

¼ r Tð Þ 1þ a Tð ÞDT½ 	; (2.20)

where

a Tð Þ ¼ 1

r Tð Þ
dr Tð Þ
dT

(2.21)

is the temperature coefficient of resistivity at tem-

perature T. In engineering applications of (2.20), tem-

perature T often is expressed in degree Celsius

and resistivities of materials and the associated tem-

perature coefficients are commonly specified at

T25 ¼ 25�C ¼ 298K. In such applications it is usual

to specialize (2.20) and write

r̂T ¼ r25 1þ a25 T � T25ð Þ½ 	; (2.22)

where T25 ¼ 25�C ¼ 298K; the parameters r25; a25
are the resistivity and temperature coefficient, respec-

tively; and r̂T is an approximation to the true

(measured) resistivity at temperature T. For many

metals (2.22) can be used to estimate resistivity over

a wide range – from about �100�C to almost 1000�C.
The numerical value of a temperature coefficient is

the same whether expressed in �C�1 or K�1, because

the quantity T � T25 in (2.22) is the same, whether

both temperatures are expressed in degree Celsius or

Kelvin. In practice (e.g., on component data sheets),

temperature coefficients are commonly expressed in

parts per million (ppm), which is 106 K times the

coefficient expressed in K�1 (or �C�1):

17Resistivity can also vary with pressure, strain, strength and

direction of an applied magnetic field, and other things. The

operation of various transducers (e.g., strain gauges) is based

upon such effects.
18Handbook of Chemistry and Physics (76th Ed.), edited by

David R. Lide, CRC Press, 1995.
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a ppmð Þ ¼ a K�1
� �� 106 K: (2.23)

Table 2.3 gives resistivities and temperature coeffi-

cients at 25�C for selected metals. Be aware that such

data are available from many sources, and temperature

coefficients in particular can vary significantly from

one source to the next. Also, the values in Table 2.3

are for pure metals, whereas wires and cables used in

electrical components and apparatus often are alloys

whose resistivities and temperature coefficients can

differ significantly from those for the dominant pure

metal. The data given in Table 2.3 are intended for use

only in examples and problems given in this book, not

for actual engineering design.

Figure 2.18 shows graphs of the percent error

versus temperature for resistivities calculated using

(2.22), calculated as

error Tð Þ ¼ 100
r̂T � rT

rT
(2.24)
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Fig. 2.16 Graphs of

resistivity versus temperature

(log-log scale) for pure

aluminum (Al), copper (Cu),

and gold (Au), where

r0 ¼ 10�8 Om ¼ 1 mOcm
and T0 ¼ 1K: (See
Footnote 18)
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selected metals (See
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For temperatures between 298 K (25�C) and 898 K

(625�C), the maximum error (magnitude) is less than

5%. For that range of temperatures, the maximum

error (magnitude) for copper (a popular material for

wires) is approximately 2%.

Exercise 2.14. Refer to Fig. 2.18. Why is the

error at 298 K equal to zero for all four linear

approximations?

Example 2.11. A copper wire is heated from

25�C to 100�C. What is the percent increase in

resistivity?

Solution: From Table 2.3, the resistivity and

temperature coefficient for copper at 25�C are

r25 ¼ 1:71 mO cm and a25¼4;138ppm; respec-

tively. From (2.22), the resistivity at 100�C is

r100 ¼ r25 1þ a25 T � T25ð Þ½ 	
¼ 1:71 mO cmð Þ½1þ 4;138� 10�6�C�1

� �
� 100�C� 25�Cð Þ	

¼ 2:24 mO cm:

The percent increase is

100� r100 � r25
r25

ffi 31%:

Exercise 2.15. The resistivity of a certain

metal is 1:6� 10�8 O m at 10�C and

2:0� 10�8 O m at 70�C. Estimate the temper-

ature coefficient of resistivity for the metal at

10�C.

The resistivities of materials used to make resis-

tors also vary with temperature. Such variation is

approximately linear over the range of operating

temperatures for any particular resistor. In practice,

it usually is more convenient to deal directly with

resistance than resistivity. For any particular resistor,

resistance is proportional to resistivity, so (2.22)

gives

RT ¼ R25 1þ a25 T � T25ð Þ½ 	: (2.25)

In view of (2.25), the temperature coefficient of

resistivity is also called the temperature coefficient

of resistance, usually called just the temperature

coefficient or abbreviated as TCR.

Temperature coefficients for resistors vary con-

siderably. Generally, carbon composition and car-

bon-film resistors have temperature coefficients on

the order of 10�3K�1; whereas wirewound and

some metal-film and metal-oxide resistors have tem-

perature coefficients on the order of 10�5K�1: In

general, resistances of wirewound, metal-film, and

metal-oxide resistors are much less sensitive to tem-

perature than carbon-film and carbon-composition

resistors.

The resistivities of many materials approach

zero (the materials become superconductors) at

temperatures approaching 0 K. The resistivity of

a superconductor is less than 10�22 O cm; whereas

the lowest (room temperature) resistivity found in

metals is on the order of 10�6 O cm: Thus resistiv-

ities for superconductors are about a factor of

10-16 smaller than those of materials ordinarily

used for conductors in electric circuits. Some

materials become superconductors at temperatures

near 77 K (the boiling point of nitrogen), which

are much easier to attain and maintain than those

near absolute zero. As of this writing, use of

superconducting materials is limited to a few

specialized applications.

Table 2.3 Resistivities and temperature coefficients for

selected metals19

Metal Resistivity

at 25�C
mO cmð Þ

Temperature

coefficient

at 25�C (K�1)

Temperature

coefficient at

25�C (ppm)

Silver (Ag) 1.62 4:053� 10�3 4053

Aluminum (Al) 2.71 4:438� 10�3 4438

Gold (Au) 2.26 4:022� 10�3 4022

Copper (Cu) 1.71 4:138� 10�3 4138

Tungsten (W) 5.39 4:849� 10�3 4849

19Ibid. The temperature coefficients were obtained from the

slopes of linear-least-squares fits to the resistivity data given

there.
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2.11 American Wire Gauge (AWG) and
Metric Wire Gauge (MWG)

In the United States, the size of wire is specified by

a whole number called gauge (AWG, or American

wire gauge). Table 2.4 gives the diameters of selected

AWG wires. The diameter of any AWG wire is

given by

DAWG ¼ 8:251e� 0:1159ð ÞAWG mm: (2.26)

For AWG 00, 000, and 0000 sizes, use

AWG ¼ �1; �2; �3; respectively, in (2.26).

Example 2.12. The diameter of AWG 18

wire is

D18 ¼ 8:251mm e� 0:1159ð Þ 18ð Þ ¼ 1:024mm

and the diameter of AWG 000 wire is

D000 ¼ 8:251mm e� 0:1159ð Þ �2ð Þ ¼ 10:404mm:

The resistance of a length L (m) of AWG copper

wire is given by

RCu ffi 320� 10�6 Om�1
� �

L eð0:232Þ ðAWGÞ: (2.27)

For other materials, use

R¼ r
rCu

� �
RCu: (2.28)

Example 2.13. The resistance of 1 km of AWG

000 copper wire is

RCu ffi 320� 10�6 Om�1
� �

1kmð Þ e 0:232ð Þ �2ð Þ

ffi 0:201O:

and the resistance of 1 km of AWG 000 alumi-

num wire is

RAl ¼ rAl
rCu

RCu ¼ 2:709

1:712

� �
0:202Oð Þ ¼ 0:320O:
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Fig. 2.18 Percent error in a

linear approximation to

resistivity as a function of

temperature for five metals.

See (2.24). The curves are not

smooth because each contains

only 11 data points

Table 2.4 American wire gauge and wire diameters

AWG 6 8 10 12 14 16 18 20 22

d (mm) 4.115 3.264 2.588 2.052 1.628 1.290 1.024 0.813 0.643
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Exercise 2.16. The diameter of a certain wire

must be at least 5 mm. What is the largest

possible AWG designation of a wire meeting

this requirement?

In Europe, wire size is specified by diameter in mm

or less often by metric wire gauge (MWG), which is

ten times the diameter in mm. For example, the diam-

eter of MWG 30 wire is 3 mm. Simply specifying wire

diameter in mm seems to make a great deal of sense.

However, an advantage of the AWG convention is that

equal steps in AWG designation correspond to equal

resistance ratios; for example, if decreasing the AWG

designation of a certain kind of wire from 22 to 20

decreases the resistance of the wire by a factor of 0.6,

then so would a decrease from 20 to 18, or 18 to 16,

and so on.

Exercise 2.17. What is the MWG designation

for AWG 18 wire?

2.12 DC and AC

Historically, dc and ac arose as abbreviations for

direct current and alternating current, respectively,

where direct was synonymous with constant and alter-
nating was synonymous with sinusoidal. Nowadays,

dc and ac are applied to either current or voltage.

Thus folks speak of dc voltage, despite the seeming

contradiction, or ac current, despite the seeming

redundancy. Furthermore, ac is commonly used to

mean a time-varying (not just sinusoidal) current or

voltage. But for the present, we use ac as a synonym

for sinusoidal.
Sinusoidal currents and voltages are especially

important in electrical engineering, for reasons you

will come to understand as you progress through this

book and the rest of your curriculum. We may regard

a dc current or voltage as a sinusoidal current or

voltage having frequency f ¼ 0 ; e.g., if f ¼ 0, then

V cos 2pf tð Þ ¼ V cos 0ð Þ ¼ V:

Conventionally, constant currents and voltages

and constant parameters having the dimensions of

current or voltage are denoted by capital letters; e.g.,

I ¼ 20mA or V ¼ 5V: Time-varying currents and

voltages are denoted by lower-case letters; e.g.,

i tð Þ ¼ I cos 2pf tð Þ and v tð Þ ¼ V cos 2pf tð Þ; where the

current i and the voltage v vary with time and the

parameters I and V are constant.

Most circuit components respond differently to ac

than to dc. In particular, the resistance of a conductor

(such as a wire) is larger for a rapidly varying current

than for one that varies more slowly or is constant.

The resistance of a conductor carrying a sinusoidal

current increases with the frequency of the current,

as described in the next section.

2.13 Skin Effect and Proximity Effect

In this section, we use R (script) to denote radius of a

cylindrical conductor and R (italic) to denote

resistance.

Refer to Fig. 2.19, which shows (qualitatively) a

cross section of a conductor carrying a sinusoidal

current i ¼ I cos 2pf tð Þ and above that, a graph illus-

trating (again qualitatively) how the current is

distributed in the conductor. The abscissa is radial

distance from the center of the conductor and the

ordinate is current density J, which is current per unit

J0J0

J (r)

Jdc
I

A

r
0

=

Fig. 2.19 An illustration of skin effect
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cross-sectional area. At dc (for f ¼ 0), the total current

I is uniformly distributed across any diameter, as

indicated by the dashed line at J ¼ I/A, where

A ¼ pR2 is the cross-sectional area of the conductor.

As the frequency of the current is increased, the cur-

rent density becomes non-uniform, being greater at the

surface of the conductor than at the center. At suffi-

ciently high frequencies, most of the current is con-

centrated in a relatively thin concentric layer of

material near the surface. This phenomenon is called

skin effect. Under conditions described below, the

current density J at a distance r from the center of a

cylindrical conductor is given by

J rð Þ ¼ J0e
�ðR�rÞ=d fð Þ; 0 � r � R; (2.29)

whereR is the radius of the conductor, J0 is the current

density at the surface of the conductor, and f is the

frequency of the time-varying current. The parameter

d fð Þ in (2.29) is a function of frequency called skin

depth, given by

d fð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r
pfmrm0

r
; (2.30)

where r is the resistivity of the material (O m),

m0 ¼ 4p� 10�7 Hm�1 is the permeability of a vac-

uum, and mr is the relative permeability of the mate-

rial (dimensionless). For non-magnetic materials,

such as copper and aluminum, mr ¼ 1: From (2.29),

skin depth is the distance from the surface of a

conductor at which the current density in the con-

ductor is e�1 ffi 0:37 times the value at the surface.

Skin effect concentrates current near the surface of

a conductor, reducing the effective cross-sectional

area A in the relation R ¼ rl=A and thereby makes

the resistance of a conductor larger for a sinusoidal

current (ac resistance) than that for a constant cur-

rent (dc resistance). In what follows, we obtain

an expression for the ratio of ac resistance to dc

resistance.

The (total) current in a conductor having cross-

sectional area A is given by

i ¼
ð
A

JdA; (2.31)

where J (A m�2) is the current density over the cross

section. In words, the total current i in a conductor is

obtained by integrating the current density J over

a cross-sectional area A of the conductor. For a cylin-

drical conductor (a wire) having radius R; we may

express (2.31) in polar coordinates as

i ¼
ð2p
0

ðR
0

J r; yð Þr dr dy; (2.32)

where i is the current in the conductor at any particular
time and J r; yð Þ is the current density over a cross

section of the conductor at the same time. From

(2.29) and (2.32),

i ¼
ð2p
0

ðR
0

J0e
� R�rð Þ=dr dr dy

¼ 2pJ0e�R=d
ðR
0

er=dr dr

¼ 2pJ0e�R=d d2 þRdeR=d � d2eR=d
	 


¼ 2pJ0 d2e�R=d þRd� d2
	 


¼ 2pJ0Rd 1þ d
R e�R=d � 1

� �� �
:

(2.33)

For R 
 d; (2.33) reduces to

i ffi 2pJ0Rd; (2.34)

which is exactly what we would obtain if the current

density were uniform and equal to J0 in a hollow tube

having outer radius R and inner radius R� d (wall

thickness d). We can show this as follows. If the

current density were given by

J rð Þ ¼ J0; R� d<r � R;
0; r � R� d;

�
(2.35)

then the current would be given by

i ¼
ð2p
0

ðR
R�d

J0r dr dy ¼ 2pJ0
r2

2

� �R
R�d

¼ pJ0 R2 � R� dð Þ2
h i

¼ pJ0 2dR� d2
� �

¼ 2pJ0Rd 1� d
2R

� �
ffi 2pJ0Rd; R 
 d;
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which agrees with (2.34), as claimed above. It follows

that the effective cross-sectional area seen by a current
in a cylindrical conductor is the cross-sectional area of

the tube described above, given by

A¼ p R2 � R� dð Þ2
h i

¼ 2pRd� pd2 ¼ pd 2R� dð Þ:
(2.36)

For R 
 d; (2.36) gives

A ffi 2pRd: (2.37)

If the radius of a cylindrical conductor is much

larger than the skin depth, skin effect appears to reduce

a solid cylindrical conductor having radius R to a

tubular conductor having outer radius R and inner

radius R� d: Whereas the actual cross-sectional

area of a conductor having radius R – that seen by a

dc current – is Adc ¼ pR2; the effective cross-sec-

tional area seen by an ac current is given by (2.36).

Consequently, the ratio of ac resistance to dc resis-

tance for the conductor is given by

Rac

Rdc
ffi rl
Aac

rl
Adc

� ��1

¼ Adc

Aac
¼ pR2

pd 2R� dð Þ ¼
R2

d 2R� dð Þ:
(2.38)

It is conventional to describe wires in terms of

diameter D, rather than radius R. From (2.38), the

ratio of ac resistance Rac to dc resistance Rdc for a

cylindrical conductor having diameter D ¼ 2R is

given by

Rac

Rdc
ffi D2

4d D� dð Þ; (2.39)

where d ¼ d fð Þ is skin depth, given by (2.30). Figure

2.20 shows a graph of this ratio versus frequency for

five American wire gauge (AWG) sizes of copper wire

at T ¼ 25�C (77�F).
The fact that current density decreases exponen-

tially with distance from the surface as e�r=d suggests

that (2.39) provides a good approximation to Rac=Rdc

if the radius of the conductor exceeds three skin

depths. Taking D ¼ 6d R ¼ 3dð Þ in (2.39) gives

Rac

Rdc
� 6dð Þ2

4d 6d� dð Þ ¼
36

20
¼ 1:8; (2.40)

which means that the curves in Fig. 2.20 are valid

above the horizontal line at Rac=Rdc ¼ 1:8: Also,

the ac resistance must approach the dc resistance at

low frequencies, so the curves must approach unity,

somewhat as shown, for frequencies approaching

zero. Finally, there is no reason for the curves to

make other than a smooth transition from their

behavior above 1.8 to their behavior for frequencies

approaching zero. In other words, the curves in

AWG
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22
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4.115

2.588

1.628

1.024

0.643

Rac

Rdc

1
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100
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103 104 105 106 107 108 109

f (Hz)

1.8
Fig. 2.20 Ratio of ac to dc

resistance versus frequency

for a 1-m length of each of five

wire sizes (copper at 25�C)
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Fig. 2.20 cannot be too far wrong, even for skin

depths larger than one-third of a radius (below the

line at Rac=Rdc ¼ 1:8).

Figure 2.20 illustrates the fact that the ratio of ac to

dc resistance increases with wire diameter. You might

conclude from this that countering skin effect in any

particular case requires using smaller wire. However,

this is not the case, because dc and ac resistance

(individually) decrease with increasing wire diameter

(decreasing AWG designation).

The ratio Rac=Rdc can be expressed in terms of

AWG wire sizes, as follows. From (2.39) and (2.26),

Rac

Rdc

� �
AWG

ffi DAWG
2

4d DAWG � dð Þ ;

DAWG ffi 8:251e� 0:1159ð ÞAWG mm: (2.41)

Exercise 2.18. The dc resistance of a 1-m

length of AWG 22 wire at 25�C is 0:0526 O:
(a) What is the ac resistance of the wire at (i)

10 MHz and 25�C? (ii) At 1 GHz and 25�C?
(b) Repeat for a 1-m length of AWG 20 wire at

the same temperature and made from the same

material.

For a non-magnetic material, mr ¼ 1: In that case, a

useful expression for skin depth is obtained by expres-

sing resistivity r in mO cm and frequency f in MHz.

With these adaptations (2.30) can be written

d fð Þ ¼
ffiffiffiffiffiffiffiffiffiffi
r

pfm0

r

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1mO cm

pð Þ 4p10�7Hm�1
� �

1MHzð Þ

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r= 1mO cmð Þ
f= 1MHzð Þ

s

and finally as

d fð Þ ¼ d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r= 1mO cmð Þ
f= 1MHzð Þ

s
;

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1mO cm

pð Þ 4p10�7Hm�1
� �

1MHZð Þ

s
¼ 50:33 mm:

(2.42)

For example, the resistivity of aluminum at 25�C is

r ¼ 2:71 mO cm; so the skin depth of aluminum at

25�C and 100 MHz is

d ¼ d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r= 1mO cmð Þ
f= 1MHzð Þ

s

¼ 50:33 mmð Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2:71

100

� �s
¼ 8:29 mm

and the skin depth of copper under the same condi-

tions is

d ¼ d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r= 1mO cmð Þ
f= 1MHzð Þ

s

¼ 50:33 mmð Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:71

100

� �s
¼ 6:58 mm

Figure 2.21 shows graphs of skin depth versus

frequency for copper and aluminum at 25�C. At

25�C, skin depth in an aluminum conductor is about

25% larger than that in a copper conductor.

Example 2.14. Assume the relations derived

in this section involving ac and dc resistance

require D � 6 d fð Þ: Derive an expression for

the minimum frequency at which the formulas

are valid for copper wire at 25�C. Construct a
graph of the minimum frequency versus AWG

wire size for 0 � AWG � 22: Compare your

results with Fig. 2.20.

Solution: From (2.42), the skin depth of copper

at 25�C and frequency f is given by

d fð Þ ¼ 50:33

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:71

f= 1MHzð Þ

s
mm

¼ 65:82ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f= 1MHzð Þp mm:

If we require D � 6d fð Þ; then

d fð Þ ¼ 65:82ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f= 1MHzð Þp mm � D

6

) f

1MHz
� 395 mm

D

� �2
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From (2.41), the diameter of an AWG-

designated wire is given by

DAWG ¼ 8:251e� 0:1159ð ÞAWG mm

¼ 8251e� 0:1159ð ÞAWG mm;

and so we require

f

1MHz
� 395

8251e� 0:1159ð ÞAWG

� �2

) f � 2:292e 0:2318ð ÞAWG kHz:

Figure 2.22 shows a graph of the minimum

frequency given above versus AWG wire size.

Computed values below are in good agree-

ment with the frequencies at which the lines in

Fig. 2.20 intersect the line Rac=Rdc ¼ 1:8

AWG 6 10 14 18 22

Minimum Frequency

(kHz)

9.21 23.3 58.9 149 376

Exercise 2.19. Construct graphs (on the same

axes) of skin depth versus frequency for copper

for T ¼ 0�C and T ¼ 100�C and for

1 kHz � f � 1GHz: Use logarithmic scales

on the axes, as in Fig. 2.21.

Not all conductors are cylindrical. For example,

conductors in integrated circuits are more nearly rect-

angular (in cross section). Skin-effect calculations for

conductors in integrated circuits (IC’s) can be compli-

cated. For one thing, IC’s are built in layers, so con-

ditions above and below a conductor can be different,

and skin depths can differ significantly on different

surfaces of such a conductor. Typically, about all one

would attempt is to determine the theoretical skin

depth in relation to conductor cross-section dimen-

sions. As of this writing, the frequencies of operation

of IC’s and the dimensions of conductors in IC’s are

such that skin effect is negligible.

Example 2.15. A copper conductor in a certain

high-speed integrated circuit has an approxi-

mately rectangular cross section with height

h ¼ 50 nm and width w ¼ 25 nm. The highest

frequency of interest is f ¼ 30GHz and the

operating temperature is T ¼ 100�C: Is skin

effect significant? If not, at what frequency

would skin effect become significant?

f (Hz)

109

103

104

103 104 105 106 107 108
1

10

100

Al

Cu

δ ( f ) (μm)

Fig. 2.21 Skin depth versus

frequency for aluminum and

copper at 25�C (77�F)
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Solution: The resistivity of copper at 100�C is

r100 ffi r25 1þ a25 100�C� 25�Cð Þ½ 	
ffi 1:71 mO cmð Þ½1þ 4138� 10�6Þ 75ð Þ� 

ffi 2:24 mO cm:

The skin depth at 30 GHz is

d ¼ d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r= 1mO cmð Þ
f= 1MHzð Þ

s

ffi 50:33 mmð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2:24

30� 103

r
ffi 435 nm;

which is much larger than the largest dimen-

sion of the conductor, so skin effect is insignif-

icant. For skin effect to be significant, the skin

depth must be on the order of the largest

dimension. The corresponding frequency is

50:33 mmð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2:24

f=1 MHz

s
ffi 50 nm

) f ffi 2:27 THz;

which lies in the infrared region of the electro-

magnetic spectrum.

The proximity effect, like the skin effect, is a essen-

tially a manifestation of the facts that (1) a moving

charge creates a magnetic field and (2) a magnetic

field exerts a force on a moving charge. As a result,

currents parallel to and in proximity to one another

exert forces on each other. The proximity effect dis-

torts the current density in conductors running side-

by-side. If the currents in a pair of parallel conductors

are in opposite directions, the current will be concen-

trated in the halves of the conductors farthest from

each other, as illustrated by Fig. 2.23(a). If the cur-

rents in a pair of parallel conductors are in the same

1

10

100

103

AWG

fmin (kHz)

0 2 4 6 8 10 12 14 16 18 20 22

Fig. 2.22 Graph of Example 2.14

(b) currents in the same
direction

(a) currents in opposite
directions

Fig. 2.23 Illustrating proximity effect
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direction, the current will be concentrated in the half

of the each conductor nearest the other, as illustrated

by Fig. 2.23(b). The proximity-effect force on a cur-

rent is also felt by the conductor carrying the current.

The force can be quite large, and in some industrial

plants where conductors carrying large currents are

side by side, it is necessary to strap the conductors

down to keep them in place.

The proximity effect, like the skin effect, increases

with the frequency of the current, causing an increase

in effective resistance with frequency because the

conducting electrons are crowded into smaller and

smaller cross-sections of each conductor. In some

tightly wound multilayer coils, such as found in trans-

formers and inductors,20 current crowding caused by

the proximity effect can cause an increase in resistance

with increasing frequency that is as great or even

greater than that caused by skin effect. Expressions

for the combined influence of proximity effect and

skin effect are complicated and derivations of such

expressions are beyond the scope of this text. Our

purpose in introducing these phenomena is primarily

to describe why the resistance of a conductor increases

with the frequency of a sinusoidal current through the

conductor. Problems at the end of the chapter that call

for quantitative analyses of ac resistance consider only

skin effect.

2.14 Concluding Remark

Practicing circuit designers must be aware of E-series

standard values, temperature-dependence of resis-

tance, skin effect, and many other things. But includ-

ing all of these details in every example and problem

in this introductory book would obscure the main point

of the example or problem. Unless standard value and

tolerance are an essential part of an example or prob-

lem, we treat resistors as if they can have any value

whatever. Unless variation of resistance with temper-

ature or frequency is an essential part of an example or

problem, we ignore those effects, as well.

2.15 Problems

Section 2.1 is prerequisite for the following

problems.

P 2.1 The peak current in a strong lightning bolt is

about 250 kA and persists for about 150 ms. Assuming

the cloud is positively charged and that only electrons

are involved in the current, approximately how many

electrons are transferred and in which direction?

P 2.2 In a certain medium, electrons pass from left

to right through an imaginary plane at the rate 1020

electrons per second and singly-charged positive ions

pass from right to left at the rate 1020 ions per second.

What is the current (magnitude and direction) through

the plane?

P 2.3 A 1.5 V alkaline D cell (flashlight battery) can

provide a current of 100 mA for about 80 h. Howmuch

charge exits the positive terminal during that time?

P 2.4 The table below shows ampere-hour (Ah)

ratings of three types of 9 V batteries commonly

advertised as alkaline, heavy-duty, and general-

purpose. Alkaline batteries cost about 75% more than

heavy-duty batteries and 130% more than general-

purpose batteries. Which is the cheapest per ampere-

hour delivered? By what factor?

P 2.5 The table below shows ampere-hour rating,

mass, and approximate cost (circa 2009) for four

sizes of alkaline batteries. Which is the cheapest per

ampere-hour? Which is the most effective in terms of

mA h g–1? If a remote control uses 2 AA batteries and

has a mass of 100 g with the AA batteries in, what

would the mass be if it used D cells? What would it

weigh in both cases?

Battery type (all are 9 V) mAh at 10 mA

Alkaline 470

Heavy duty 180

General purpose 160

Size mAh Mass (g) Cost ($)

AAA 400 12 0.94

AA 1000 22 0.94

C 3200 64 1.29

D 8000 125 1.2920We treat transformers and inductors in Chapter 9.
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P 2.6 A 3V lithium button battery is rated at 150mAh

and will last approximately 1 year when used as a

memory backup battery in a desktop computer, depend-

ing upon how much the computer is used (the battery is

used only while the computer is off). If the computer is

on 8 h/day 7 days/week and the battery lasts 1 year, what

is the idle current drawn by the memory?

P 2.7 For t> 0; the charge to the right of an infinite

plane is given by

q tð Þ ¼ 0; t< 0;
q0 1� e�t=t
� �

; t> 0;

�

where q0 ¼ 100 mC and t ¼ 2ms: (a) Obtain an

expression for the current through the plane from

right to left. (b) Compute the values of the current

for t ¼ 0; t ¼ 1ms; and t ¼ 10ms:

P 2.8 For t> 0; the current inward through the

surface of a sphere is given by

i tð Þ ¼ 0; t< 0;
i0 1� e�t=tÞ; t> 0
�

;

�

where i0 ¼ 2 mA and t ¼ 1 ms: The charge inside

the sphere is zero for t ¼ 0: Find the charge inside

the sphere for t ¼ 1 ms and t ¼ 5ms:

P 2.9 The automatic cannon on a certain fighter

aircraft fires N rounds per second. If each bullet carries

a charge q, what is the current at the muzzle of the gun?

P 2.10 The current in a wire is I¼ 5 A. If the current

is due entirely to electron flow, how many electrons

pass through a fixed cross section of the wire in 1 s?

P 2.11 An electric current is established in an elec-

trolyte, as shown in Fig. P 2.1. Positive ions drift to the

left and the negative ions drift to the right. During

each interval T, n1 singly charged ions and n2 doubly

charged ions reach each electrode. Obtain an expres-

sion for the current I.
P 2.12 The net positive charge on the left side of a

plane surface is given at any time t by

q ¼ q0 cos 2 p f tð Þ;

where q0 ¼ 5 mC and f ¼ 1; 000 s�1: What is the cur-

rent from right to left through the surface?

P 2.13 Repeat Problem P 2.12 for

q ¼ 0; t< 0;
q0 e

�t=t; t � 0;

�

with q0 ¼ 5 mC and t ¼ 1 ms.

P 2.14 The current required to change the state of

one bit in a certain memory chip is on the order of

1 mA. The time required to change the state is 15 ns.

How much charge is involved? How many electrons?

P 2.15 Suppose the current through the starter on an

automobile is about 75 A for 1.2 s and is due entirely

to electron flow. About how many electrons pass

through the starter in that time? If the voltage drop

across the starter is 12 V, what is the work done by the

electrons on the starter?

P 2.16 The charge that passes through a surface in

an interval t1 � t< t2 is given by

qðt2Þ � qðt1Þ ¼ Dq ¼
ðt2
t1

iðtÞ dt

Calculate the charge that passes through a surface

in an interval 0 � t < 1 ms if the current is given by

(a) i ¼ I0 cos 2p f tð Þwith I0 ¼ 10 mA and f ¼ 1kHz

(b) i ¼ I0 e
�t=t with I0 ¼ 5 mA and t ¼ 2 ms:

Section 2.2 is prerequisite for the following

problems.

P 2.17 Assuming the proton (nucleus) and electron

comprising an atom of hydrogen can be treated as

point charges, calculate the force each exerts on the

other when the atom is in its ground state. The

(ground-state) mean distance from the nucleus (pro-

ton) to the electron is approximately 5:3� 10�11m:

P 2.18 Refer to Problem P 2.17. What is the electric

field strength due to the nucleus at the ground-state

distance of the electron from the nucleus?

I

Battery

+ –
–

–

+

+

Fig. P 2.1 See Problem P 2.11

2.15 Problems 43



P 2.19 Refer to Problem P 2.17. How much work is

required to move the electron from its ground state to

an infinite distance from the nucleus? Express the

result in joules and in electron-volts.

P 2.20 Imagine that a positive point charge Q1 is

attached to a 30,000 kg truck and a negative point

charge�Q1 is attached to a crane 3 m above the

truck. (a) What is the minimum magnitude of the

charge that would lift the truck? (b) How much work

is done in lifting the truck 2 m? (c) How fast is the

truck moving when it reaches that height?

P 2.21 A particle having charge qmoves from point

a to point b under the influence of an electric field E,
directed from a to b. When the particle reaches point b,

the electric field is reversed and the particle moves

back to point a. What is the energy lost by the particle?

Section 2.3 is prerequisite for the following

problems.

P 2.22 Using the fact that a voltage Vab equals work

done per unit charge on charge moving from a to b,

and assuming that the terminal voltage of a battery

remains constant throughout the life of the battery

(it doesn’t), calculate the total energy stored in each

battery of Problem P 2.5. (The terminal voltage of

each battery is 1.5 V.)

P 2.23 A certain 12 V marine battery is advertised

as an 800 A h battery. Calculate the total energy stored

in the battery. If the battery weighs 30 lb, what is the

energy density in SI units?

P 2.24 The electric field strength at a point 5 m from

a point charge is 200 V m–1. What is the magnitude of

the charge? If the charge is positive, what is the elec-

tric potential at the point?

P 2.25 An electron at rest is released at point a and

travels in a straight line to point b 1 cm away, where

the velocity of the electron is 106 m s�1. What is the

voltage at point b with respect to point a?

P 2.26 In a cathode-ray video tube, electrons are

released at a heated cathode and accelerated toward

the face of the tube. The potential at the face is about

25 kV greater than that at the cathode. If the initial

velocity of an electron equals zero, what is the velocity

of the electron when it strikes the face of the tube?

P 2.27 Dry air at atmospheric pressure will ionize

and conduct electricity (break down) in an electric

field whose strength is on the order of 1 MVm–1. After

scuffing across a carpet under these conditions, you can

draw a ¼ in. spark from your finger to a metal door-

frame. Approximately what was the voltage from your

fingertip to the doorframe just before the arc was struck?

P 2.28 See Problem P 2.27. If a cloud from which a

lightning-bolt originates is 4000 ft from the ground,

what is the magnitude of the voltage from the cloud to

the ground?

P 2.29 The electric field strength 1.5 m from a point

charge is 1.5 Vm–1, directed away from the charge.

What is the electric potential at that point?

P 2.30 The electric field strength between uni-

formly and oppositely charged infinite parallel plates

0.5 cm apart is 1 kVm–1. (a) What is the voltage on the

positive plate with respect to the negative plate? (b)

How much work is done if a 10 nC charge is moved

from the negative to the positive plate? Is the work

done on the field or by the field?

P 2.31 The electric potential 2 cm from a point

charge is 100 V. What is the magnitude of the

charge?

P 2.32 The electric potential a distance x from

a 0.05 nC point charge is 50 V. What is the dis-

tance x?

Section 2.4 is prerequisite for the following

problems.

P 2.33 A certain copper wire has resistance per unit

length r ¼ 1mOm�1: A voltage v ¼ 1 mV is applied

across a 10 m length of the wire. The resulting current

is due entirely to electrons. How many electrons have

passed through a cross section of the wire 1 ms after

the voltage is applied?

P 2.34 If 1019 electrons enter the left end of a 1-cm

long piece of material each second and exit the right

end having experienced a voltage rise of 5 V, what is

the resistance of the piece of material?

P 2.35 The resistance of a sample of material is 1.5

kO. (a) If the current through the sample is 3 mA, what

is the voltage across the sample? (b) If the voltage

across the sample is 6 V, what is the current?

P 2.36 A voltage V is applied (end-to-end) to a

cylindrical sample of material having length L and

diameter D. Express the current through the cylindri-

cal sample in terms of the electric field strength in the

sample and the sample diameter. Show that the expres-

sion is dimensionally consistent.
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P 2.37 Resistance as defined and discussed in this

chapter is called static resistance, by which is meant

that it is the ratio of a constant voltage to the resulting
constant current. Dynamic resistance, on the other

hand, is defined as the rate of change of voltage with

respect to current; that is, if we denote dynamic resis-

tance by r, then the dynamic resistance of a device is

given by r ¼ dv=di; where v is the voltage across the
device and i is the current through the device. With

this in mind, refer to Fig. P 2.2, which shows a graph

of voltage versus current for a certain hypothetical

device. Draw graphs of the static resistance R and the

dynamic resistance r of the device versus current.

Section 2.5 is prerequisite for the following

problems.

P 2.38 The resistivity of a certain aluminum alloy

used for electrical wire is 2:83� 10�8 Om:What is the

diameter of an aluminum wire that has the same resis-

tance per meter as a copper wire whose diameter is

0.2 cm?

P 2.39 The resistance of a cylindrical sample of

material is R. Express the resistivity of the material

in terms of the resistance, diameter, and length of the

sample.

P 2.40 Express the lengthwise current through a

rectangular sample of material in terms of the resistiv-

ity of the material, the voltage applied to the sample,

and the sample dimensions (length, height, width).

Show that your expression is dimensionally consistent.

Assuming that all other parameters are held constant,

what happens to the current through the sample as the

length of the sample is increased?

P 2.41 Refer to Problem P 2.36. Express the current

through the sample in terms of the resistivity of the

sample material, the cross-sectional area of the sam-

ple, and the electric field strength in the sample. Show

that the expression is dimensionally consistent.

P 2.42 The cost per unit weight of copper is about

twice that of aluminum. At 20�C, the resistivity of

copper is 1.71 mO cm, the resistivity of aluminum is

2.71 mO cm, the density of copper is 8.96 g cm–3, and

that of aluminum is 2.70 g cm–3. An electric power

company needs to construct a transmission line from a

power plant to a substation 10 km from the plant. The

number and therefore the cost of the line supports is

directly proportional to the weight of the wire they

must support. The voltage drop from end to end of the

line must not exceed 400 V when the current is 25 A.

Considering all these factors, which of the two materi-

als should be used for the transmission line?

P 2.43 The cold resistance of the tungsten filament

in a 60 W incandescent light bulb is about 20 O: The
diameter of the filament wire is about 50mm and the

resistivity of tungsten (at 25�C) is about 5:39 mO cm:

How long is the wire from which the filament is made?

How is such a length of wire made to fit in such a

small space?

P 2.44 A metal pipe has inside diameter ri and

outside diameter ro. Let r denote the resistivity of

the metal and obtain an expression for the resistance

per unit length of the pipe.

P 2.45 A sample of a certain material is a disk

having radius r and thickness d. Let r denote the

resistivity of the material and obtain an expression

for the resistance of the sample from one edge to

another, where the contacts are at the endpoints of

a diagonal. Hint: As you probably recall from phy-

sics (and as shown in Chapter 4), resistances in series

add.

Section 2.6 is prerequisite for the following

problems.

P 2.46 The resistance of a certain resistor is in the

range R0 1� 0:01bð Þ; where R0 is the nominal resis-

tance and b is the precision (or tolerance), expressed

in %. (a) Express the corresponding range of values

of the conductance in terms of R0 and b. (b) For

R0 ¼ 1 kO; express the tolerances of the conductance
in percent for b ¼ 1%; 5%; 10% and 20%. Under

v

i

V0

−V0

−I0

I0

Fig. P 2.2 See Problem P 2.37
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what condition is the tolerance on the conductance

approximately equal to � b? (c) The voltage across

a resistor having resistance 1 kO� 20% is V0 ¼ 5V:

What is the range of possible values of the resulting

current? If the current must be 5mA � 2%; what

precision is required of the resistor?

P 2.47 A voltage v(t) is applied to a sample of

material for 0 � t< t0: Obtain an expression for the

conductance G of the sample in terms of the net

charge Q that exits the sample during this time,

for (a) v tð Þ ¼ V0; (b) v tð Þ ¼ V0 exp �t=tð Þ; and (c)

v tð Þ ¼ V0 sin o tð Þ.
P 2.48 The cross-section of a sample of material is

an equilateral triangle. Denote the base of the trian-

gular cross-section by b, the length of the sample by

L and the conductivity of the material by s. The
voltage V across the sample and the resulting

current I through the sample are known. Obtain an

expression for the height of the sample in terms of the

length, conductivity, applied voltage, and resulting

current. Show that the expression is dimensionally

consistent.

Section 2.7 is prerequisite for the following

problems.

P 2.49 The resistivity of a certain tantalum nitride

film resistor is r ¼ 250 mO cm at 25�C. The film is of

uniform but uncertain thickness and width. The actual

(measured) resistance at 25�C is 1.1 kO. The desired

resistance is 1.2 kO, and is to be attained by trimming

one edge of the film along its length and parallel to

the opposite edge. By what percent must the width of

the film be reduced?

P 2.50 A certain thin film resistor is designed and

fabricated assuming the resistivity of the film is

250 mO cm at the operating temperature. The true

value is 232 mO cm at that temperature. If the fabri-

cated resistor has precisely the correct dimensions, by

what percent must the width of the film be reduced (by

trimming) to achieve the desired resistance?

P 2.51 A certain thin film resistor having uniform

thickness and width is trimmed as shown in Fig. P 2.3.

The film thickness is h and the resistivity of the mate-

rial is r. (a) Express the new resistance in terms of the

old and the dimensions shown on the figure. (b) Show

that if w< l; Dw � w; and Dl � l; then a good

approximation to the resistance after trimming is

R ffi Rsheet
l

w
þ DlDw

w2

� �
:

P 2.52 For large resistance values, thin film resistors

often are built in zigzag fashion. In such geometries,

corner squares count approximately as half squares, as

illustrated by Fig. P 2.4, when computing resistance.

Justify this approximation. (The correct value, obtained

by modeling and analysis, is 0.558 square.)

Section 2.8 is prerequisite for the following

problems.

P 2.53 If two resistors R1, R2 have the same preci-

sion � b; what is the precision of R1R2= R1 þ R2ð Þ?
Give both exact and first-order approximate relations.

What are the actual and approximate precisions for

b ¼ 0:05 (5%)?

P 2.54 If two resistors R1, R2 have the same preci-

sion � b; what is the precision of R1=ðR1 þ R2Þ?
Give both exact and first-order approximate relations.

What are the actual and approximate precisions for

b ¼ 0:05 (5%)?

P 2.55 Suppose your company is considering a

standard offering of resistors whose values are sepa-

rated by 0.2%; i.e., such that Rnþ1 ¼ 1:002Rn for any

two consecutive values. Approximately how many

1 sq

1
2

sq

1 sq 1 sq 1 sq 1 sq 1 sq

1 sq1 sq1 sq1 sq1 sq

1
2

sq

Fig. P 2.4 See Problem P 2.52

l

w
Δw

Δl

Fig. P 2.3 See Problem P 2.51
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such values would be required to cover the range

1O � R � 1MO?

Section 2.9 is prerequisite for the following

problems.

P 2.56 Give the nominal resistance and tolerance

indicated by the following color codes:

(a) Gray, red, green, silver

(b) Green, blue, yellow, gold

(c) Brown, black, orange, gold

(d) Yellow, violet, green, red, violet

(e) White, orange, brown, orange, violet

(f) Green, brown, brown, orange, green

P 2.57 Give the nominal resistance and tolerance

indicated by the following color codes:

(a) Red, yellow, orange, gold

(b) Brown, green, brown, white

(c) Red, violet, orange, white

(d) Orange, brown, blue, black, white

(e) Brown, orange, orange, red, brown

(f) Red, brown, gray, orange, violet

Section 2.10 is prerequisite for the following

problems.

P 2.58 The temperature coefficient of a metal film

resistor is typically in the neighborhood of 25 ppm.

What is the percent increase in the resistance of a

metal-film resistor if the temperature of the resistor is

raised from 25�C to 140�C?
P 2.59 Show that if R1 and R2 have the same

temperature coefficient, then the quantity R1/R2 is

independent of temperature.

P 2.60 Show that if R1 and R2 have the same temper-

ature coefficient, then the quantity R1= R1 þ R2ð Þ is

independent of temperature.

P 2.61 Show that if R1 and R2 have the same

temperature coefficient a, then the temperature coeffi-

cient of the quantity R1R2= R1 þ R2ð Þ is also a.
P 2.62 Suppose a particular material at temperature

T0 has temperature coefficient of resistivity a. A sam-

ple of the material at the same temperature has resis-

tance R0. A voltage v is applied to the sample, and the

temperature is allowed to vary a small amount DT

from T0. Obtain a linear approximation for the current

through the material in terms of the temperature

change DT; the temperature coefficient a and the

applied voltage.

P 2.63 The resistance of a certain resistor is given

by R ¼ R0 1þ a T � T0ð Þ½ 	; where T is the temperature

of the resistor in degrees Celsius and T0 ¼ 25�C: A
constant voltage V0 is applied to the resistor. After a

short time, the current stabilizes at I0. Obtain an

expression for the temperature of the resistor as a

function of the current I0.

P 2.64 Suppose a constant current I0 is forced

through the resistor described in Problem P 2.63.

After a short time, the voltage across the resistor

stabilizes at V0. Obtain an expression for the tempera-

ture of the resistor as a function of the voltage V0.

Section 2.11 is prerequisite for the following

problems.

P 2.65 The conductance of a 1-m sample of 24

AWG wire is measured at 25�C, and is found to be

9.1 S. If the wire is made of either copper, aluminum,

or gold, which is most likely?

P 2.66 For a fixed length and kind of wire, by what

factor does the resistance of the wire increase if the

gauge (AWG) is increased from (a) 6 to 8? (b) from

8 to 10? (c) from 10 to 12?

P 2.67 Let RN denote the resistance of a 1 m length

of wire having AWG designation N. Show that the

ratio RN=RNþk; where k is any whole number, is a

fixed function of k, independent of N.

P 2.68 If the length of a certain wire must be dou-

bled, but the resistance must remain the same, by what

number must the AWG designation be decreased?

P 2.69 In a certain application, the required size for

a copper wire is AWG 12. For reasons of cost, it is

desired to use an aluminum wire, instead. What should

be the size (AWG) of the aluminum wire?

Sections 2.12 and 2.13 are prerequisite for

the following problems.

P 2.70 (a) Show that if the diameter of a cylindrical

conductor is much larger than the skin depth, the ratio

of ac to dc resistance is approximately Dþ dð Þ= 4dð Þ:
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(b) Show that the approximation of part (a) is more

accurate than the (perhaps more obvious) approxima-

tion D= 4dð Þ:
P 2.71 Obtain an expression for the skin depth d1 of

a cylindrical conductor at frequency f1 in terms of the

skin depth d0 at frequency f0. Assume the temperature

of the conductor is fixed.

P 2.72 A certain web site gives the following for-

mula for the ac resistance of a wire:

Rac ¼ Rdck
ffiffiffi
f

p
;

where (quoting the web page) “f is frequency of ac in

MHz” and k is called the “wire gauge factor,” whose

values for various AWG wire sizes are given in an

accompanying table. (a) What is the SI unit of k? (b)

The formula assumes that D 
 d; where D is the wire

diameter and d is the skin depth. Derive the formula

from (2.39) in the text and obtain an expression for k.

Show that the formula has the correct dimension.

(c) What are the magnitudes of k for AWG 22 copper

wire at 25�C and 100�C? (d) For what frequencies is

the formula approximately valid for AWG 22 copper

wire at 25�C?
P 2.73 A certain coil is wound with 50 m of AWG

32 copper wire. What is the dc resistance of the coil at

25�C? If the increase in resistance with frequency is

due entirely to skin effect, what is the ac resistance of

the coil at 10 MHz and 25�C?

P 2.74 In a certain application, the temperature of a

22 AWG copper wire varies from 0�C to 100�C and

the frequency of the current through the wire ranges

from 3 to 30 MHz. What is the maximum percent

increase in the ac resistance of the wire from the

value at 0�C and 3 MHz?

P 2.75 In integrated circuits (ICs), conductors are

strips of metal, often aluminum or copper, having

approximately rectangular cross section. At this

writing (circa 2009), the smallest conductors are

approximately 20 nm wide and 50 nm thick and the

highest frequency of interest in digital IC’s is about 30

GHz. Assume an operating temperature of 100�C and

calculate the skin depth for copper at 30 GHz. Is skin

effect significant in such devices?

P 2.76 As IC manufacturing technology advances,

the smallest lines (minimum conductor widths) and

thicknesses decrease and the achievable operating fre-

quencies increase. Do these advances make skin effect

more significant or less so?

P 2.77 Electric utilities use large rectangular-cross-

section copper conductors called bus bars to connect

adjacent equipment in distribution substations. A

2500 A bus bar is about 10 mm thick and 200 mm

wide. Calculate the skin depth of copper at 60 Hz and

determine whether the bus bar could be thinner.

Assume an operating temperature of 100�C. Ignore
corners and the short edges.
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Chapter 3

Circuit Elements, Circuit Diagrams, and Kirchhoff’s Laws

In this chapter, we define a few important circuit ele-

ments and introduce circuit diagrams. We describe

how circuit diagrams are annotated; that is, how vol-

tages and currents are denoted in a manner that permits

and facilitates analysis. We present Kirchhoff’s laws,

which are the fundamental laws of circuit analysis, and

the principle of superposition, which is a powerful tool

for analysis of linear circuits.

3.1 Schematics and Circuit Diagrams

Components of a physical circuit are connected by

wires or other physical conductors, such as foils on a

printed-circuit board or metallic strips in integrated

circuits. A schematic or wiring diagram is a picture

showing how a physical circuit is constructed, where

conductors are represented by lines and other compo-

nents, such as transistors, are represented by standar-

dized graphic symbols.

A circuit diagram, on the other hand, depicts the

mathematical relations that exist among various idea-

lized circuit elements, which individually or in groups,
comprise mathematical models for physical circuit

components. For the present, we may regard a circuit

diagram as an abstraction of a schematic (wiring dia-

gram). But keep in mind that schematics and circuit

diagrams are different things. The various parts of a

schematic are in one-to-one correspondence with the

components they represent; that is, each symbol in a

schematic stands for a physical component in the

associated physical circuit. On the other hand, a circuit

diagram is composed of mathematical models for

physical components. A model for a single physical

component (such as a transistor) may consist of more

than one circuit element, or a few interconnected cir-

cuit elements can represent a larger number of physi-

cal components. Consequently, the individual circuit

elements shown in a circuit diagram do not necessar-

ily represent physical components. In some cases, the

circuit diagram representing a physical circuit may

look like the associated schematic, but in general, a

circuit diagram represents a physical circuit only to the

extent that results of mathematical analysis of the

circuit diagram correctly describe the observed behav-

ior of the associated physical circuit. A schematic is a
guide for construction. A circuit diagram is a guide for

analysis and design.

To illustrate points made above, we refer to

Fig. 3.1, which shows both a schematic and a circuit

diagram for a simple transistor amplifier. In the circuit

diagram of Fig. 3.1(b), the transistor (a component)

has been replaced by an equivalent circuit model (a

collection of idealized elements). At this point, do not

be concerned with what the symbols mean, how the

model is obtained, or how the circuit works. Instead,

focus on these points:

• The circuit model for the transistor does not look

anything like a real transistor. Even if we dissect a

transistor and examine the innards under a micro-

scope, we will not find either of the two elements

comprising the circuit model. The elements of the

model are non-physical; nonetheless, the model

describes the transistor, in the sense that mathema-

tical analysis of the circuit diagram yields results

in good agreement with the observed behavior

of the actual amplifier (under normal operating

conditions).
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• The number of elements in the circuit diagram

exceeds the number of (physical) components in

the schematic. The transistor is represented by one

component (symbol) in the schematic and by two

elements in the circuit diagram. Often, a single

transistor is modeled by four or more elements.

The elements in a circuit diagram are rarely in

one-to-one correspondence with those in the asso-

ciated physical circuit.

• To the untrained eye, the circuit diagram (model)

does not look like the physical circuit it represents.

The elements in the circuit diagram are not

interconnected in the same way as in the physical

circuit. But again, a correct mathematical analysis

of the circuit diagram would yield results in agree-

ment with observed behavior of the physical

circuit (under conditions for which the model is

applicable).

Where we refer to a circuit, unless otherwise noted,
we are referring to a circuit diagram (mathematical

model), not to a physical circuit or schematic. Like-

wise, where we refer to a circuit element, we are

referring to an idealized mathematical model, not a

physical circuit component. The distinction between

the elements of a circuit diagram and the components

of a (physical) circuit will become clearer as we

progress.

Because circuit analysis deals exclusively with

analysis of idealized models, and for the sake of

economy, we omit the adjective ideal when referring

to circuit elements and circuit diagrams. It is under-

stood, for example, that an element called a conduc-

tor is an ideal conductor, not a physical conductor

(wire).

3.2 Conductors and Connections

A conductor is an idealization of a physical conductor

(e.g., a wire) and is represented by a line, as illustrated

by Fig. 3.2. The defining property of a conductor is

that the electric potential is the same everywhere on a

conductor (and on all other conductors to which it is

connected). In Fig. 3.2 the potential F (a) at the left

end (point a) equals the potential F (b) at the right

end (point b), or anywhere in between. The voltage vab
across the conductor equals zero, regardless of the
current through the conductor. In other words, the

resistance of a conductor equals zero.

In circuit diagrams, a connection of intersecting

conductors is denoted by a heavy dot, reminiscent of

a lump of solder. There is no such dot at the intersec-

tion of conductors that cross (viewed from above) but

are not connected. Refer to the circuit diagram in

Fig. 3.3, where lines represent conductors and boxes

represent (unspecified) circuit elements. The conduc-

tor connecting elements 1 and 3 is connected at the

point a to the conductor connecting elements 2 and 4.

The electric potential (or the voltage with respect to

some other point) is the same everywhere on both of

those conductors. The conductor connecting elements

3 and 6 is not connected to the conductor connecting

ba

vab = Φ(a )−Φ(b ) = 0

Fig. 3.2 The symbol for a conductor is a line. The voltage vab
across the conductor equals zero, regardless of the current

through the conductor

R1

R1

R2

R2

RC

RE

B

C

E

+VCC

+

+

− −

vin

vin

vout

transistor +

−

+

−

vout

RC

RE

rp

transistor

(b) small-signal model(a) transistor amplifier

E

CB b ib

Fig. 3.1 (a) A transistor

amplifier (schematic, or

wiring diagram) and (b) an
associated model (circuit

diagram)
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elements 4 and 5. The potentials on those conductors

may be different.

3.3 Annotating Circuit Diagrams

Currents are denoted in a circuit diagram by labeled

arrows, as illustrated in Fig. 3.4. Subscripts are used to

distinguish various currents from each other. An

arrow indicates the positive direction of the associated

current, which we are free to define and which there-

fore is not necessarily the actual direction of the

current. In fact, in most interesting circuits, the mag-

nitudes and directions of most currents change with

time. A current whose direction (sign) changes with

time cannot possibly be always in the direction of the

associated arrow. Again, the arrow indicates the direc-

tion defined as positive, not necessarily the actual

direction of the associated current. It’s like the arrow

pointing north on a roadmap. The arrow defines what

is meant by north, but does not imply that everyone

always drives north.

Voltages are denoted in circuit diagrams in three

ways, as illustrated by Fig. 3.5 and explained below.

In Fig. 3.5(a), points of interest (nodes) are labeled

a, b, c and voltages can be specified unambiguously

using double-subscript notation; e.g., as vab, vbc,

and vac.

If a particular point (node) is identified as the refer-
ence node, then some other voltages can be specified

using single-subscript notation, where it is under-

stood that the omitted second subscript is the reference

point. For example, if the node c in Fig. 3.5(a) is

specified as the reference node, then va ¼ vac and vb
¼ vbc. However, if point c is the reference, we cannot
use single-subscript notation to denote vab because vab
is not referred to point c (see (3.1), below).

In Fig. 3.5(b), voltages are specified using plus-

minus notation, where the – sign identifies the refer-

ence point and the þ sign identifies the point at which

v is specified with respect to the reference. The þ/�
marks are reference marks that define what is meant

by a positive value of v, just as a and b in Fig. 3.5(a)

are reference marks that define what is meant by a

positive value of vab. If the point marked (þ) is at a

higher potential than the point marked (�), the asso-

ciated voltage v is positive. If the reverse is true, v is

negative. For example, v2 in Fig. 3.5(b) corresponds to
vab in Fig. 3.5(a).

All three conventions (double-subscript, single-

subscript, and þ/–) are widely used. Two or even all

three of these notations might used in a single circuit

diagram; for example, one voltage of interest might be

specified using single-subscript notation and another

using þ/– notation. Understanding all three notations

connections

no connection

1

2

3

4

5

6

cb

a

Fig. 3.3 A dot is used to

indicate a connection, where

two or more conductors (or

other elements) are connected

i3i1

i2

a

b

Fig. 3.4 Representing currents in a circuit diagram

v1

v2

v3

+

−

+ −

+

−

a b

c
(a) (b)

Fig. 3.5 Conventions for specifying voltages on a circuit

diagram (see text)
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is essential. Otherwise it is unnecessarily difficult to

obtain and interpret equations describing circuits.

A voltage symbol having a subscript is not neces-

sarily an instance of what is defined above as single-

subscript or double-subscript notation. For example,

the subscripts on the voltage symbols in Fig. 3.5(b)

serve simply to distinguish each voltage from the

others. The notation in use is þ/– notation, not single-

subscript notation, because the subscripts do not refer

to labeled points in the circuit (and because the voltage

symbols appear between polarity marks).

When single-subscript notation is used, that is,

when one point (or conductor) in a circuit is chosen

as a reference and other voltages in the circuit are

specified with respect to that point, we are in effect

treating the reference point as if its potential were

zero, but in fact we usually do not know that – nor

do we care. Again, we are concerned with potential

differences (voltages), not absolute potentials.

The point chosen as the reference in a circuit dia-

gram often is indicated (in this book) by the label ref,

as illustrated in Fig. 3.6(a). Alternatively, the ground1

symbol shown in Fig. 3.6(b) may be used to denote the

reference point, as illustrated in Fig. 3.6(c).

We refer again to Fig. 3.5(a) to make another

important point. IfF(a),F(b), andF(c) are the electric
potentials at points, a, b, and c, then by definition

vac ¼ FðaÞ � FðcÞ; vbc ¼ FðbÞ � FðcÞ;
vab ¼ FðaÞ � FðbÞ:

It follows that

vab ¼ vac � vbc; vba ¼ vbc � vac ¼ �vab: (3.1)

Such relations are needed often in writing equations

that describe circuits.

Example 3.1. In Fig. 3.7, the electric poten-

tials at the labeled points are F(a) ¼ 520 V,

F(b) ¼ 515 V, F(c) ¼ 505 V, and F(d) ¼
500 V. Find the voltages vad, vab, vac and v2.

Using point d as the reference, find va and vc.

Solution: By definition and from (3.1)

vad ¼ FðaÞ � FðdÞ ¼ 520� 500 ¼ 20V;

vab ¼ FðaÞ � FðbÞ ¼ 520� 515 ¼ 5V;

vac ¼ FðaÞ � FðcÞ ¼ 520� 505 ¼ 15V;

v2 ¼ vcd ¼ F cð Þ � F dð Þ ¼ 5V

If we select the point d as the reference

point for all voltages and use single-subscript

notation, we have

va ¼ vad ¼ FðaÞ � FðdÞ ¼ 20V;

vc ¼ vcd ¼ FðcÞ � FðdÞ ¼ 5V

Exercise 3.1. With reference to Example 3.1,

find the voltages vbd, vcd, vda, v1, vb (point d is

the reference for the last).

a b

ref

(a) reference designation (b) ground symbol

a b

(c) alternative reference
designation

Fig. 3.6 Conventions for

designating a voltage

reference point

d

a b c
v1

v2

+−

+

−

Fig. 3.7 See Example 3.1

1So called because earth ground (the grounded part of an elec-

trical receptacle) is often the reference point.
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3.4 Series and Parallel Connections

A point on a circuit element or in a circuit to which

we connect or envision connecting something (e.g.,

another element or a measuring instrument) is called

a terminal. A circuit element or circuit having only

two accessible terminals is called a two-terminal

element or a two-terminal circuit.
Two or more two-terminal elements or circuits can

be connected in series, as shown in Fig. 3.8(a), or in

parallel, as shown in Fig. 3.8(b). The same current
passes through elements in series and the same volt-

age exists across elements in parallel. Series and par-

allel connections are undefined for elements having

more than two terminals.

Example 3.2. In Fig. 3.9(a), elements 1 and

2 are not in series because of the intervening

connection to element 3, which allows some of

the current passing through element 1 to

bypass element 2; however, element 1 is in

series with the parallel connection of elements

2 and 3. In Fig. 3.9(b), elements 1 and 2 are not

in parallel because of the intervening element

3; however, element 1 is in parallel with the

series connection of elements 2 and 3.

Exercise 3.2. Use the terms series and paral-
lel to describe (in words) the connections

shown in Fig. 3.10.

3.5 Open Circuits and Short Circuits

A pair of terminals brought out from a circuit but not

connected to each other, either by a conductor or a

circuit element, is said to be open or to form an open

circuit. If the terminals are connected by a conductor,

the terminals are said to be shorted or to form a short

circuit. Figure 3.11 illustrates this terminology. The

rest of the circuit might represent an audio amplifier

and the small circles at the ends of the lines might

represent the terminals to which you would normally

connect a loudspeaker. The lines themselves represent

conductors, indicating that the terminals are connected

to points inside the circuit. The terms open and short

are used with reference to the terminals alone, regard-

less of how or to what the associated conductors are

connected inside the rest of the circuit. The current

through an open circuit equals zero, regardless of the
voltage across the open circuit, and the voltage across

a short circuit equals zero, regardless of the current

through the short circuit. If an element connecting two

terminals is removed, it is said that the terminal pair

1 2

3

i1 i2

i3 1 2

3

v1 v2

v3

+

−

+

−

+ −

(a) (b)Fig. 3.9 See Example 3.2

1 2

+

−

v

+

−

v
1 2

i i i

(a) series connection (b) parallel connection
Fig. 3.8 Elements in (a)
series and (b) parallel
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is opened, or that the terminal pair is made an open

circuit. If a conductor is connected between two term-

inals, it is said that the terminals are shorted, or that

the terminal pair is made a short circuit.

The terms open circuit and short circuit (or open

and short) are most correctly used when neither is the

normal condition; i.e., when the opened or shorted

condition is temporary, whether intentional or acci-

dental. For example, if you disconnect a loudspeaker

from the output terminals of your home audio ampli-

fier, you are opening those terminals. If you acciden-

tally allow your screwdriver to contact both terminals

at once, you have shorted the terminals. Nonetheless,

both open and shorted are sometimes used to describe

normal conditions; for example, a conductor might be

called a short circuit, even if the conductor occupies its

intended place in a circuit.

3.6 Basic Circuit Elements: Resistors
and Independent Sources

In this section, we define three two-terminal circuit

elements: A resistor, an independent voltage source,

and an independent current source.2 A number of

useful circuits can be described using only these ele-

ments, and one or more of these elements appears in

virtually every circuit model of practical importance.

The terminal characteristic of a two-terminal cir-

cuit element is the relation the element establishes

between the voltage across and current through its

terminals. We may take the positive direction of cur-

rent as either into the terminal called positive (in the

direction of a voltage drop) as in Fig. 3.12(a) or out of

the terminal called positive (in the direction of a volt-

age rise), as in Fig. 3.12(b), and we may take either

current or voltage as the independent variable. That is,

we may express the terminal characteristic of an ele-

ment as either i¼ f (v) or v¼ f�1(i), where the positive
direction of current is either into or out of the positive

terminal of the element. In general, we may use which-

ever of these four formulations is most convenient.

Table 3.1 gives the names, graphic symbols, and

terminal characteristics of the three elements defined

in this section. The terminal characteristic of an ele-
ment is independent of what is connected to the ele-

ment. For example, the current through and voltage

across a resistor are related by v ¼ i R, regardless of

rest of the
circuit

rest of the
circuit

(a) open circuit (the
terminals are open)

(b) short circuit (the
terminals are shorted)

i = 0

v = 0

+

−

+

−
v

i

Fig. 3.11 Open and shorted terminals

1 2

3 4

1

2

3

4

(a) (b)

Fig. 3.10 See Exercise 3.2

v

+

−

v

+

−

i i

(a) (b)

Fig. 3.12 Pertaining to the definition of the terminal character-

istic of a two-terminal element

Table 3.1 Symbols3 and terminal characteristics for three basic

circuit elements

Element Symbol Terminal characteristic

resistor

R

+ –vi n ¼ i R

voltage

source

v0

+ –

–+

v
i n ¼ n0 ðindependent of iÞ

current

source

i0

+ –v
i

i ¼ i0 ðindependent of nÞ

2The meaning of independent in this context is described in the

sequel.

3The polarity marks and arrows and the letters n and i (without
subscripts) define the voltage and current that appear in the

terminal characteristic. They are not part of the symbol for the

element.
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what else is connected to the resistor and regardless of

the nature of the current or voltage. Of course, this is

an idealization. The terminal characteristic v ¼ i R

describes a physical resistor only under certain opera-

ting conditions. For example, a resistor can be des-

troyed by a sufficiently large current, after which it is

no longer described by v ¼ R i.

Figure 3.13 shows graphical representations of the

terminal characteristics of the elements defined in

Table 3.1. The current i0 and voltage v0 can be time-

varying, so you should regard Fig. 3.13(b) and (c) as

snapshots (still photos), unless the current i0 and volt-

age v0 are constant.

A label usually is written by the symbol for an

element. For example, the label R is attached to the

resistor in Table 3.1. The label serves double duty: It

represents both the name and the resistance of the resis-

tor. For example, when written next to the symbol for a

resistor, R1 is the name of the resistor (distinguishes that

resistor from others labeled R2, R3, � � �) and also stands

for the resistance of the resistor. For example, we might

say that resistor R1 has resistance R1 ¼ 1 kO.
When writing equations describing circuits, it often

is convenient to use conductance, rather than resis-

tance. The conductance of a resistor having resistance

R is denoted by G and is defined by

G ¼ R�1: (3.2)

Using conductance, Ohm’s law is written

i ¼ Gv: (3.3)

We regard resistance as the fundamental quantity

and conductance mainly as a convenient way to express

reciprocals of resistances in circuit equations. Thus, in

this book, a label or a numerical value appearing

beside the symbol for a resistor always denotes resis-

tance, not conductance, as illustrated by Fig. 3.14.

The voltage across a voltage source is called the

source voltage (denoted by v0 in Table 3.1) and is

independent of the current through the voltage source.
In other words, the voltage across the voltage source

shown in Table 3.1 equals v0, no matter what is con-

nected to the source. The source voltage may be

constant but in general varies with time. A conductor

is equivalent to a voltage source whose source volt-

age equals zero. Conversely, a voltage source whose

source voltage equals zero is equivalent to a conductor

(a short circuit). Thus we say that the internal resis-

tance of a voltage source equals zero.
The current through a current source is called the

source current (denoted by i0 in Table 3.1) and is

independent of the voltage across the current source.
In other words, the current through the current source

in Table 3.1 equals i0, no matter what is connected to

the source. The source current may be constant but in

general varies with time. An open circuit is equivalent

to a current source whose source current equals zero.

Conversely, a current source whose source current

equals zero is equivalent to an open circuit. Thus we

say that the internal conductance of a current source

equals zero (or that the internal resistance is infinite).

Circuit elements cannot be connected in ways that

are self-contradictory; i.e., in ways that cause conflicts

among defined quantities. For example, the circuit in

Fig. 3.15(a) is self-contradictory unless v1 ¼ v2, in

which case one of the sources is superfluous. Similarly,

the connection in Fig. 3.15(b) is self-contradictory

unless i1 ¼ i2, in which case one of the sources is

superfluous. Ideal voltage sources cannot be connected

in parallel and Ideal current sources cannot be

connected in series.

i

v

i0

i

v
v0

slope = R−1

i

v

voltage source: v = v0
independent of i

(a) resistor: i = v/R current source: i = i0
independent of v 

(b) (c)

Fig. 3.13 Graphical

representations of the terminal

characteristics of the elements

defined in Table 3.1

R G–1

Fig. 3.14 Labeling a resistor using conductance
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Labels for current and voltage sources serve both as

names for the sources and as symbols for the source

current or voltage. For example, we might say that the

source voltage for the source v0 is v0 ¼ 5 V, or that the

source current for the current source i0 is i0 ¼ 25 mA.

The sources defined in Table 3.1 are called inde-

pendent sources, as in independent voltage source
and independent current source, because the source

voltage or source current depends only upon time

(e.g., is independent of any other currents or voltages).

In a subsequent chapter, we describe dependent sources,

whose source voltages or source currents depend upon

other quantities; e.g., currents or voltages in other

branches of the circuit.

Example 3.3. In the circuit of Fig. 3.16, the

source voltages are v1 ¼ 5 V and v2 ¼ 15 V.

Find the voltage vx across the (unspecified)

circuit element.

Solution: We label three points, as shown in

the figure, where, by the definition of an ideal

voltage source,

vac ¼ v1; vbc ¼ v2:

It follows from (3.1) that

vab ¼ vx ¼ vac � vbc ¼ v1 � v2 ¼ �10 V

Exercise 3.3. Refer to Fig. 3.17. Find the

voltages vab, vac, vbd

Figure 3.18(a) shows an alternate symbol for a

constant-voltage source alongside the conventional

symbol in Fig. 3.18(b). The symbol in Fig. 3.18(a)

was originally inspired by the architecture of a battery,

in which metallic plates are separated by an electro-

lyte. In electronic circuits, the symbol in Fig. 3.18(a) is

used primarily to denote a constant-voltage power

supply; e.g., the battery in a cell phone.

The (ideal) sources defined above do not exist. For

example, no physical voltage source, such as a battery,

can maintain a constant voltage across its terminals

regardless of the current through the terminals. None-

theless, ideal sources either alone or in combinationwith

other elements can be goodmodels for physical sources.

Because of the nature of known methods for gen-

erating electricity, most everyday physical sources

(e.g., batteries, generators, solar cells, and fuel cells)

behave more like voltage sources than current sources.

However, electronic circuits approximating current

sources can be constructed and are quite useful.

3.7 Kirchhoff’s Current Law and Node
Analysis

Kirchhoff’s current law4 states that the algebraic

sum of the currents leaving any enclosed volume in a

v3

v1 v2

a b

cd

+
–

+
–

+–

Fig. 3.17 See Exercise 3.3

v0v0

+– +–

(a) (b)

Fig. 3.18 Equivalent symbols for a constant-voltage source

v1 v2

i1 i2
+
–

+
–

(a) (b)

Fig. 3.15 Self-contradictory connections

vx

v1 v2

+ −
a b

c

+
–

+
–

Fig. 3.16 See Example 3.3

4After the German physicist Gustav Robert Kirchhoff

(1824–1887).
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circuit equals zero.5 We may express Kirchhoff’s

current law as

X
n

in ¼ 0: (3.4)

where the in are currents leaving an enclosed volume

and the sum is over all possible current paths entering

or exiting the volume. In (3.4), currents entering the

volume are negative.

In applications of Kirchhoff’s current law to elec-

tric circuits, volumes of interest enclose connections

joining two or more elements and conductors provide

current paths into and out of the volume, as illustrated

in Fig. 3.19(a), where

i1 þ i2 þ i3 ¼ 0:

In such cases, we may think of the currents as

leaving the point at which the elements are connected,

as illustrated in Fig. 3.19(b). A point at which two or

more elements are connected is called a node, and

Kirchhoff’s current law often is stated as the algebraic
sum of the currents leaving any node equals zero.

In the algebraic sum of currents leaving a volume or

node, currents entering the volume or node are

negated.6 For example, in both Fig. 3.20(a) and (b),

i1 þ i2 � i3 þ i4 ¼ 0:

Exercise 3.4. Is the circuit in Fig. 3.21 self-

consistent? Use Kirchhoff’s current law to

justify your answer

Kirchhoff’s current law is derived from more fun-

damental principles in textbooks on electromagnetics.

We shall accept Kirchhoff’s current law as an empiri-

cal law, noting that it amounts to requiring that current

through any plane intersecting the path of the current

be continuous; that is, the currents on each side of the

plane are the same.7 From another point of view,

i1

i4

i3

i2

i1

i4

i3

i2

(a) (b)

Fig. 3.20 Another

Illustration of Kirchhoff’s

current law

i1 i2

i3

i1 i2

i3

volume enclosing a node node

(a) (b)
Fig. 3.19 An illustration of

Kirchhoff’s current law

5Kirchhoff’s current law can also be stated as “the sum of

currents entering a volume equals zero” or as “the sum of the

currents entering a volume equals the sum of the currents leav-

ing the volume.” For the present, it is best to stick with one

version of the law.

6In “leaving” and “entering,” we are referring to the direction of

the arrow associated with the current.
7Here, “current” includes both conduction current and displace-

ment current.
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charge is not manufactured at a node, nor does charge

accumulate at a node, so (because charge is conserved)

the net charge leaving a node or volume must be zero.

Example 3.4. In Fig. 3.22, i1 ¼ 5 A, i2 ¼ 1 A,

i3 ¼ 2 A. Find the current i4.

Solution: Kirchhoff’s current law gives

ð�i1Þ þ i2 þ i3 þ i4 ¼ 0;

It follows that

i4 ¼ i1 � i2 � i3 ¼ 5� 1� 2 ¼ 2A

Applying Kirchhoff’s current law to circuit analysis

leads to what is called node analysis (or nodal analy-
sis), in which node voltages are taken as the unknown

quantities. If one or more currents are the quantities

of ultimate interest, they may be expressed via Ohm’s

law in terms of the voltages and resistances.

Node analysis proceeds as follows:

• Identify and label a reference node for other vol-

tages in the circuit.

• Identify and label each other node for which the

voltage at that node, relative to the reference node,

is unknown.

• Write Kirchhoff’s current law at each such node,

using Ohm’s law to express the currents in terms of

the node voltage and the resistance of the resistors

attached to the node.

• Solve the resulting equations for the node voltages.

• Use the node voltages and Ohm’s law to find any

currents of interest.

Example 3.5. Obtain expressions for the cur-

rents i1, i2 in the circuit of Fig. 3.23(a).

Solution: We identify and label the nodes in the

circuit as shown in Fig. 3.23(b), choosing node

b as the reference node. The only other node in

the circuit is node a, and the (unknown) voltage

at that node relative to the reference is denoted

in single-subscript notation by va. The net cur-

rent leaving node a must be zero, so by Kirchh-

off’s current law,

�i0 þ i1 þ i2 ¼ 0 ) i1 þ i2 ¼ i0:

By Ohm’s law,

i1 ¼ va
R1

; i2 ¼ va
R2

;

and Kirchhoff’s current law is expressed in

terms of the unknown node voltage va by

va
R1

þ va
R2

¼ va
1

R1

þ 1

R2

� �
¼ i0) va ¼ R1R2

R1þR2

i0:

Thus

i1 ¼ va
R1

¼ R2

R1 þ R2

i0; i2 ¼ va
R2

¼ R1

R1 þ R2

i0

The circuit in Fig. 3.23 is called a current
divider because the current provided by the

source is divided between the two resistors in

the manner specified by the relations above.

i1

i2

i3

i4

Fig. 3.22 See Example 3.4

i1 i2

i3

Fig. 3.21 See Exercise 3.4

a

b = ref

i0 i0

i2 i2i1 i1

R1 R1R2 R2

(a) (b)

Fig. 3.23 See Example 3.5
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Exercise 3.5. Refer to Fig. 3.24. Obtain

expressions for the currents through the three

resistors.

Example 3.6. Obtain an expression for the

voltage v2 across the resistor R2 in the circuit

of Fig. 3.25(a).

Solution: We identify and label the nodes and

choose a reference node as shown in Fig. 3.25

(b). By the definition of an independent voltage

source, va ¼ v0. Thus the only unknown node

voltage is vb ¼ v2. By Kirchhoff’s current law

and Ohm’s law,

i1 þ i2 ¼ vba
R1

þ vb
R2

¼ vb � va
R1

þ vb
R2

¼ vb � v0
R1

þ vb
R2

¼ 0;

which yields

v2 ¼ vb ¼ R2

R1 þ R2

v0

The circuit of Fig. 3.25 is called a voltage

divider because the voltage provided by the

source is divided between the two resistors in

agreement with the relation above

Exercise 3.6. Refer to Fig. 3.25. Express the

voltage vab across the resistor R1 in terms of R1,

R2, and v0

Example 3.7. Obtain an expression for the

current i2 in the circuit of Fig. 3.26(a). The

resistances and the source voltages are pre-

sumed to be known.

Solution: We identify and label the nodes in

the circuit as shown in Fig. 3.26(b), choosing

node d as the reference node. By the definition

of an ideal voltage source,

va ¼ v1; vc ¼ v2;

so vb is the only unknown node voltage. We

apply Kirchhoff’s current law at node b and

obtain

i1 þ i2 þ i3 ¼ vb � va
R1

þ vb
R2

þ vb � vc
R3

¼ vb � v1
R1

þ vb
R2

þ vb � v2
R3

¼ 0 ;

i2 i2

R1 R1

R2 R2

R3 R3

R5 R5

a
b

c
i1 i3

d = ref

v1 v1v2 v2+
–

+
–

+
–

+
–

(a) (b)Fig. 3.26 See Example 3.7

I0 R2 R3R1

Fig. 3.24 See Exercise 3.5

v0 v0v2

+

–

+
– v2

+

–

a bi1

i2R1 R1

R2 R2

+
–

(a) (b)

Fig. 3.25 See Example 3.6
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in which the only unknown is vb. We find

vb ¼ 1

R1

þ 1

R2

þ 1

R3

� ��1 v1
R1

þ v2
R2

� �
:

Finally, by Ohm’s law

i2 ¼ vb
R2

¼ R

R2

v1
R1

þ v2
R2

� �
;

R ¼ 1

R1

þ 1

R2

þ 1

R3

� ��1

Exercise 3.7. Refer to Fig. 3.26. Obtain

expressions for the currents i1, i3

Example 3.8. Express the voltages v1, v2 in the

circuit of Fig. 3.27(a) in terms of the source volt-

age v0, where R1 ¼ 1 kO, R2 ¼ 2.2 kO, and R3 ¼
10 kO.
Solution: We identify and label the nodes as

shown in Fig. 3.27(b), choosing node d as the

reference node. By the definition of an ideal volt-

age source, va ¼ v0. The node voltages vb ¼ vbd
and vc ¼ vcd are unknown, so we apply

Kirchhoff’s current law to those nodes. Thus

i1þ i2þ i3 ¼ vb� v0
R1

þ vb
R2

þvb� vc
R1

¼ 0

) 2

R1

þ 1

R2

� �
vb� vc

R1

¼ v0
R1

;

�i3þ i4þ i5 ¼ vc� vb
R1

þ vc
R2

þvc� v0
R3

¼ 0

)� vb
R1

þ 1

R1

þ 1

R2

þ 1

R3

� �
vc ¼ v0

R3

:

To simplify the notation, we use conductances

in place of resistances; e.g., G1 ¼ 1/R1.

Thus

2

R1

þ 1

R2

� �
vb � vc

R1

¼ v0
R1

) 2G1 þ G2ð Þvb � G1vc ¼ G1v0;

� vb
R1

þ 1

R1

þ 1

R2

þ 1

R3

� �
vc ¼ v0

R3

) �G1vb þ G1 þ G2 þ G3ð Þvc ¼ G3v0:

To simplify further, let

Gb ¼ 2

R1

þ 1

R2

ffi 2:455 mS;

Gc ¼ 1

R1

þ 1

R2

þ 1

R3

ffi 1:555 mS:

whence

Gbvb�G1vc ¼G1v0; �G1vbþGcvc ¼G3v0;

which yield

vb ¼ v1 ¼ G1 Gc þ G3ð Þ
GbGc � G1

2
v0 ffi 0:588v0;

vc ¼ v2 ¼ GbG3 þ G1
2

GbGc � G1
2
v0 ffi 0:442v0:

Exercise 3.8. Refer to Fig. 3.27. Express

the voltages vac, vbc in terms of the source

voltage v0.

R1 R1 R1

R2 R2 R2 R2

R1

R3 R3

a
b

c
i1

i2

i3

d = ref

v0

−i3
i5

i4

v1
v0v2

+
–

+
–

+

–

+

–

(a) (b)Fig. 3.27 See Example 3.8
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The next example illustrates application of Kirch-

hoff’s current law to a circuit in which two nodes,

neither of which is the reference node, are connected

by an independent voltage source. Each independent

voltage source that appears in a circuit reduces the

number of unknown node voltages by one.

Example 3.9. Refer to Fig. 3.28(a). Express the

voltage v2 in terms of the circuit parameters.

Solution: We choose the reference node and label

the remaining nodes, as shown in Fig. 3.28(b),

and denote the current through the source v0 by

ix. By the definition of an ideal voltage source,

vc ¼ v1; v2 ¼ vb ¼ va þ v0:

If va were known, the voltage vb would be

determined. Writing Kirchhoff’s current law at

nodes a and b gives

�i0 þ va
R1

þ ix ¼ 0; �ix þ vb � v1
R3

þ vb
R2

;

which yield

va þ v0 � v1
R3

þ va þ v0
R2

¼ i0 � va
R1

) va ¼ R1 R2 R3 i0 þ R2 v1 � R2 þ R3ð Þ v0½ �
R1 R2 þ R1 R3 þ R2 R3

:

Thus,

v2 ¼ vb ¼ va þ v0

¼ R1 R2 R3 i0 þ R2 v1 � R2 þ R3ð Þ v0½ �
R1 R2 þ R1 R3 þ R2 R3

þ v0

¼ R2 R1R3i0 þ R1v1 þ R3v0ð Þ
R1 R2 þ R1 R3 þ R2 R3

:

Once you have solved two or three problems such

as Example 3.9, where two non-reference nodes are

connected by an independent voltage source, you will

realize that it is unnecessary to introduce an extra

unknown, such as ix. You can simply look ahead and

express the current passing through the source in terms

of the dependent node voltage at the other end of the

source (node b, in Example 3.9).

Example 3.10. Refer to Fig. 3.29(a). Express

the voltage v0 in terms of the circuit parameters.

Solution: We choose the reference node and label

the remaining nodes, as shown in Fig. 3.30(b). By

the definition of an ideal voltage source,

vc ¼ vb þ v1; vd ¼ vc þ v2 ¼ vb þ v1 þ v2:

Applying Kirchhoff’s current law to node a
gives

�i1 þ va
R1

þ va � vb
R2

¼ 0: (3.5)

i1 i1R1 R1 R3 R4

R2 R2
R3 R4

v1 v1v2 v2
a b c d

v0

+

–

+– +– +– +–

(a) (b)Fig. 3.29 See Example 3.10

i0 i0

v0 v0

v2 v1 v1R1 R1R2 R2

R3 R3ix ixa b c

+

−

+
–

+–

(a) (b)Fig. 3.28 See Example 3.9
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The current leaving node b through the source

v1 equals vc /R3 þ vd /R4. Applying Kirchhoff’s

current law to node b gives

vb � va
R2

þ vb þ v1
R3

þ vb þ v1 þ v2
R4

¼ 0: (3.6)

Using conductance notation and collecting

terms in (3.5) and (3.6) gives

G1þG2ð Þva�G2vb ¼ i1;

�G2vaþ G2þG3þG4ð Þvb
¼� G3þG4ð Þv1�G4v2: (3.7)

Eliminating vb yields

va¼ v0 ¼ G2þG3þG4ð Þi1�G2 G3þG4ð Þv1þG4v2½ �
G2þG3þG4ð Þ G1þG2ð Þ�G2

2

:

Exercise 3.9. Refer to Fig. 3.29(b) in Exam-

ple 3.10 above. Choose nodes a and d as the

independent nodes and write node equations at

those nodes. The voltages va and vdmust be the

only unknown quantities that appear in the

equations.

Exercise 3.10. Refer to Fig. 3.29(b) in Exam-

ple 3.10 above. Choose nodes b and c as the

independent nodes and write node equations at

those nodes. The voltages vb and vcmust be the

only unknown quantities that appear in the

equations.

Exercise 3.11. Refer to Fig. 3.30. Obtain an

expression for the voltage vbc.

3.8 Kirchhoff’s Voltage Law and Mesh
Analysis

Kirchhoff’s voltage law states that the algebraic sum

of the voltage drops8around any closed path equals

zero. In the algebraic sum of voltage drops around a

closed path, voltage rises are negated. With reference

to Fig. 3.31, Kirchhoff’s voltage law around the dotted

path can be expressed as

X
n

vn ¼ 0: (3.8)

Kirchhoff’s voltage law follows from the defini-

tions of electric potential and voltage. The electric

potential at any particular point and time has a single,

specific value, which does not depend upon how we

arrive at the point. Thus, if we imagine that we instan-

taneously follow a closed path that begins and ends at

the same point (a) but is otherwise arbitrary, the

potential at the end of the path is the same as that at

the beginning; that is, the net potential difference

(voltage drop) around the closed path is

FðaÞ � FðaÞ ¼ 0:

Kirchhoff’s voltage law follows, because the point

can be any point and the path can be any path through

the point.

Example 3.11. In Fig. 3.32, v1 ¼ 3 V, v2 ¼
10 V, v4 ¼ 15 V Find the voltage v3.

Solution: Kirchhoff’s voltage law gives

v1 þ v2 þ v3 � v4 ¼ 0:

i1 R1 R2 R3

v1a b

c

i2

+–

Fig. 3.30 See Exercise 3.11

8Kirchhoff’s voltage law can also be stated as “the sum of

voltage rises around any closed path equals zero” or as “the

sum of the rises equals the sum of the drops.” Again, for the

present, it is best to stick with one version of the law.
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where v4 is negated because it is a voltage rise

(in the direction of the path). Solving for v3
gives

v3 ¼ v4 � v1 � v2 ¼ 15� 3� 10 ¼ 2 V:

Exercise 3.12. Is the circuit in Fig. 3.33 self-

consistent? Use Kirchhoff’s voltage law to jus-

tify your answer.

A loop is a closed path in or around a circuit. All of

the dashed lines in Fig. 3.34 are loops. A mesh is a

loop that does not enclose (encircle) any other loops.

Paths 1, 2, 3 are meshes. Paths b and c are not meshes.

Path b encloses two meshes. Path c encloses three.

Kirchhoff’s voltage law can be applied to any loop or

mesh, but in the beginning, it is best to use only meshes,

as that is the surer way to obtain the required number of

independent equations. Applying Kirchhoff’s voltage

law to each mesh in a circuit and solving for the mesh

currents is called mesh analysis. In mesh analysis, we

regard each mesh as the path taken by a hypothetical

current, called amesh current. If one or more voltages

are the quantities of ultimate interest, they may be

expressed via Ohm’s law in terms of the currents and

resistances.

Mesh analysis proceeds as follows:

• Identify each mesh and associate a mesh current

with each.

• Write Kirchhoff’s voltage law around each mesh,

using Ohm’s law to express the voltages across

resistors in the mesh in terms of the mesh current

and the resistances of the resistors.

• Solve the resulting equations for the mesh currents.

• Use the mesh currents and Ohm’s law to find any

voltages of interest.

A few examples should clarify the procedure.

Example 3.12. (Compare with Example 3.6):

Obtain an expression for the voltage across

the resistor R2 in the circuit of Fig. 3.35. The

resistances and source voltage are presumed to

be known.

Solution: There is only one mesh. We define a

path and associated mesh current, as shown in

Fig. 3.35. We write Kirchhoff’s voltage law

clockwise around the path and obtain

v1

v2
v3

+
–

+–
+
–

Fig. 3.33 See Exercise 3.12

2 3

1

b

c

Fig. 3.34 Illustrating the definitions of mesh and loop

v4 v2

v1

v3

–
–

–

–
+

+
+

+

Fig. 3.32 See Example 3.11

v1 v2

v5

v4

v3

+ +
+

+
+ –

–

–

–
–

Fig. 3.31 Illustration of Kirchhoff’s Voltage Law – see (3.8)
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�v0 þ v1 þ v2 ¼ 0;

where, by Ohm’s law

v1 ¼ R1 i; v2 ¼ R2 i;

so Kirchhoff’s voltage law may be written

R1 iþ R2 i ¼ v0;

which yields

i ¼ v0
R1 þ R2

:

By Ohm’s law

v2 ¼ R2 i ¼ R2

R1 þ R2

v0:

Example 3.13. Obtain an expression for the cur-

rent i in the circuit of Fig. 3.36. The resistances

and source voltages are presumed to be known.

Solution: There are two meshes and associated

mesh currents, as shown in Fig. 3.36, noting that

the current of interest is i ¼ i2. We write Kirchh-

off’s voltage law around each path to obtain

v1 þ v3 � va ¼ 0;

v2 þ vb � v3 ¼ 0:

By Ohm’s law

v1 ¼ R1 i1; v2 ¼ R2 i2; v3 ¼ R3 i1 � i2ð Þ;

where i1–i2 is the total current down through the

resistor R3. Using these relations in the Kirchhoff-

voltage-law equations above gives two equations

in the two unknown currents i1, i2:

R1 i1þR3 i1� i2ð Þ¼va) R1þR3ð Þi1�R3 i2¼va;

R2 i2�R3 i1� i2ð Þ¼�vb

)�R3 i1þ R2þR3ð Þi2¼�vb:

To eliminate i1, we add R3 times the first

equation to (R1þ R3) times the second. This gives

� R3
2 i2 þ R1 þ R3ð Þ R2 þ R3ð Þ i2

¼ R3 va � R1 þ R3ð Þ vb;

which yields

i ¼ i2 ¼ R3 va � R1 þ R3ð Þ vb
R1 R2 þ R1 R3 þ R2 R3

:

Exercise 3.13. Obtain an expression for the

current i1 in Fig. 3.36.

The next example illustrates application of Kirchh-

off’s voltage law to a circuit containing a current

source. Each independent current source in a circuit

reduces the number of unknown mesh currents by one.

Example 3.14. Obtain an expression for the

current i1 through the resistor R1 in the circuit

of Fig. 3.37.

R1 R2

R3

i

va vb

i1 i2

v1 v2+ – –

–

+

v3

+
+
–

+
–

Fig. 3.36 See Example 3.13

v0 v2

R1

R2

v1

i

+

+

–

–

+
–

Fig. 3.35 See Example 3.12
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Solution: Although there are two meshes, there

is only one unknown current, because, by

Kirchhoff’s current law and the definition of

an independent current source, the current

through the resistor R2 is

i2 ¼ i1 þ i0;

and i0 is known. Thus we need only one equa-

tion. Writing Kirchhoff’s voltage law clock-

wise around the indicated path gives

�va þ v1 þ v2 þ vb ¼ 0:

By Ohm’s law,

v1 ¼ R1i1 ; v2 ¼ R2i2 ¼ R2 i1 þ i0ð Þ:

Thus Kirchhoff’s voltage law yields

� va þ R1i1 þ R2 i1 þ i0ð Þ þ vb

¼ 0 ) i1 ¼ va � vb � R2i0
R1 þ R2

:

When applying Kirchhoff’s voltage law to a circuit

containing one or more independent current sources, it

is never necessary to choose a path that passes

through an independent current source because, by

definition, the current through an independent current

source is known.

Example 3.15. Refer to Fig. 3.38. Use mesh

analysis to obtain an expression for the voltages

v1, v2, v3.
Solution: There are four meshes, as shown in

Fig. 3.38, but two of the mesh currents (i0 and

3i0) are known. Thus we need only the two

equations for the unknown mesh currents i1, i2.

�R1i0 þ R1 þ R2 þ R3ð Þi1 � R3i2 ¼ 0;

�3R4i0 � R3i1 þ R3 þ R4 þ R5ð Þi2 ¼ 0:

To simplify notation, let

RA ¼ R1 þ R2 þ R3; RB ¼ R3 þ R4 þ R5:

Then

RA i1 � R3 i2 ¼ R1 i0; R3 i1 þ RB i2 ¼ 3R4 i0;

which yield

i1¼R1RBþ3R3R4

RARB�R3
2

i0; i2 ¼R1R3þ3RAR4

RARB�R3
2

i0;

and thus

v1 ¼ i0� i1ð ÞR1¼
RARB�R3

2�RBR1�3R4R3

RARB�R3
2

R1i0;

v2 ¼ i1� i2ð ÞR3¼
RBR1þ3R3R4�R1R3�3RAR4

RARB�R3
2

R3i0;

v3 ¼ i2R5¼
R1R3þ3RAR4

RARB�R3
2

R5i0:

R1

R2

R3 R5

R4

i0
i1 i2

i0

v1 v2 v3

3i0

3i0

Fig. 3.38 See Example 3.15

i1 i2

i0 vbva

R1 R2

v1 v2+ –

+
–

+
–

–+

Fig. 3.37 See Example 3.14
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Exercise 3.14. Refer to Fig. 3.39. Obtain

expressions for the currents i1, i2.

3.9 Voltage and Current Dividers

Figure 3.40 shows the simplest form of a voltage
divider, so named because the source voltage v0 is

divided between the resistors R1, R2. The voltage

across the resistor R2 is given by (see Example 3.6)

v2 ¼ R2

R1 þ R2

v0: (3.9)

Equation (3.9) applies only if all of the current that

passes through the resistor R1 also passes through

the resistor R2. A common error is applying (3.9) to a

circuit such as the one shown in Fig. 3.41, where some

of the current passing through R1 is diverted to a load

R3 (not all passes through R2). In Fig. 3.41, the voltage

va is not given by (3.9), unless the resistance R3 is so

much larger than R2 that the current i3 through R3 is a

negligible fraction of i1.

For a specific example, consider the circuit of

Fig. 3.42(a), in which the load on the voltage divider

is expressed as a multiple of the resistance R. The

voltage v2 is given by

v2 ¼ k

2k þ 1
v0 ¼ v0

2þ k�1
; (3.10)

as you are asked to show in Exercise 3.15. The load

voltage v2 is approximately half the source voltage if k

is sufficiently large, as shown by the graph in Fig. 3.42

(b). For example, for k ¼ 100, v ¼ 0.498v0.

Exercise 3.15. Show that the voltage v2 in

Fig. 3.42(a) is given by (3.10).

Figure 3.43 shows the simplest form of a current
divider, so named because the source current is

divided between the resistors R1, R2. The current

through the resistor R2 is given by (see Example 3.5)

i2 ¼ R1

R1 þ R2

i0: (3.11)

Voltage and current dividers are quite common,

and you should memorize the circuits in Figs. 3.40

and 3.43 and the associated relations (3.9) and (3.11).

Voltage and current dividers can contain more than

two resistors (can divide voltages or currents into more

than two parts), but two-part dividers are by far the

most common.

3.10 Superposition

As it applies to resistive circuits, the principle of
superposition can be stated as follows:

Suppose a circuit contains two or more independent

current or voltage sources. Any particular current or

voltage in the circuit can be obtained as the sum of the

corresponding currents or voltages found by applying

the sources one at a time, all others being set to zero.

v0

R1

R2
v2

+

–

+
–

Fig. 3.40 Voltage dividerv0

R1 R3

R2 R4

i0

5i0
i1 i2

+
–

Fig. 3.39 See Exercise 3.14

ref

v0

R1

R3R2

i1

i2 = i1− i3

i3

+
+

–
–

va

Fig. 3.41 Circuit used to illustrate erroneous application of

voltage division. See text
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Note that setting a source voltage to zero is equiva-

lent to replacing the associated source with a short

circuit and setting a source current to zero is equiva-

lent to replacing the associated source with an open

circuit.9

Example 3.16. Using superposition, obtain an

expression for the current ix in the circuit

shown in Fig. 3.44(a).

Solution: We first find the current i due to the

voltage source v0 acting alone; that is, with the

source current i0 set to zero (replaced by an

open circuit), as illustrated by Fig. 3.44(b).

This gives

iji0¼0 ¼
v0

R1 þ R2 þ R3

:

Next we find the current i due to the current
source i0 acting alone; that is, with the source

voltage v0 set to zero (replaced by a short

circuit), as illustrated by Fig. 3.44(c). We

obtain

ijv0¼0 ¼
R2i0

R1 þ R2 þ R3

:

There are no other sources, so the (total)

current ix is given by

i ¼ iji0¼0 þ ijv0¼0 ¼
v0 þ R2i0

R1 þ R2 þ R3

:

In applications of superposition, the various

sources may be applied in any order.

The principle of superposition is a consequence of

Kirchhoff’s laws and the fact that the terminal char-

acteristic of a resistor is linear. We can show this as

follows: Applying either or both of Kirchhoff’s laws to

a resistive circuit leads to a set of equations of the form

a11 x1 þ a12 x2 þ � � � þ a1N xN

¼ b11 y1 þ b12 y2 þ � � � þ b1M yM;

a21 x1 þ a22 x2 þ � � � þ a2N xN

¼ b21 y1 þ b22 y2 þ � � � þ b2M yM;

..

.

aN1 x1 þ aN2 x2 þ � � � þ aNN xN

¼ bN1 y1 þ bN2 y2 þ � � � þ bNM yM; (3.12)

where the y’s are known source currents or voltages,

the x’s are unknown currents or voltages, and the a’s

and b’s are (in general) functions of circuit parameters

(resistances and conductances) and are independent of

the known and unknown currents and voltages. The

solution of such a set of equations has the form

v2

R

v0 R kR

+

–

1 10 100 1.103
0.3

0.35

0.4

0.45

0.5

v2
v0

k

(a) (b)

Fig. 3.42 The voltage v2 is
approximately half the source

voltage for large k

i0

i2

R1 R2

Fig. 3.43 Current divider

9Review the definitions of independent current and voltage

sources in Section 3.6.
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x1 ¼ c11y1 þ c12y2 þ � � � þ c1MyM;

x2 ¼ c21y1 þ c22y2 þ � � � þ c2MyM;

..

.

xN ¼ cN1y1 þ cN2y2 þ � � � þ cNMyM;

(3.13)

where the c’s are functions of the circuit parameters

(the a’s and b’s) but do not depend upon the source

currents and voltages (the y’s). For example, in Exam-

ple 3.13 we obtain the equation

R1 þ R3ð Þ i1 � R3 i2 ¼ va;

�R3 i1 þ R2 þ R3ð Þ i2 ¼ �vb;

which have the form given in (3.12), with

N ¼ 2; x1 ¼ i1; x2 ¼ i2 ;

a11 ¼ R1 þ R3; a12 ¼ �R3;

a21 ¼ �R3; a22 ¼ R2 þ R3;

M ¼ 2; y1 ¼ va; y2 ¼ vb;

b11 ¼ 1; b12 ¼ 0; b21 ¼ 0; b22 ¼ �1:

The solution (see Example 3.13 and Exercise 3.13) is

i1¼ R2þR3ð Þva�R3 vb
R1R2þR1R3þR2R3

¼ R2þR3ð Þ
R1R2þR1R3þR2R3

� �
va

þ �R3

R1R2þR1R3þR2R3

� �
vb;

i2¼ R3va� R1þR3ð Þvb
R1R2þR1R3þR2R3

¼ R3

R1R2þR1R3þR2R3

� �
va

þ � R1þR3ð Þ
R1R2þR1R3þR2R3

� �
vb:

(3.14)

which has the form given in (3.13), with

c11¼ R2þR3ð Þ
R1R2þR1R3þR2R3

; c12¼ �R3

R1R2þR1R3þR2R3

;

c21¼ R3

R1R2þR1R3þR2R3

; c22¼ � R1þR3ð Þ
R1R2þR1R3þR2R3

:

Equations obtained by applying Kirchhoff’s laws to

any resistive circuit can be put in the form (3.12)

and the solution for such a set can always be written

in the form (3.13). Equation (3.13) (or, e.g., (3.14))

expresses each current and voltage in a resistive circuit

as a linear combination of source currents and vol-

tages. To find a particular current or voltage due to a

particular source current or voltage, we set all source

currents and voltages except the one of interest to zero.

For example, with reference to (3.14), suppose we

wish to obtain an expression for that part of the current

i2 that can be attributed to the source vb. To do so, we

set va ¼ 0 in the expression for i2. This gives

i2jva¼0 ¼
� R1 þ R3ð Þ

R1 R2 þ R1 R3 þ R2 R3

� �
vb: (3.15)

Similarly, if we wish to obtain an expression for

that part of the current i2 that can be attributed to the

source va, we set vb ¼ 0 in the expression for i2. This
gives

i2jvb¼0 ¼
R3

R1 R2 þ R1 R3 þ R2 R3

� �
va: (3.16)

An expression for the (total) current i2, i.e., the

second of Equations (3.14), can be obtained by adding

the right sides of (3.15) and (3.16), in agreement with

the principle of superposition.

An important by-product of the proof of superposi-

tion given above is the following: If a linear resistive

circuit contains exactly one independent source, then

R1 R1 R1R2 R2 R2

R3 R3 R3v0 v0

i0 i0

i0 = 0i
v0 = 0ii

+
–

+
–

(a) (b) (c)Fig. 3.44 See Example 3.16
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every current and voltage in the circuit is proportional to

the source current or voltage.This conclusion is reached
by setting all but one source equal to zero in (3.13).

Superposition can be generalized to more complex

linear circuits, as shown in a subsequent chapter, and

is one of the most important principles in circuit anal-

ysis. Although it usually does not greatly simplify

analysis of resistive circuits excited by simple (e.g.,

constant or sinusoidal) sources, it is of tremendous

importance in analysis of more general linear circuits

subjected to more complex excitations. But superposi-

tion is most easily understood and applied in the con-

text of resistive circuits and simple excitations, and

mastering the concept in that setting will pay divi-

dends in more realistic and practical applications.

3.11 Problems

Section 3.1 is prerequisite for the following

problems.

P 3.1 Under what conditions does an ideal conductor

accurately model a physical conductor in a circuit dia-

gram?How elsemight youmodel a physical conductor?

P 3.2 Refer to Fig. P 3.1. Express the potentials

at points e, f, g, h in terms of the potentials at points

a, b, c, d.
P 3.3 Figure P 3.2 shows a circuit diagram and an

associated table of potentials. Complete the table.

P 3.4 Figure P 3.3 shows a circuit diagram and an

associated table of potentials. Complete the table.

Section 3.2 is prerequisite for the following
problems.

P 3.5 In Problem P 3.2, g is the reference node and

va¼ 15 V, vb ¼ 10 V, vc ¼�10 V, vd ¼ 12 V. (a) Find

ve, vf, vbh, vdh, vfh, vca. (b) Label the diagram with

the voltage across each element using plus–minus

notation.

P 3.6 Refer to Problem P 3.3. (a) Take point i as
reference and find the voltages vab, vbg, vcf, vcd, vfe, va,

vb, vc, vf, vh. (b) Label the diagram with the voltage

across each element using plus–minus notation.

P 3.7 Refer to Problem P 3.4. (a) Take point k as

reference and find the voltages va, vd, vh, vg, vbd, vdg,

vih, vbf. (b) Label the diagram with the voltage across

each element using plus–minus notation.

P 3.8 In a certain circuit, the potentials at points a,

b, c, and d areF(a)¼ 50 V,F(b)¼ 25 V,F(c)¼ 15 V,

and F(d) ¼ 100 V. Take point d as the reference and

find the voltages va, vb, vc, vab, vbc, vac.

P 3.9 In a certain circuit, the potentials at points

a, b, c, and d areF(a)¼ 5 V,F(b)¼ 15V,F(c)¼ 25 V,

and F(d) ¼ 10 V. Take point d as the reference and

find the voltages va, vb, vc, vab, vbc, vac.

Section 3.3 is prerequisite for the following
problems.

P 3.10 Use the terms series and parallel to describe

(in words) the connections shown in Fig. P 3.4. (Note:

It is possible that neither of the terms apply to a

particular arrangement.)

P 3.11 Draw diagrams (e.g., see Fig. P 3.4) depict-

ing the connections described below:

(a) Theparallel connectionof elements1 and2 is in series

with the parallel connection of elements 3 and 4.

(b) Elements 1, 2 and 3 are in parallel with the series

connection of elements 4 and 5.

(c) Elements 1, 2, and 3 are in series with the parallel

connection of elements 4 and 5.

Section 3.4 is prerequisite for the following
problems.

ca b d

e

f

g

h

Fig. P 3.1 See Problem P 3.2
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P 3.12 What resistance is equivalent to (a) a short

circuit and (b) an open circuit?

P 3.13What conductance is equivalent to (a) a short

circuit and (b) an open circuit?

P 3.14 A switch can be idealized as a short circuit

in the on position and as an open circuit in the off

position. Suppose a battery, switch, and lamp are

connected as shown in Fig. P 3.5. If the terminal

1 4

3

2

4

1 3 5

2

1 2

43

5

2 3

1

4

(a)

(b) (d)

(c)

Fig. P 3.4 See Problem

P 3.10

a
d

l

gk

j

eb

c

f

h

i

point potential (V)

a 2
b
c
d

5e
f

10

6
3

g

h
i
j

k
l

Fig. P 3.3 See Problem P 3.4

point potential (V)

a 10
b 6
c
d 4
e
f 1
g

h
i

a b

c
d

e

g
f

i

h

Fig. P 3.2 See Problem P 3.3
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voltage of the battery is v0 and the resistance of the

lamp is R, what are the voltage across and current

through the lamp when the switch is in (a) the off

position and (b) the on position?

Section 3.5 is prerequisite for the following
problems.

P 3.15 For each circuit shown in Fig. P 3.6, express

the voltages vab, vac, vad, vae in terms of the source

voltages.

P 3.16 Refer to Fig. P 3.7. Employ the definitions

and techniques described in Sections 3.1 through 3.6

to express each labeled voltage and current (e.g., vx, ix)
in terms of the resistances and source currents and

voltages.

P 3.17 There is something wrong (self-contradic-

tory) with each circuit in Fig. P 3.8 where the source

currents and voltages are arbitrary. What is it?

v1 v0

v0

v2 v1

v0

v3

v3

v0v2

ab c

d e

v1

v0
v2

a

b

e

c

d

a b

c

d

e

+
–

+
–

+– +–

+ –

+
–

+
–

+
–

+
–

+–

+
–

+ –

+
–

(a)

(c)

(b)

Fig. P 3.6 See Problem

P 3.15

battery

lamp
switch

off

on

Fig. P 3.5 See Problem P 3.14

R0

R0

R0
R0

R1

R0

R0

v0

v1

v0

v0

v0

v1i0

i0 i0

ix

ix

ix

ix

ix

ix

vx

+

–

vx

vx

vx

vy

+

vx

vy

vx

+

+ ––

–

+

–

+ –

+
+

–

–
+
–

+ –

+
–

+
–

+
–

+
–

(a) (b) (c)

(f)
(e)(d)

Fig. P 3.7 See Problem

P 3.16
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Section 3.6 is prerequisite for the following

problems.

Note: In subsequent problems, the symbols in Fig. P 3.9

denote a voltmeter (V) having infinite resistance and an

ammeter (A) having zero resistance. The polarity marks

indicate the voltage polarity that gives a positive volt-

meter reading and the arrow indicates the current direc-

tion that gives a positive ammeter reading.

P 3.18 Refer to Fig. P 3.10, where VS ¼ 13 V.

Ammeter 1 reads 5.04 mA, ammeter 2 reads 1.42

mA, and the voltmeter reads 7.96 V. Find the resis-

tances RS, R1, R2. What are the nearest standard values

for R1 and R2 from the lowest possible E series?

P 3.19 Refer to Fig. P 3.11, where V0 ¼ 12 V.

Ammeter 1 reads 2.14 mA, ammeter 2 reads 4.87 mA,

and the voltmeter reads 5.46 V. Find the resistances

R0, R1, R2. What are the nearest standard values for

R0, R1, and R2 from the lowest possible E series?

P 3.20 Find the current ix in the circuit of Fig. P 3.12,

where i1 ¼ 5 mA, i2 ¼ 10 mA, and v0 ¼ 5 V. To what

extent does the current ix depend upon the voltage v0?

P 3.21 In the circuit of Fig. P 3.13, v0 ¼ 15 V, vad ¼
10 V, vbd ¼ 5 V, and R ¼ 1 kO. Find the indicated

currents and the voltages vab, vbc, vac.

P 3.22 In the circuit of Fig. P 3.14, IS¼ 100 mA and

RS ¼ 10 kO. It is required that the current through R1

equal 25 mA and the current through R2 equal 50 mA.

Find the resistances R1, R2. Then specify the nearest

V A
+ –

Fig. P 3.9 Symbols for voltmeter and ammeter

+
–

+
–

+
–

+
–

+
– +

–

+– +–
+–+–

(a)

(b)

(c)

(d)

(e)
(f)

Fig. P 3.8 See Problem

P 3.17

A

A

V
RS

VS
R1

R2

+ –

1

2

+
–

Fig. P 3.10 See Problem P 3.18

A

V A
2

1

R0

R1
R2

V0

+
–

Fig. P 3.11 See Problem P 3.19

v0i1 i2

ix

+
–

Fig. P 3.12 See Problem P 3.20
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values from the E192 series and obtain an expression

for the percent error in each current. (Assume the

values given for IS, RS are exact.)

P 3.23 In Fig. P 3.15, the resistor on the left is a

variable resistor, called a rheostat. The resistance from

the movable tap (the arrow) to one end of the rheostat is

kR and the total resistance of the rheostat is R. The

voltage vL across the load resistor RL must equal one-

half of the source voltage vS. Express the required

rheostat setting k in terms of the resistances R, RL.

P 3.24 Refer to Problem P 3.23 and Fig. P 3.15. The

current iL through the load resistor RL must equal one-

third of the current iS. Express the required rheostat

setting k in terms of the resistances R, RL.

P 3.25 An ideal voltmeter has infinite internal

resistance. A real voltmeter has a large but finite

internal resistance and can be modeled as an ideal

voltmeter in parallel with a resistor. In Fig. P 3.16,

R1 ¼ 10 kO; R2 ¼ 53 kO, and Rv ¼ 500 kO. The volt-
age across the series connection of R1 and R2 is fixed.

When the (real) voltmeter is connected to R2, it reads

5.6 V. What is the true voltage across R2 (before the

meter is connected)?

P 3.26 In Fig. P 3.17, V0 ¼ 12 V and 900O �
RL � 1;200O. The voltage vL must be 9V� 0:1V.

Specify the resistances R1, R2. What are the minimum

and maximum currents drawn from the source? Use the

nearest E192-series values for R1, R2 and calculate the

resulting minimum and maximum values of the voltage

vL. Does the circuit still meet the specifications?

P 3.27 A simple model for a battery consists of an

ideal voltage source in series with a resistance, called

the internal resistance of the battery. The open-circuit

(no-load) terminal voltage of the battery equals the

terminal voltage of the ideal source. A battery having

4R2R

5R 3R 2R

d

a b ci1 i3 i5

i2 i4 i6

v0

CircuitCircuit

+

–

Fig. P 3.13 See Problem

P 3.21

IS RS R1 R2

Fig. P 3.14 See Problem P 3.22

RL

vL

iL

(1–k)R

kR

vS

iS

–
+

Fig. P 3.15 See Problem P 3.23

R1

R2 VRv

+

–

+
–

real voltmeter

Fig. P 3.16 See Problem P 3.25

+

–
V0

R1

R2 RL
vL

+

–

Fig. P 3.17 See Problem P 3.26
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open-circuit (no-load) terminal voltage V0 is connected

in series with a resistor having resistance RL. Using

such a model, obtain expressions for the battery internal

resistance Ri in terms of (a) the current IR through the

resistor RL and (b) the voltage VR across the resistor.

P 3.28 Refer to Fig. P 3.9. In Fig. P 3.18,

R1 ¼ 10 kO and R2 ¼ 28 kO. The variable resistor Rx

is adjusted until the ammeter reads zero, at which

point the voltmeter reads 7.3 V and the resistance

Rx ¼ 15:4 kO. Find the resistance Ry and the source

current IS.
P 3.29 Refer to Fig. P 3.19. Use Kirchhoff’s current

law to show that the relation between the voltage vL
and the current iL is independent of the load (of what-

ever is in the box).

Section 3.7 is prerequisite for the following
problems.

P 3.30 Refer to Fig. P 3.20. Make d the reference

node and write every relation you can think of among

the node voltages and the voltages across the various

elements; for example, vab ¼ va � vb. Then write

every relation you can think of among the branch

currents; for example, i1 þ i2 þ i6 ¼ 0.

P 3.31 Refer to Fig. P 3.21. Use Kirchhoff’s voltage

law to express the voltage vL in terms of the current iL,

the source voltage vS and the resistance RS. Note that

the relation thus obtained is independent of the load

(of whatever is in the box).

P 3.32 Refer to Fig. P 3.22. According to Problem

P 3.29, the relation between the voltage vL and the

current iL is independent of the current iS and the

resistance Ri. According to Problem P 3.31, the rela-

tion between the voltage vL and the current iL is inde-

pendent of the voltage vS and the resistance Rv. Does

this mean that the relation between the voltage vL and
the current iL is independent of all four quantities

vS; Rv; iS; Ri? From another point of view, the relation

between the voltage vL and the current iL depends only
upon vS, Rv and (simultaneously) only upon vS, Ri.

How can this be? Explain.

P 3.33 Refer to Fig. P 3.23. (a) Obtain symbolic

expressions for the voltage vx and the current ix.

(b) Let I0 ¼ 1mA; I1 ¼ 2mA; V0 ¼ 5V; V1 ¼ 2V;

R0 ¼ 1 kO; R1 ¼ 2 kO. Calculate the values of the

voltage vx and the current ix.

P 3.34 : Use simulation to verify your answers to

Problem P 3.33.

a
b

c

d

i1

i3

i4

i2

i6 i5

Fig. P 3.20 See Problem P 3.30
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A

V

IS

R1

Ry

R2

+

–

Fig. P 3.18 See Problem P 3.28
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−

vL loadRS

iL

iS

Fig. P 3.19 See Problem P 3.29

+

–

+
–

vL

RS

vS
iL

load

Fig. P 3.21 See Problem P 3.31

Rv

vSiS Ri vL

+

–

+
–

iL

Fig. P 3.22 See Problem P 3.32
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Fig. P 3.23 See Problem

P 3.33
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Fig. P 3.24 See Problem

P 3.35
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P 3.35 Refer to Fig. P 3.24. (a) Obtain symbolic

expressions for the current ix and the voltage vx. (b) Let
each source voltage be 5 V and each source current be

10 mA. Calculate the values of the current ix and the

voltage vx.

P 3.36 : For each circuit in Fig. P 3.25: (i) Write

the appropriate number of mesh (Kirchhoff’s voltage

law) equations. (ii) Let v0 ¼ 1.5 V, i0 ¼ 1 mA, R0 ¼ 1

kO, R1 ¼ 16 kO. Calculate the mesh currents, the

voltage vx, and the current ix. (iii) Use simulation to

verify the results.

P 3.37: Repeat Problem P 3.36 using node analy-

sis (Kirchhoff’s current law). Omit the simulations if

you did them when working Problem P 3.36.

Section 3.8 is prerequisite for the following

problems.

P 3.38 It is required that the output of a voltage

divider be between 74.5% and 75.5% of the input and

that the total resistance be at least 400 kO. Assume that

both resistors have the same precision (tolerance) and

specify the values and precision of the least precise

resistors that can be used.

P 3.39 In Fig. P 3.26, R1 ¼ 100 kO� 5%, R2 ¼
300 kO� 5%, and vS ¼ 5V. (a) What is the smallest

permissible value of the load resistance RL if the load

voltage vLmust be at least 70% of the source voltage vS?

(b) If RL has the value determined in part (a), what is the

maximum possible value of the load voltage?

P 3.40 In Fig. P 3.27, RS ¼ 500 kO. What is the

largest permissible value of the load resistance RL if
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Fig. P 3.25 See Problem

P 3.36
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R1

R2 RL vL

+

–

+
–

Fig. P 3.26 See Problem P 3.39

iS RS RL

iL

Fig. P 3.27 See Problem P 3.40

76 3 Circuit Elements, Circuit Diagrams, and Kirchhoff’s Laws



the load current iL must be at least 90% of the source

current iS?
P 3.41 In Fig. P 3.28, the source voltage V0 is

constant and the voltmeter reads 5 V before the load

RL is connected to the circuit. What does the voltmeter

read after the load is attached? What is the source

voltage V0?

P 3.42 Refer to Fig. P 3.29, where the current I is

fixed. Before the switch is closed, I1 ¼ 4mA. After the

switch is closed, the current I is unchanged. What is

the new value of I1? What is the load current IL? What

kind of source is driving this circuit?

P 3.43 Refer to Fig. P 3.30, where V2 ¼ 5V before

the switch is closed. Find the value of k before the

switch is closed. Find the value of k such that V2 ¼ 5V

after the switch is closed.

P 3.44 Refer to Fig. P 3.31, where the switches are

ganged (tied together), such that they open and close

together. (a) Find R2 such that V2 ¼ 9V when the

switches are open. (b) Then find R0 such that V2

remains equal to 9 V when the switches are closed.

P 3.45 Refer to Fig. P 3.32, where the load resis-

tance RL is nominally equal to 1 kO, but can vary by

�30%. Other circuitry (not shown) must keep the load

current IL equal to 80% of the source current I0 by

adjusting the variable resistance R. What must be the

range of R?

P 3.46 Refer to Fig. P 3.33, where the load resis-

tance RL is nominally equal to 5 kO, but can vary by

�40%. Other circuitry (not shown) must keep the load

voltage VL equal to 90% of the source voltage V0 by

adjusting the variable resistance R. What must be the

range of R?

P 3.47 Refer to Fig. P 3.34. The load resistance RL

varies randomly within the range 15 – 25 O. Other
circuitry (not shown) monitors the load current IL and

varies the source current I0 to keep the load current

V0

R1
R2 RLV2

+

–

R0

R1 = 2.2kΩ, RL = 3.9kΩ, V0 = 20V

+
–

Fig. P 3.31 See Problem P 3.44

RLR1 R2

I1 I2 IL

I

R1 = 1.0kΩ, R2 = 2.2kΩ, RL = 3.3kΩ

Fig. P 3.29 See Problem P 3.42

V0

R1
RLR2

(1− k)R kR

V2

+
+
–

–

R1 = 2.2kΩ, R2 = 1.0kΩ, RL = 2.2k Ω, R = 10kΩ, V0 = 10V

Fig. P 3.30 See Problem P 3.43

I0 R RL

IL

Fig. P 3.32 See Problem P 3.45

R
RLV0 VL

+
+
–

–

Fig. P 3.33 See Problem P 3.46

RL

IL

I0 R0 R0 = 100kΩ

Fig. P 3.34 See Problem P 3.47

V

R1

R2 RLV0

R1 = 1.0kΩ,

+
–

RL = 3.3kΩR2 = 2.2kΩ,

Fig. P 3.28 See Problem P 3.41
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within 1% or 10 A. What must be the range of the

source current?

P 3.48 Refer to Fig. P 3.35. The load resistance RL

varies randomly within the range 15 – 25O. Other
circuitry (not shown) monitors the load voltage VL

and varies the source voltage V0 to keep the load

voltage within 1% of 20 V. What must be the range

of the source voltage?

P 3.49 Refer to Fig. P 3.36, where the temperature

coefficients at 25� for R1 and R2 are 0.005 K�1and

0:008 K�1, respectively. What is the maximum range

of VL if the temperature of the circuit ranges from

25�C to 50�C?
P 3.50 Refer to Fig. P 3.37. The resistor R2 is

switched in and out, randomly. What is the percent

variation of the voltage V1?

P 3.51 Refer to Fig. P 3.38. The load current ILmust

not exceed 15 A, but can have any value less than 15 A

without harm. The current I is nominally 10 A, but can

occasionally jump to 50 A for a short time. Other

circuitry (not shown) monitors the current I and closes

the switch instantly if I exceeds 12 A, diverting some

current through the resistor R. What is the maximum

permissible value for R?

P 3.52 Explain why it is best to use resistors of the

same kind (e.g., metal film, wirewound) in any partic-

ular voltage divider or current divider. Hint: Temper-

ature is not necessarily constant.

P 3.53: It is proposed that a length of wire be used

as the probe (sensor) in a temperature-measurement

system, as illustrated in Fig. P 3.39, where RW is the

resistance of the wire and the voltage v is to be

measured as an indication of temperature. Assume

the resistivity of the wire is given by rðTÞ ¼
r0 1þ a0 T � T0ð Þ½ �, where T is temperature in �C and

T0 ¼ 25�C.

(a) Obtain an expression for the voltage v as a func-

tion of temperature in �C. The source voltage VS,

the source resistance RS, the parameters r0 and a0,
and the length L and diameter d of the wire are

presumed to be known.

(b) Describe conditions under which the relation

between temperature T and the measured voltage

v is approximately linear (a straight-line relation).

(c) Let Vs ¼ 12 V, Rs ¼ 100 O, r0 ¼ 1:543 mO cm,

a0 ¼ 0:0044�C�1, L ¼ 1 m, and d ¼ 0:643 mm.

Use a computer mathematics program to plot

the voltage v versus probe temperature for

0�C � T � 20�C.

RL = 10 Ω

IL

I

R

Fig. P 3.38 See Problem P 3.51

V0 = 25V

R1

R2 R1 = 2.2kΩ ± 1%

R2 = 4.7kΩ ± 1%

VLV0

+

–

+
–

Fig. P 3.36 See Problem P 3.49
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V0 V1

+

–

R0 = 50 Ω, R1 = 1.0kΩ, R2 = 1.0kΩ, V0 = 25V

+
–

Fig. P 3.37 See Problem P 3.50
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Vs Rw

+

–

v

source probe

+
–

Fig. P 3.39 See Problem P 3.53

VL R0 = 10 ΩRL

R0
V0

+

–
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–

Fig. P 3.35 See Problem P 3.48
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P 3.54 : Refer to Fig. P 3.40.

(i) Obtain expressions for the voltage vx and the cur-

rent ix in terms of circuit parameters. Show that the

expressions are dimensionally consistent.

(ii) Let i0 ¼ 5mA; i1 ¼ 10mA; v0 ¼ 5V; v1 ¼ 10V;

R0 ¼ 1 kO; R1 ¼ 2:2 kO. Calculate the values of

vx and ix.

(iii) If you used node analysis in Part (ii), check your

work using mesh analysis. If you used mesh

analysis, check using node analysis.

(iv) Simulate the circuit and verify the calculated

values.

P 3.55 : Refer to Fig. P 3.41.

(i) Obtain expressions for the voltage vx and the cur-

rent ix in terms of circuit parameters. Show that the

expressions are dimensionally consistent.

(ii) Let i0 ¼ 5mA; i1 ¼ 10mA; v0 ¼ 5V; v1 ¼ 10V;

R0 ¼ 1 kO; R1 ¼ 2:2 kO. Calculate the values of vx
and ix.

(iii) If you used node analysis in Part (ii), check your

work using mesh analysis. If you used mesh

analysis, check using node analysis.

(iv) Simulate the circuit and verify the calculated

values.
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Fig. P 3.40 See Problem

P 3.54
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Fig. P 3.41 See Problem

P 3.55
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Section 3.9 is prerequisite for the following
problems.

P 3.56 Refer to Fig. P 3.42, where V0 ¼ 5V,

V1 ¼ 10V, I0 ¼ 2mA, I1 ¼ 5mA, R0 ¼ 1 kO, and

R1 ¼ 2:2 kO. Use superposition to find the voltage vx
and the current ix. Verify your results with straightfor-

ward application of Kirchhoff’s laws.

P 3.57 : Use simulation to verify your answers to

Problem P 3.56.

P 3.58 Refer to Problem P 3.23 for a description

of a rheostat. In Fig. P 3.43, V1 ¼ 10V, V2 ¼ 15V,

R1 ¼ 3:3 kO, R2 ¼ 2:2 kO, and R ¼ 5 kO. Find a value
of k for which the current i equals zero. Is it possible

to find such a value if V2 < 0? Show how or explain

why not.

P 3.59 Refer to Problem P 3.23 for a description

of a rheostat. In Fig. P 3.44, I1 ¼ 10mA, I2 ¼ 15mA,

R1 ¼ 3:3 kO, R2 ¼ 2:2 kO, and R ¼ 5 kO. Find a value
of k for which the current i equals zero. Is it possible
to find such a value if I2< 0? Show how or explain

why not.

P 3.60 Refer to Fig. P 3.45, where V0 ¼ 120V,

R0 ¼ 0:1O, and the load resistance is nominally

RL ¼ 10O, but can vary by �50%. Additional moni-

toring circuitry (not shown) attempts to keep the load

voltage between 100 and 125V by switching sources in

or out as the load resistance varies. (a) Construct graphs

of load voltage versus number of switches in position b,

for (i) RL ¼ 5O, (ii) RL ¼ 10O, and (iii) RL ¼ 15O
(on the same axes). (b) How many switches must be in

position b in each case? (c) If the number of sources is

unlimited, what is the maximum possible load voltage

in each case? (d) Are there values of the load resistance

for which it would be impossible to keep the load

voltage between 100 and 125 V, and if so, what are

they? (e) What is the minimum number of sources

required for any load?
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Fig. P 3.42 See Problem

P 3.56
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Fig. P 3.43 See Problem P 3.58
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R2 I2I1 R1
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Fig. P 3.44 See Problem P 3.59
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Fig. P 3.45 See Problem
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P 3.61 Refer to Fig. P 3.46, where I0 ¼ 1A,

R0 ¼ 100 kO, and load resistance is nominally

RL ¼ 500O, but can vary by �30%. Monitoring

circuitry (not shown) attempts to keep the load cur-

rent between 3.75 and 4.5 A by closing or opening

switches as the load resistance varies. (a) Construct

graphs of load current versus number of switches

closed for (i) RL ¼ 350O, (ii) RL ¼ 500O, and (iii)

RL ¼ 650O (on the same axes). (b) How many

switches must be closed in each case, and what is

the actual load current in each case? (c) If the num-

ber of sources is unlimited, what is the maximum

possible load current in each case? (d) Are there

values of the load resistance for which it would

be impossible to keep the load current between

3.75 and 4 A, and if so, what are they? (e) What

is the minimum number of sources required for

any load? (f) What load resistance would draw

the minimum possible current within the range

3:5A � IL � 4:5A?

RL

IL

I0 I0 I0R0 R0 R0
Fig. P 3.46 See Problem

P 3.61
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Chapter 4

Equivalent Circuits

Two-terminal elements or circuits having identical

terminal characteristics are equivalent at their term-

inals. For example, any two-terminal element or cir-

cuit having the terminal characteristic v ¼ Ri, where v

and i are voltage across and current through the term-

inals of the element and R is independent of v and i,
is equivalent at those terminals to a resistor having

resistance R. Equivalent elements or circuits cannot be

distinguished by any measurements made at their

terminals, and replacing one by the other in a larger

circuit causes no change in any voltage or current in

the rest of the circuit.

In this chapter, we show how using equivalent cir-

cuits can simplify analysis. We introduce Thévenin’s

theorem, which permits reduction of any resistive cir-

cuit (at a terminal pair) to a voltage source in series with

a resistor, and Norton’s theorem, which permits reduc-

tion of any resistive circuit (at a terminal pair) to a

current source in parallel with a resistor. We begin

with a discussion of terminal characteristics.

4.1 Terminal Characteristics

Recall that the terminal characteristic for a two-

terminal element is the relation the element establishes

between voltage across and current into (or out of) the

terminals. Recall also that the terminal characteristic

for an element or circuit is independent of whatever
is attached to the element or circuit at the terminals

in question. For example, a resistor (idealized) obeys

Ohm’s law, regardless of what is connected to the

resistor. Similarly, the source voltage for an indepen-

dent voltage source is independent of whatever is

connected to the source.

To specify or determine a terminal characteristic,

we must specify a direction for positive current in

relation to the polarity assigned to terminal voltage.

For a resistor, for example, the relation v ¼ iR holds

if the positive direction of current is into the positive

terminal of the resistor. If the positive direction for

current is out of the positive terminal, then the termi-

nal characteristic is v ¼ � iR. For a resistor and some

other circuit elements, the positive direction for cur-

rent is conventionally into the positive terminal. But in

general, choice of the positive direction for current in

defining a terminal characteristic often depends upon

whether we regard the element or circuit in question

as a source or a load.1 Generally, if the element is

regarded as a source, the positive direction of the

terminal current is out of the positive terminal. If the

element is regarded as a load, the positive direction of

the terminal current is into the positive terminal.

To obtain the terminal characteristic for a two-

terminal element or circuit, we assign a polarity (þ/�)

to the terminal pair, assign a positive direction to

current, and find the relation between the current and

voltage thus defined (e.g., using Kirchhoff’s laws).

Example 4.1. Obtain the terminal character-

istic at the terminals a–b for the circuit shown

in Fig. 4.1(a), regarding the circuit as a source.

1Loosely, an element or circuit is regarded as a source if the

element or circuit delivers energy to a circuit and is regarded as

a load if it removes energy from the circuit (converts electrical

energy to another form); e.g., a generator is ordinarily regarded as

a source and a motor is ordinarily regarded as a load. As another

example, from the perspective of an amplifier in a home audio

system, a CD player is a source and a loudspeaker is a load.

T.H. Glisson, Introduction to Circuit Analysis and Design,
DOI 10.1007/978-90-481-9443-8_4, # Springer ScienceþBusiness Media B.V. 2011
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Solution: Refer to Fig. 4.1(b). We identify ter-

minal a as the positive terminal. Because we

regard the circuit as a source, we take the

positive direction of current out of the positive

terminal. We assume an unspecified (arbitrary)

load is attached to the terminals (to provide a

closed path for current). From Kirchhoff’s

voltage law,

� v0 þ R0 iþ v ¼ 0 ) i ¼ v0 � v

R0

:

Thus the terminal characteristic is expressed

by

i ¼ v0 � v

R0

and displayed graphically as in Fig. 4.2.

Example 4.2. Obtain the terminal character-

istic at the terminals a–b for the circuit shown

in Fig. 4.3, regarding the circuit as a load.

Solution: We choose terminal a as the positive

terminal and b as the reference. Because we

regard the circuit as a load, we take the positive

direction for current into terminal a. Writing

Kirchhoff’s voltage law around the path defined

by the terminals and the two resistors gives

� vþ i R1 þ vc ¼ 0 ) vc ¼ v� R1 i:

To eliminate the node voltage vc, we write

Kirchhoff’s current law at the node joining the

two resistors. This gives

vc � v

R1

þ vc
R0

¼ i0

) vc ¼ R0R1

R0 þR1

� �
v

R1

þ i0

� �
:

Eliminating vc yields

v� R1 i ¼ 1

R1

þ 1

R0

� ��1 v

R1

þ i0

� �

) i ¼ v� R0 i0
R1 þ R0

:

As in the previous example, a graphical

representation of the terminal characteristic is

a straight line, as shown in Fig. 4.4 (the graph

is drawn for i0 > 0).
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a a

b

+
+
–

+
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–
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?
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(b)

Fig. 4.1 See Example 4.1

v

i

v0 /R0

v0

Fig. 4.2 See Example 4.1

i0v
+
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i R1

R0vc

+

–

c
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b

Fig. 4.3 See Example 4.2
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i

R0 i0

R0 i0

−
R1+R0

Fig. 4.4 See Example 4.2
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Exercise 4.1. Obtain the terminal characteris-

tic at the terminals a–b for the circuit shown in

Fig. 4.5, regarding the circuit as a source.

4.2 Equivalent Circuits

Consider two circuits and designated terminal pairs,

as shown in Fig. 4.6. The circuits are equivalent at

designated terminal pairs if their terminal characteris-

tics at those terminal pairs are identical; i.e., if the

positive direction for current is the same (either into

or out of the positive terminal) in both cases and the

functions f1ðvÞ; f2ðvÞ are identical. Two circuits can

be equivalent at some specified terminal pair(s) but

not others. If the terminal pairs in question are clear

from context, or if each circuit has only one terminal

pair of interest (to the outside world), then we say

simply that the circuits are equivalent.

If we enclose two equivalent circuits in boxes,

such that we have access to only the terminal pairs

at which the circuits are equivalent, no electrical

measurements at the terminals can distinguish one

circuit from the other. Consequently, a collection

of elements (a circuit) accessible by only a single

terminal pair can be replaced by an equivalent col-

lection of elements without altering the behavior of

the circuit as a whole. Often, a large number of

elements can be replaced (mathematically, at least)

by a much smaller number of elements, facilitating

further analysis and interpretation of results. In this

section, we show how various two-terminal resistive

circuits can be reduced to simpler, equivalent two-

terminal circuits. Such reductions often simplify

circuit analysis and design.

4.2.1 Resistors in Series Are Additive

Refer to Fig. 4.7, which shows a circuit consisting of a

series connection of N resistors. We seek the terminal

characteristic of the circuit at the terminals a–b. We

regard the circuit as a load, so we take the positive

direction for current into the positive terminal of the

circuit. Because the same current passes through each

element in a series connection, it follows from Ohm’s

law and Kirchhoff’s voltage law that the voltage

across the series connection of resistors is

v ¼ R1 iþ R2 iþ � � � RN i ¼ R1 þ R2 þ � � � þ RNð Þi:

Thus the terminal characteristic and equivalent

resistance for the series connection are given by

i ¼ v

Req
; Req ¼ R1 þ R2 þ � � � þ RN: (4.1)

This result shows that a series connection of N

resistors is equivalent to a single resistor whose resis-

tance is the sum of the resistances in the series con-

nection. That is, for Req given by (4.1), the two circuits

in Fig. 4.7 have the same terminal characteristic at the

terminals a–b. Thus, wherever we encounter a series

connection of resistors, we can replace the series con-

nection by a single equivalent resistor, simplifying the

circuit.

4.2.2 Conductances in Parallel Are
Additive

Refer to Fig. 4.8, which shows a parallel connection

of N resistors. Because the same voltage exists across

circuit 1 circuit 2

+
a1 a2

b1 b2

i

v
–

+
v
–

i

i  =  f1(v) i  =  f2(v)

Fig. 4.6 Two two-terminal circuits having terminal character-

istics f1(v), f2(v)

a

b

R0

R1

2R0

v0 i0

va

ia
+
–

Fig. 4.5 See Exercise 4.1
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elements in parallel, it follows from Ohm’s law and

Kirchhoff’s current law that

i ¼ G1vþ G2vþ � � � þ GNv
¼ G1 þ G2 þ � � � þ GNð Þv; (4.2)

where Gn ¼ Rn
�1. Equation (4.2) may be written as

i ¼ Geq v; Geq ¼ G1 þ G2 þ � � � þ GN: (4.3)

This result shows that the conductances of resistors
in parallel are additive. Thus the equivalent resistance

of resistors in parallel is given by

1

Req
¼ 1

R1

þ 1

R2

þ � � � þ 1

RN
: (4.4)

For Req given by (4.4), the two circuits in Fig. 4.8

have the same terminal characteristic at the terminals

a–b.

Resistors in parallel are encountered often, espe-

cially in analysis of electronic circuits, so it is conve-

nient to have a shorthand notation for the cumbersome

relation (4.4). The notation

Req ¼ R1 R2 R3 � � �kkk RNk
) 1

Req
¼ 1

R1

þ 1

R2

þ � � � þ 1

RN

(4.5)

is widely used, at least in practice. This notation does

not speed computation, but often facilitates interpreta-

tion of circuit equations.

For the special (but important) case N ¼ 2, (4.4)

gives

Req ¼ R1 R2k ¼ R1R2

R1 þ R2

: (4.6)

The expression R1kR2 is read or said as “R1 in

parallel with R2”.

Example 4.3. Obtain a single, equivalent

resistance at the terminals a–b for the circuit

of Fig. 4.9.

Solution: From (4.6), an equivalent, single

resistance for the parallel connection of R2

and R3 is

Ra ¼ R2 R3

R2 þ R3

:

This equivalent resistance is in series with

R1 and R4. Thus the equivalent resistance at

terminals a–b is

Req ¼ R1 þ R4 þ Ra:

Example 4.4. Obtain an expression for the

equivalent resistance at the terminals a–b of the

circuit shown in Fig. 4.10.

Solution: Figure 4.11 illustrates steps in the solu-

tion. The resistors R2, R3 are connected in paral-

lel. The equivalent resistance for the parallel

connection is given by (see (4.6))

Ra ¼ R2 R3

R2 þ R3

:

The equivalent resistance for the series con-

nection of Ra, R4 is given by

Rb ¼ Ra þ R4 ¼ R2 R3

R2 þ R3

þ R4:

R1 R2 RN

i

Req

i
a

b

a

b

+

v

–

+

v

–

Fig. 4.8 Conductances in parallel are additive. See (4.4)

iR1 R2 RN Req
i

+

v
–

+

v
–

a

b

a

b
Fig. 4.7 Resistors in series

are additive. See (4.1)
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The equivalent resistance of the parallel con-

nection of Rb, R5 is given by

Rc ¼ Rb R5

Rb þ R5

¼
R2 R3

R2 þ R3

þ R4

� �
R5

R2 R3

R2 þ R3

þ R4 þ R5

¼ R2 R3 þ R4 R2 þ R3ð Þ½ �R5

R2 R3 þ R2 þ R3ð Þ R4 þ R5ð Þ :

Finally, the equivalent resistance of the series

connection of R1, Rc is given by

Req¼ R1 þRc ¼ R1 þ R2R3 þR4 R2 þR3ð Þ½ �R5

R2R3 þ R2 þR3ð Þ R4 þR5ð Þ:

Exercise 4.2. Obtain an expression for the

equivalent resistance at the terminals a–b of

the circuit shown in Fig. 4.12.

4.2.3 Voltage Sources in Series
Are Additive

Applying Kirchhoff’s voltage law to the top circuit in

Fig. 4.13 yields

vab ¼ v1 þ v2 þ � � � þ vN: (4.7)

A series connection of voltage sources is equivalent

to a single voltage source whose source voltage equals

the sum of the original source voltages.Whenever ideal

voltage sources appear in series in a circuit, they can be

replaced by a single voltage source whose source volt-

age is the algebraic sum of the original source voltages.

We do not consider voltage sources in parallel because

such an arrangement contradicts the definitions of both

a parallel connection and an ideal voltage source

a b

R1

R0

R2

R22R0

Fig. 4.12 See Exercise 4.2

a b
v1 v2 vN

veq
ba

⇓

+ – + – + –

+ –

Fig. 4.13 Voltage sources in series are additive

R1 R4

R2

R3a b

Fig. 4.9 See Example 4.3

R1

R2

R3 R4

R5

a b

Fig. 4.10 See Example 4.4

a bRa

Rb

Rc

R1

R1

R1

R4

R5

R5

a

a

a

b

b

bReq

Fig. 4.11 See Example 4.4
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(unless all the sources are identical, in which case any

one of them would do).

4.2.4 Current Sources in Parallel
Are Additive

Applying Kirchhoff’s current law to the circuit on the

left in Fig. 4.14 yields

ieq ¼ i1 þ i2 þ � � � þ iN; (4.8)

which shows that any number of current sources in

parallel can be reduced to a single current source,

where the source current equals the sum of the source

currents for the original (constituent) sources. In any

circuit where ideal current sources appear in parallel,

they can be replaced by a single current source whose

source current is the algebraic sum of the original source

currents. We do not consider current sources in series

because such an arrangement contradicts the definition

of a series connection (unless all the sources are identi-

cal, in which case any one of them would do).

The sums in (4.7) and (4.8) are algebraic. If the

polarity of a voltage source in Fig. 4.13 or the direc-

tion of a current source in Fig. 4.14 is reversed, the

corresponding term in the associated sum must be

negated.

4.2.5 Elements in Series Commute,
as do Elements in Parallel

Commuting two elements means swapping their places

in a circuit. If the resulting circuit is equivalent to

the original, we say the swapped elements commute.

Resistors and sources in series commute, as do resistors

and sources in parallel; that is, the terminal characteris-

tic of a series (or parallel) connection of such elements

is independent of the order in which the elements are

connected. Consequently, resistors in series add, as do

voltage sources in series, no matter how ordered in the

series connection. Conductances in parallel add, as do

current sources in parallel, no matter how ordered in the

parallel connection. For example, the series circuits in

Fig. 4.15 are equivalent at the terminals a–b, as are the

parallel circuits in Fig. 4.16.

Example 4.5. Simplify the circuit shown in

Fig. 4.17; that is, find a simpler circuit that is

equivalent at the terminals a–b to the circuit

shown.

Solution: See Fig. 4.18. We first combine

the parallel elements to obtain the circuit of

Fig. 4.18(a), where

Ra ¼ 3Rð Þ 5Rð Þ
3Rþ 5R

¼ 15R

8
;

Rb ¼ 4Rð Þ 5Rð Þ
4Rþ 5R

¼ 20R

9
:

The two rightmost current sources add to

give a net (downward) current 5 i0 � 3 i0 ¼ 2 i0.
We then combine the series elements to

obtain the circuit of Fig. 4.18(b), where

Rc ¼ 2Rþ Ra ¼ 31R

8
:

The two voltage sources add to give a net

voltage (positive on the left). 2 v0 � v0 ¼ v0.

v1 v2R1 R2a b

a b
R1+ R2

v1− v2

+ –

+–

+–

Fig. 4.15 Equivalent series circuits

R1

R1 R2

R1 + R2

R2i1 i2

a

a

b

b

i1 −  i2

Fig. 4.16 Equivalent parallel circuits

a

b

a

b

i1 i2 iN ieq  = i1+ i2+ .. .+ iN. . .

ieq

Fig. 4.14 Current sources in parallel are additive
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Using only methods described above, we

cannot simplify the circuit further; e.g., the

two remaining current sources are not in paral-

lel because the same voltage does not appear

across both. In Section 4.3, we show how such

circuits can be simplified further.

Exercise 4.3. Find values of a, b, g, d such

that the circuits shown in Fig. 4.19(a) and Fig.

4.19(b) are equivalent at the terminals a-b.

4.2.6 Finding Equivalent Resistance
Using a Known Source

If the current into the positive terminal and voltage

across a terminal pair of a device or circuit obey a

relation of the form i ¼ v=R, then by definition the

device or circuit is equivalent to a resistor having

resistance R at the terminal pair in question. If it is

known in advance that a particular device or circuit is

equivalent to a resistor at a particular terminal pair,

then we can find the equivalent resistance, either

experimentally or mathematically, by attaching a

known voltage source v to the terminal pair and mea-

suring or calculating the resulting current i into the

terminal pair. Alternatively, we may attach a known

current source i and measure or calculate the resulting

voltage v across the terminal pair. In either case, the

equivalent resistance is given by Req ¼ v=i as illu-

strated by Fig. 4.20. This approach is useful when a

circuit cannot be simplified further by reducing series

and parallel connections of resistors to single, equiva-

lent resistors, as illustrated by the next example.

Example 4.6. Find the equivalent resistance

at the terminals a–b of the circuit shown in

Fig. 4.21(a).

Solution: We attach a known voltage source v

to the terminals a–b, as shown in Fig. 4.21(b),

obtain an expression for the current i, and

use Req ¼ v/i. With reference to Fig. 4.21(b),

Kirchhoff’s current law gives

i ¼ ix þ iy ¼ v� vx
R

þ v� vy
2R

;

where b is the reference node. Writing

Kirchhoff’s current law for nodes x and y gives

vx � v

R
þ vx � vy

5R
þ vx
4R

¼ 0;

vy � v

2R
þ vy � vx

5R
þ vy
3R

¼ 0;

which yield

vx ffi 0:777 v; vy ffi 0:634 v:

Thus

i ffi v� 0:777 v

R
þ v� 0:634 v

2R
ffi 0:406

v

R

which gives

Req ¼ v

i
ffi R

0:406
ffi 2:46R:

a

b

2v0
v0

v0

2R

(a) original circuit

(b) simplified circuit

R2i0

2i0

2i0

2i0

Ra

Rc

Rb

RbR

a

b

+– + –

+ –

Fig. 4.18 See Example 4.5

v0

2i0 3i0 5i0
R

2R
2v0

3R

5R

5R 4R

a

b

+ –+–

Fig. 4.17 See Example 4.5
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Exercise 4.4. Refer to Fig. 4.22, where

R ¼ 1O. Find the equivalent resistance at the

terminals a–b.

4.2.7 Approximations

The resistance of a series connection of resistors

is larger than the largest single resistance in the

series connection. If the resistance of one resistor in

a series connection is much larger than the total resis-

tance of the others, the equivalent resistance of the

series connection often can be approximated by that of

the larger resistor. Similarly, the resistance of a paral-

lel connection of resistors is smaller than the smallest

single resistance in the connection. If the resistance of

one resistor in a parallel connection is much smaller

than that of the equivalent resistance of the others, the

equivalent resistance of the parallel connection often

can be approximated by that of the smaller resistor. In

making these approximations, the meanings of “much

larger than” and “much smaller than” depend upon

the application at hand. Sometimes, a factor of 10 is

sufficient; for example, if R2 > 10R1, then R1 þ R2

(series connection) often can be approximated by R2

and R1R2=ðR1 þ R2Þ (parallel connection) by R1. More

often, a factor of 100 is sufficient, and almost always, a

factor of 1000 is more than sufficient. As R2 ranges

from 10 R1 to 1000 R1, the error in these approxima-

tions ranges from about 10% to about 0.1%. Such

approximations often provide useful checks on the

results of more exact calculations.

Example 4.7. (a) Find the equivalent resis-

tance at the terminals a–b for the circuit

shown in Fig. 4.23. (b) Check the result using

reasonable approximations.

Solution: (a) The equivalent resistance is

Req ¼ R1 þ R4 þ R2 R3

R2 þ R3

ffi 10:6 kO:

(b) Because R3 � R2 we approximate the par-

allel connection of those resistors by R3 alone,

which then appears in series with R1 and R4

Because R1 � R3 þ R4 the equivalent

R 2R

3R4R

5R

a

b = ref

v

i

R 2R

3R4R

5R

a

b

x y

ix iy

+
–

(a) (b)

Fig. 4.21 See Example 4.6

v v

i

i

(a) Using a known voltage
source

(b) Using a known current
source

+
–

+

–

Fig. 4.20 Finding the equivalent resistance Req ¼ v/i at a

terminal pair

a

b

3R 2R

R

R

2R

4R

v0 a v0

bR

gR d i0i03v0

a

b

+
–

+
–

+–

(a) (b)
Fig. 4.19 See Exercise 4.3

a

b

2R

7R

3R
20R

30R

Fig. 4.22 See Exercise 4.4
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resistance at the terminals a–b is approximately

R1¼ 10 kO. The result obtained in (a) above is
reasonable. (Also, the error in the approxima-

tion is only about 6%).

Similar approximations can be made for voltage

sources in series, where the magnitude of one source

voltage is much larger than the sum of the others, and

for two current sources in parallel, where the magni-

tude of one source current is much larger than the sum

of the others.

Exercise 4.5. Refer to Fig. 4.24, where

R0 � R2, i1 � i0. (a) Obtain an exact expres-

sion for vx. (b) Find a reasonable approxima-

tion to vx. (c) Let R0 ¼ 10 kO, R1 ¼ 5 kO,
R2 ¼ 4:7 O, i0 ¼ 1mA, i1 ¼ 100 mA. What

is the percentage error in the approximation?

4.3 Source Transformations

In this section, we show that a voltage source in series

with a resistor is equivalent to a current source in

parallel with an identical resistor. This equivalence

allows what are called source transformations,

which, in conjunction with methods described above,

often can be used to reduce a complex circuit to a

much simpler one.

We wish to show that the circuits inside the dotted

boxes in Fig. 4.25 are equivalent at their terminals if

i0 ¼ v0=R and the two resistors are identical. The gray

boxes represent arbitrary (unspecified) elements or

circuits.

Writing Kirchhoff’s voltage law for the circuit in

Fig. 4.25(a) gives

� v0 þ i Rþ v ¼ 0;

which yields

i ¼ � v

R
þ v0

R
: (4.9)

Writing Kirchhoff’s current law for the circuit in

Fig. 4.25(b) gives

� i0 þ v

R
þ i ¼ 0;

which yields

i ¼ � v

R
þ i0: (4.10)

The terminal characteristics (4.9) and (4.10) are

identical (the circuits in Fig. 4.25 are equivalent at

the terminals a–b) if i0 ¼ v0/R.

The significance of the development above is the

following: Whenever we wish, we may replace a volt-

age source in series with a resistor with a current source

in parallel with an identical resistor, or vice-versa, as

illustrated by Fig. 4.26. Such source transformations, in

conjunction with reduction of series and parallel con-

nections as described above, can be useful in circuit

analysis. But note that an isolated voltage source (no

series resistance) cannot be transformed to a current

source. Similarly, an isolated current source (no parallel

resistance) cannot be transformed to a voltage source.

This is not a serious limitation, because all realistic

source models possess internal resistance.

i0 i1R0 R1 R2vx

+

–

Fig. 4.24 See Exercise 4.5

v0 i0

R

i

v

i

R v+
–

+

–

+

–

(a) (b)

Fig. 4.25 Equivalent source models: i0 ¼ v0/R

R1 = 10kΩ

R4 = 500 Ω
R3 = 100 Ω

R2 = 2kΩ
a

b

R4

R3

R2R1

Fig. 4.23 See Example 4.7
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Example 4.8. Obtain an expression for the

voltage v in the circuit of Fig. 4.27(a).

Solution: We proceed as shown in Fig. 4.27

(b)–(e): We transform the voltage source v1
and series resistor R1 to an equivalent current

source and parallel resistor R1, as shown in

Fig. 4.27(b), where

i3 ¼ v1=R1: (4.11)

We combine the parallel current sources

i1, i3 and resistors R1, R2, as shown in

Fig. 4.27(c), where

i4 ¼ i1 þ i3; Ra ¼ R1 R2

R1 þ R2

: (4.12)

We transform the current source i4 and par-

allel resistor Ra to a voltage source and series

resistor as shown in Fig. 4.27(d), where

v3 ¼ Ra i4: (4.13)

We add the series voltage sources and add

the series resistors to obtain the circuit shown

in Fig. 4.27(e), where

v4 ¼ v3 þ v2; Rb ¼ Ra þ R3: (4.14)

The circuit shown in Fig. 4.27(e) is a volt-

age divider. Thus we have

v ¼ R4 v4
R4 þ Rb

; (4.15)

which, using (4.11) through (4.14), yields

v ¼ R4½R1R2i1 þ R2v1 þ ðR1 þ R2Þv2�
ðR4 þ R3ÞðR1 þ R2Þ þ R1R2

:

Exercise 4.6. Simplify the circuit of Fig.

4.19(a) at the terminals a–b to (a) a resistance

RT in series with a voltage source vT (positive

polarity nearest terminal a) and (b) a resistance

RN in parallel with a current source iN (arrow-

head pointing to the conductor attached to ter-

minal a).

Example 4.9. Refer to Fig. 4.28. (a) Find the

voltage across the load resistor RL. (b) Repeat,

using reasonable approximations, and compare

with the result obtained in (a).

i0 = v0 /R

v0 = Ri0

a
R

b b

v0 Ri0

a

+
–

Fig. 4.26 Source transformations. Note the polarity of

the voltage source and the direction of the current source.

If either is reversed, the other is also

v1

v3

v4

v2

v2

v2

v2

R1

R1

R2

R2

R3

R3

R3

R3

R4

R4

R4

R4

R4

i1

i1i3

i4

v

v

Ra

Ra

Rb

v

v

v

+
–

+–
+–

+–
+–

+
–

+
–

+

–

+

–

+

–

+

–

+

–

(a)

(b)

(c)

(d)

(e)

Fig. 4.27 See Example 4.8
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Solution: Refer to Fig. 4.29. We transform the

voltage source in series with resistor R1 to an

equivalent current source in parallel with resis-

tor R1, as shown in Fig. 4.29.

(a) The circuit shown in Fig. 4.29 reduces to

the current divider shown in Fig. 4.30, where

ieq ¼ v1
R1

þ i1 ffi 505mA;

Req ¼ R1 R2

R1 þ R2

ffi 9:90O:

The load current and load voltage are

iL ¼ Req

Req þ RL
ieq ffi 100:2 mA;

vL ¼ iL RL ffi 100:2 mAð Þ 40Oð Þ ffi 4:01V:

(b) In the circuit shown in Fig. 4.29,

v1
R1

¼ 500mA � i1; R1 � R2:

Thus we ignore the current source i1 and the
resistor R2. Then with reference to Fig. 4.30,

we have that

ieq ffi v1
R1

¼ 100mA; Req ffi R1 ¼ 10O:

Thus the load current and load voltage are

(approximately)

iL ffi Req

Req þ RL

v1
Req

¼ R1

R1 þ RL

v1
R1

¼ 100mA;

vL ¼ iL RL ¼ 4:00V:

The error in the approximation is about

0.2% for the load current and about 0.25%

for the load voltage.

Again, even in cases where errors introduced by

approximations are intolerable, finding an approxi-

mate solution often provides a good check on the

reasonableness of a more exact result. You should

make it a habit to perform such checks, in addition to

dimension checks and limit checks.

4.4 Thévenin and Norton Equivalent
Circuits

A resistive circuit is a circuit containing only resistors

and sources.

Figure 4.31 shows an arbitrary resistive circuit. We

choose any terminal pair a–b that satisfies Kirchhoff’s

current law, meaning that the current exiting one ter-

minal equals the current entering the other.Thévenin’s

theorem states that the terminal characteristic at such a

terminal pair is

i

isc
¼ 1� v

voc
; (4.16)

where i and v are the terminal current and voltage,

respectively, and isc and voc are the short-circuit

current and the open-circuit voltage at the terminals

a–b, whose definitions are illustrated by Fig. 4.32. It

does not matter what is in the two-terminal gray box

R1 = 10 Ω
R2 = 1 kΩ
RL = 40 Ω

R1

R2 RL
v1

v1 = 5 V
i1

i1 = 5 mA

+
–

Fig. 4.28 See Example 4.9

i1R1 R1
R2 RL

v1

R1

v1 = 500 mA

Fig. 4.29 See Example 4.9

ieq Req RL

iL

Fig. 4.30 See Example 4.9
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which, for present purposes, simply provides a path

for the terminal current i. Thévenin’s theorem is

among the most important derived results in electri-

cal engineering.

Essentially, Thévenin’s theorem states only that the

relation between terminal voltage and terminal current

is given by (4.16). The theorem says nothing about the

internal structure of the circuit, except that it contains

only resistors and sources. Nonetheless, it is useful to

interpret (4.16) as the terminal characteristic of what is

called the Thévenin equivalent for the actual circuit in

question, as follows: We write (4.16) as

v ¼ voc � voc
isc

� �
i; (4.17)

and then as

v ¼ vT � RT i; (4.18)

or as

i ¼ � v

RT
þ vT
RT

; (4.19)

where

vT ¼ voc ¼ Thevenin equivalent voltage;

RT ¼ voc
isc

¼ Thevenin equivalent resistance:
(4.20)

We may interpret (4.18) as Kirchhoff’s voltage

law written for the circuit shown in Fig. 4.33. From

this perspective, Thévenin’s theorem and (4.20)

state that a two-terminal resistive circuit is equiva-

lent at the terminals to a voltage source vT in series

with a resistor RT. Again, it does not matter what is

in the two-terminal gray box which, for present

purposes, simply provides a path for the terminal

current i. This development leads to the following

restatement of Thévenin’s theorem: Any resistive
circuit is equivalent at any particular terminal

pair satisfying Kirchhoff’s current law to an inde-

pendent source in series with a resistor, where the
source voltage and the resistance of the resistor are

given by (4.20). The source voltage RT is called the

Thévenin equivalent voltage and the resistance RT

of the resistor is called the Thévenin equivalent

resistance. The combination of the source and

resistor is called the Thévenin equivalent circuit

at the terminal pair under consideration. A Thévenin

equivalent voltage is called the Thévenin voltage,

a Thévenin equivalent resistance is called the

Thévenin resistance, and a Thévenin equivalent

circuit is called the Thévenin equivalent. A circuit

can have more than one terminal pair. A Thévenin

equivalent for such a circuit is specific to the termi-

nal pair chosen.

Neither the Thévenin equivalent voltage source nor

the Thévenin equivalent resistance is necessarily phys-

ical. That is, neither necessarily corresponds to any

particular element in the associated physical circuit. A

Thévenin equivalent should be viewed simply as a

means of depicting the fundamental relation (4.16)

by a circuit diagram.

The usual purpose of representing a circuit by its

Thévenin equivalent is to treat the circuit as a source to

which a load is to be attached; e.g., to study current

and voltage delivered by the circuit to various loads.

Consequently, the positive direction for current in the
terminal characteristic (4.19) for a Thévenin equiva-

lent is conventionally out of the positive terminal, as

shown in Fig. 4.33.

resistive
circuit

resistive
circuit

isc voc

+

–

(b) open-circuit voltage(a) short-circuit current

a a

b b

Fig. 4.32 Definitions of short-circuit current and open-circuit

voltage

i

v
+

–

resistive circuit

a

b

i

Fig. 4.31 Pertaining to Thévenin’s theorem (see (4.16))

vT

RT i

v
+

+
–

–

Fig. 4.33 Pertaining to the

definition of a Thévenin

equivalent circuit
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The Thévenin equivalent for a circuit is unique.We

may use any workable method to find the Thévenin

equivalent circuit parameters RT, including straight-

forward application of Kirchhoff’s laws, reducing

series and parallel connections to simpler equivalents,

and source transformations.

Example 4.10. Obtain the Thévenin equiva-

lent for the circuit of Fig. 4.34(a) at the term-

inals a–b.

Solution: We use source transformations and

series-parallel reductions to simplify the cir-

cuit as illustrated by Fig. 4.34(b)–(d). The cir-

cuit of Fig. 4.34(d) is a voltage divider and the

open-circuit voltage is given by

voc ¼ R

Rþ5R=2

v0
2
�2Ri0

� �
¼ 2

7

v0
2
�2Ri0

� �
:

The short-circuit current is given by

isc ¼
v0
2
� 2R i0

� �
5R=2

¼ v0 � 4R i0ð Þ
5R

:

Thus the Thévenin voltage and Thévenin

resistance are given by

vT ¼ voc¼2

7

v0
2
�2Ri0

� �
¼ v0

7
�4Ri0

7
;

RT ¼ voc
isc

¼5R

7
:

Exercise 4.7. Obtain the Thévenin equivalent

for the circuit of Fig. 4.35 at the terminals a–b.

The terminal characteristic of a two-terminal cir-

cuit is a property of the circuit and is independent of

any attachment to the terminals. A heuristic proof of

Thévenin’s theorem based upon this fact follows:

We attach an independent voltage source v to the

terminals a–b of a resistive circuit, as illustrated by

Fig. 4.36. We assume that the terminals a–b are neither

shorted nor open nor connected directly to another

source inside the box, in which case the source voltage

v is the terminal voltage. Together, the circuit in the

box and the source v comprise a resistive circuit, so the

terminal current i is a linear function of all the sources

in the box and of the source v; that is, the terminal

current is given by2

i ¼ a1v1 þ a2v2 þ � � � þ aNvN þ b1i1 þ b2i2 þ � � �
þ bMiM þ mv;

where v1; v2; � � � ; vN are all of the voltage sources

inside the box and i1; i2; � � � ; iM are all of the current

sources inside the box. All these sources are fixed, and

we may write the relation above more simply as

i ¼ mvþ b; (4.21)

where b ¼ a1v1 þ a2v2 þ � � � þ aNvN þ b1i1 þ b2i2þ
� � � þ bMiM. The relation above describes a straight

a

b

R

R R
2R 2R

v0

i0 i0

a

b

R R
v0

R R

a

b

R
2R

2

v0

2Ri0
a

b

5R / 2R / 2

R
2

v0 −2Ri0

+
–

+
–

+
–

+ –

(a) (b)

(c) (d)Fig. 4.34 See Example 4.10

2See Section 3.10 in Chapter 3.
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line whose slope m and intercept b can be determined

using any two points on the line. Setting v ¼ 0 in

(4.21) is equivalent to shorting the terminals a–b and

gives i ¼ b, so the parameter b is the short-circuit

current; i.e.,

b ¼ isc: (4.22)

Setting v to the open-circuit voltage voc is equiva-

lent to opening the terminals, in which case i ¼ 0 and

(4.21) becomes voc ¼ �b=m ¼ �isc=m, which yields

m ¼ � isc
voc

: (4.23)

From (4.21–4.23),

i ¼ � isc
voc

vþ isc:

Dividing both sides of (4.23) by isc and rearranging

terms gives (4.16).

Using a source transformation, the Thévenin equiv-

alent for a circuit can be transformed to a current

source in parallel with a resistor, as shown in

Fig. 4.37. The resulting circuit is called the Norton

equivalent circuit or simply the Norton equivalent.

The source current iN is called the Norton current

and the resistance RN is called the Norton resistance.

Writing Kirchhoff’s current law for the circuit on the

right in Fig. 4.37 yields the terminal characteristic

for a Norton equivalent circuit:

i ¼ � v

RN
þ iN : (4.24)

From (4.24), the Norton source current iN is the

short-circuit current:

iN ¼ isc: (4.25)

From Fig. 4.26, the transformation relations are

RN ¼ RT ; iN ¼ vT
RT

; (4.26)

which are just the usual source-transformation rela-

tions made specific to the notation used here. Figure

4.37 illustrates relations between the Thévenin and

Norton equivalents for the same circuit. In general,

elements comprising the Thévenin or Norton equiva-
lent for a circuit are non-physical and do not cor-

respond to components in an associated physical

circuit.
As noted above, a circuit regarded as a source often

is represented by the Thévenin or Norton equivalent for

the circuit. In this context, the Thévenin (or Norton)

equivalent resistance for the circuit also is called the

internal resistance, the output resistance, or the

source resistance of the circuit (the source). Gener-

ally, the term internal resistance is used in reference to

the Thévenin or Norton equivalent for a physical

source, such as a battery, a power supply, or an electric

generator, and the term output resistance is used when

the source in question is a circuit. For example, we

might refer to the internal resistance of an alkaline

battery and the output resistance of an audio amplifier

(at the speaker terminals). The term source resistance

often is used in either case or when the nature of the

source is unspecified. But the terminology police do

not vigorously enforce these conventions, and you

may treat internal resistance, output resistance, and

source resistance as synonyms without fear of arrest

and imprisonment.

Example 4.11. Obtain the Norton equivalent

for the circuit of Example 4.10 at the terminals

a–b.

resistive
circuit

a

b

v

i

+
–Fig. 4.36 Pertaining to the

development of Thévenin’s

theorem

a

b

i0v0

v1
R

4R

+–

+
–

Fig. 4.35 See Exercise 4.7
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Solution: The Norton current is the short-

circuit current. The Norton resistance is the

Thévenin resistance. From Example 4.10

iN ¼ isc ¼ v0 � 4R i0ð Þ
5R

; RN ¼ RT ¼ 5R

7
:

Exercise 4.8. Obtain the Norton equivalent

for the circuit of Exercise 4.7 at the terminals

a–b.

Example 4.12. Obtain the Thévenin and

Norton equivalents at the terminals x–y for

the circuit of Fig. 4.38, where R ¼ 10 kO and

v0 ¼ 25 V.

Solution: We find the Thévenin equivalent by

finding the open-circuit voltage and the short-

circuit current. First, we find the open-circuit

voltage. We label the nodes as shown in the

figure and select node c as the reference node.

Writing Kirchhoff’s current law at nodes a and

b gives

G va � v0ð Þ þ G

2
va þ G va � vbð Þ ¼ 0;

G vb � vað Þ þ G

2
vb � v0ð Þ ¼ 0;

where G ¼ R�1 Upon dividing both equations

by G/2 and collecting terms, we obtain

5 va � 2 vb ¼ 2v0;

�2 va þ 3 vb ¼ v0:

The open circuit voltage is voc ¼ vbc ¼ vb.

We eliminate va and obtain

voc ¼ vb ¼ 9 v0
11

:

To determine the short-circuit current, we

short the terminals x–y as shown in the figure.

With the terminals shorted, vb ¼ 0. Writing

Kirchhoff’s current law at node a leads to

5

2
va ¼ v0 ) va ¼ 2 v0

5
:

Writing Kirchhoff’s current law at node b

(with vb ¼ 0) gives

i4 þ i5 þ isc ¼ G �vað Þ þ G

2
�v0ð Þ þ isc ¼ 0;

v0

v0

R R

2R

2R

2R

i1

i2

i2

i3 i4

i4

i5
a

i1 i3a

b
x

y

R R

2R

i5

isc

b
x

y

voc

+

–

+
–

+
–

(a)

(b)

Fig. 4.38 Circuit of Example 4.12: (a) With the terminals x–y
open for calculating the open-circuit voltage voc and (b) with the
terminals x–y shorted for calculating the short-circuit current isc

RT
RNiNvT

RN = RT

iN = vT /RT

a

b

a

b

+
–

Fig. 4.37 Thévenin and

Norton equivalent circuits
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which yields

isc ¼ Gva þ G

2
v0 ¼ 2 v0

5R
þ v0
2R

¼ 9 v0
10R

;

where we have used the value for va obtained

above. Thus we have

vT ¼ voc ¼ 9 v0
11

ffi 20:5 V;

iN ¼ isc ¼ 9 v0
10R

ffi 2:25 mA;

RT ¼ RN ¼ voc
isc

¼ 10R

11
ffi 9:09 kO:

Figure 4.39 shows a graph of the terminal charac-

teristic for a Thévenin or Norton equivalent circuit.

You will find it helpful to memorize Fig. 4.39. From

(4.19) or from (4.24), the Thévenin or Norton equiva-

lent resistance for a circuit is the negative reciprocal of

the slope of the terminal characteristic:

RT ¼ RN ¼ � di

dv

� ��1

¼ voc
isc

: (4.27)

This relation helps us remember that the internal

resistance of an independent voltage source equals

zero (because the terminal characteristic is a vertical

line and di=dv ! 1) and that the internal resistance of

an independent current source is infinite (because

the terminal characteristic is a horizontal line and

di=dv ¼ 0). The general form of the terminal charac-

teristic of a resistive circuit, given by (4.16), is easily

deduced from the graph in Fig. 4.39.

Although the graph in Fig. 4.39 suggests that the

short-circuit current and the open-circuit voltage are

both positive, that is not necessarily the case. Both can

be negative, in which case we would draw the equiva-

lent circuits and a graph of the terminal characteristic

as shown in Fig. 4.40. For a resistive circuit, the open-

circuit voltage and the short-circuit current must have

the same sign. (Why?)

The Thévenin equivalent for a circuit can be

obtained experimentally, by measuring two pairs of

i–v values. Any two pairs will do, because the ter-

minal characteristic is a straight line, as shown by

Fig. 4.39. Although open-circuit voltage and short-

circuit current are convenient values for mathemati-

cal analysis, it may be unwise to attempt to measure

short-circuit current at the terminals of a physical

circuit. The next example shows how one obtains

the Thévenin equivalent for a circuit from an arbi-

trary pair of i–v values.

Example 4.13. The two pairs of values vi, i1
and v2, i2 are measured at a terminal pair of a

resistive circuit. Obtain an expression for the

Thévenin equivalent at the terminal pair.

Solution: Figure 4.41 illustrates the problem.

The points (vi, i1) and (v2, i2) are sufficient to

define the straight-line iv (terminal) character-

istic, which has the form

i ¼ � v

RT
þ vT

RT
; (4.28)

where �1/RT is the slope and vT/RT is the

(current) intercept. From Fig. 4.41,

� 1

RT
¼ i2 � i1

v2 � v1
) RT ¼ � v2 � v1

i2 � i1
: (4.29)

Using this result and the pair (v1, i1) in

(4.28) gives

vT
RT

¼ i1 � mv1 ) vT ¼ i1 RT þ v1: (4.30)

v

isc

voc0

0

v
i = isc RT

–

Fig. 4.39 Terminal characteristic for a Thévenin or Norton

equivalent (for a two-terminal resistive circuit)
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Exercise 4.9. A resistor R1 is connected to

terminals a–b of a resistive circuit, and the

resulting current out of terminal a is found to

be i1. Then R1 is removed and another resistor

R2 is connected to the terminals. The voltage

vab across the second resistor is found to be v2.
Obtain the Thévenin equivalent for the resis-

tive circuit at terminals a–b in terms of R1, R2,

i1, and v2.

We can find the Thévenin or Norton equivalent

resistance of a resistive circuit using the so-called

look-back method, as follows:3

• Replace all independent voltage sources by short

circuits (because the internal resistance of an inde-

pendent voltage source equals zero).

• Replaceall independentcurrent sourcesbyopencircuits

(because the internal conductance of an independent

current source equals zero).

• Find the equivalent resistance at the terminals of

interest.

Example 4.14. (Compare with Example

4.10.) Obtain an expression for the Thévenin

equivalent resistance at the terminals a–b of

the circuit shown in Fig. 4.42.

Solution: We replace the voltage source with a

short circuit (a conductor) and replace the cur-

rent source with an open circuit (remove the

current source) to obtain the circuit shown in

Fig. 4.43(a). We then use series/parallel reduc-

tion to obtain the Thévenin (Norton) equiva-

lent resistance, as shown in Fig. 4.43(b)–(d).

Exercise 4.10. Use the look-back method to

determine the Norton equivalent resistance at

the terminals a–b of the circuit shown in

Fig. 4.44.

Both the open-circuit voltage voc and the short-

circuit current isc equal zero for a circuit containing

no sources. It follows that both the Thévenin equi-

valent voltage vT ¼ voc and the Norton equivalent

current iN ¼ isc for such a circuit equal zero. Conse-

quently, we cannot use (4.20) to obtain the Thévenin

or Norton equivalent resistance for such a circuit

because RT ¼ voc=isc is indeterminate. We point

out this special case only for sake of completeness.

isc

i

voc v0, 0

vT RNiN

Thevenin equivalent Norton equivalent terminal characteristic

RT

+
–

Fig. 4.40 Thévenin and

Norton equivalent circuits if

the open-circuit voltage and

short-circuit current are

negative

i

v

i1

i2

v1 v2

Fig. 4.41 See Example 4.13

a

b

R

R R
2R

i0

v0
+
–

Fig. 4.42 See Example 4.14

3In Chapter 6, we introduce sources called dependent sources. In

general, the look-back method fails for circuits containing such

sources.
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In practice, Thévenin and Norton equivalents are not

used to represent two-terminal circuits containing no

sources. Such a circuit would instead be represented as

an equivalent resistance, which can be found using

methods described in Section 4.2 above.

Thévenin’s theorem is both plausible and remark-

able. It is plausible because circuit-reduction and

transformation methods described above allow us

to reduce virtually any planar resistive circuit4 to a

voltage source in series with a resistor. It is remarkable

because it allows us to use a very simple model to

describe even a very complex circuit (at a single

terminal pair). Even more remarkable, Thévenin’s

theorem can be generalized to any circuit composed

of any combination of sources, resistors, capacitors,

and inductors, as described in subsequent chapters.

We conclude this section with four remarks:

• The terminal (i–v) characteristic for a Thévenin or

Norton equivalent circuit is independent of what-

ever is connected to the terminals of the circuit.
The voltage across and current through the ter-

minals are related by (4.16) no matter what.

• The Thévenin and Norton equivalents for a par-

ticular circuit at a particular terminal pair are
unique. The Thévenin equivalent source voltage,

the Norton equivalent source current, and Théve-

nin/Norton equivalent resistance can be found by

any legitimate method. Nonetheless, you should

regard the method based upon open-circuit voltage

and short-circuit current as the fundamental (ana-

lytical) method for obtaining a Thévenin or Norton

equivalent.

• A Thévenin or Norton equivalent is only externally

equivalent to the associated circuit. In general,

the components of a Thévenin or Norton equivalent
are non-physical. They do not necessarily corre-

spond to any physical components in an associated

physical circuit. Thus, for example, the voltage

across a Thévenin resistance does not necessarily

have any physical significance (is not necessarily

measurable).

• An independent voltage source does not possess a

Norton equivalent (because the short-circuit current

is undefined). Similarly, an independent current
source does not possess a Thévenin equivalent

(because the open-circuit voltage is undefined).

However, these limitations are of no practical

significance.

4.5 Notation: Constant and Time-
Varying Current and Voltage

As we introduce more and increasingly complex

devices and circuits, we need more suggestive notation

to help us keep track of quantities and parameters

2i0

2R2R1

R2v0

a

b

i0
+
–

Fig. 4.44 See Exercise 4.10

a

b

2R
RR

R

R
2R

2
R

R5R

2
5R

7

a

aa

b b

b

(a)

(c) (d)

(b)

Fig. 4.43 See Example 4.14

4A planar circuit is one that can be drawn in two dimensions

without crossing conductors.
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involved in analysis and design. In this section, we

describe notational conventions for current and volt-

age and for parameters having dimensions of current

or voltage. Notation introduced here is used through-

out the remaining chapters of this book.

During a time interval of interest, a current or

voltage can be constant or time-varying. The almost

universal convention is to use upper-case letters to

denote constant currents or voltages and lower-case

letters to denote time-varying currents or voltages. For

example, V0 ¼ 15V and i1 ¼ 5 cos o tð ÞmA.

We also use upper-case letters to denote a constant

parameter having the dimension of a current or voltage,

but which is not necessarily a current or voltage in a

circuit under study (or in any other circuit). For example,

we express a sinusoidally time-varying voltage as

v1 tð Þ ¼ V1 cos o tð Þ:

The peak amplitude V1 is a constant parameter of

the expression above for a sinusoidal voltage.

If a current or voltage might be either constant or

time-varying, e.g., where an analysis is valid for

either case, the current or voltage is represented by

a lower-case i or v. In this sense, i and v are more

general than I and V; that is, a constant current or

voltage is a special case of a time-dependent current

or voltage.

4.6 Significance of Terminal
Characteristics and Equivalence

There are three important points to be made regarding

terminal characteristics and equivalent circuits:

• A circuit element is defined by its terminal charac-

teristic. We do not need to know what is inside the

element or how the element works to apply Kirchh-

off’s laws to a circuit containing the element.

• If two two-terminal elements or circuits have iden-

tical terminal characteristics, then they are equiva-

lent at those terminals; that is, one can be replaced

by the other at the terminals in question. This is the
basis for the circuit-reduction methods described in

Sections 4.2 and 4.3 and is a reason why Théve-

nin’s theorem is so important. Keep in mind, how-

ever, that the equivalence is only at the terminals.

The internal structures of equivalent circuits are not

necessarily (and usually are not) the same. In par-

ticular, we may use the Thévenin or Norton equiv-

alent for a circuit to study current through, voltage

across, and power dissipated in a load attached to

the circuit, but not to study any of those quantities

internal to the circuit.

• The task of studying the response of a circuit for

various possible loads is greatly simplified by

finding the Thévenin (or Norton) equivalent for

the circuit at the terminals to which the load is to

be attached. If the load is resistive, the circuit and

load are reduced to a voltage divider (or current

divider), and further analysis is trivial.

4.7 Problems

Section 4.1 is prerequisite for the following

problems.

P 4.1 : In Fig. P 4.1, v1 ¼ 1.5 V, v2 ¼ 5 V, i1 ¼ 5

mA, i2 ¼ 10 mA, R1 ¼ 1 kO, and R2 ¼ 3:3 kO. (i)
Obtain the terminal characteristic at the terminals

a–b for each circuit, regarding the circuit as a source.

(ii) Draw and label fully a graph of the terminal

characteristic (current as a function of voltage). (iii)

Assume a voltage source v0 ¼ 2 V is connected to the

terminals a–b of each circuit, with the positive termi-

nal at a. Find the resulting current exiting terminal a

and use the graph obtained in part (ii) to illustrate the

solution. (iv) Simulate the circuit and verify your

answers.

P 4.2 : Figure P 4.2 shows a generalized graph of

the terminal characteristic at terminals a–b of each

circuit in Fig. P 4.3, where each is regarded as a

source. (i) Obtain expressions for the intercepts iSC,

vOC in terms of circuit parameters. (ii) Let i0 ¼ 5mA,

v0 ¼ 1:5V, R1 ¼ 1 kO, and R2 ¼ 3:3 kO. Calculate

the values of the intercepts and simulate the circuit to

verify the calculated values.

P 4.3 : In Fig. P 4.4, v1 ¼ 1.5 V, i1 ¼ 1 mA,

R1 ¼ 1:5 kO, and R2 ¼ 4 kO. (a) Obtain symbolic

expressions for the terminal characteristics for the

circuits at the labeled terminals. Treat the terminals a
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and c as positive. Treat the circuit on the left as a

source and the circuit on the right as a load. (b) The

circuits are connected: a to c and b to d. What is the

resulting voltage vab? What is the resulting current i
entering terminal c? (c) Plot the terminal characteris-

tics obtained in Problem P 4.3 for each circuit on the

same axes. (d) At what point (v, i) do the terminal

characteristics intersect? Would this point be different

if you treat the circuit on the left as a load and the

circuit on the right as a source? (e) Simulate the circuit

and verify the calculated values of the terminal volt-

age and current.

P 4.4 Imagine you are presented with a resistive

circuit sealed in a box, but with access to a terminal

pair. You have only a voltmeter and a few different

resistors. Assume it is safe to connect any of the

resistors to the terminal pair. What are the simplest

(and fewest) measurements you would make to deter-

mine the terminal characteristic of the circuit at the

accessible terminal pair? Justify your answer.

P 4.5 : (a) Obtain an expression for the terminal

characteristic at the terminals a–b of the circuit

shown in Fig. P 4.5, regarding the circuit as a load.

(b) The circuit is connected to the terminals of a source

whose terminal characteristic is shown in Fig. P 4.6,

with terminal a connected to terminal c. Obtain an

expression for vab ¼ vcd in terms of i1, v1, and circuit

parameters. (c) The connections are reversed, so that

terminal a is connected to terminal d. Obtain an

expression for vab ¼ vcd in terms of i1, v1, and circuit

parameters. (d) Let v1 ¼ 10V, i1 ¼ 8mA, R1 ¼ 1 kO,

loadc

ref

a

b = ref

load

iLc

R1

R1 R2
R1

R1

v2 i1 load

iL

v1 a

b

i1 R2 v1load

iL
vL

+

–vL

+

–

vL

+

–

vL

+

–

vL

+

–

vL

+

–

c

load

iL

iL

v1

v1

v2

v1

i1 i1

i1

i2

v2

R1

R1 R1

R1

R1 R1

R1

R2

R2

R2

R2

R1

ac

load

v1

R1

R2

iLc

d ref

+
–

+
–

+
–

+
–

+ –

+ –

+ –

+
–

+
–

(a)

(c)

(e)
(f)

(d)

(b)

Fig. P 4.1 See Problem P 4.1

i

v

iSC

vOCo

Fig. P 4.2 See Problem P 4.2
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R2 ¼ 2:2 kO and v0 ¼ 15V. Calculate the values of

the terminal voltages obtained in parts (b) and (c).

(d) Use simulation to verify the results obtained in

parts (b) and (c).

P 4.6: Repeat Problem P 4.5 for the circuit shown

in Fig. P 4.7, with i0 ¼ 5mA:

P 4.7 : Repeat Problem P 4.5 for the circuit shown

in Fig. P 4.8, with i0 ¼ 5mA, R0 ¼ 470O, and

v2 ¼ 12V.

a

b

R1

R2
v0

+
–

Fig. P 4.5 See Problem P 4.4

R1

R1R2 R2v1 i1

a

b

c

d

+
–

Fig. P 4.4 See Problem P 4.3
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R1R1
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R1

R1
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R2 R2
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R1
R1
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R2R1
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R2

i0

i0

v0

v0 v0
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b

a

b

a

b
v0 i0

v0

v0

v0

v0

v0v0 i0 i0

i0

i0

a

b

a

b

a b

a

b

v0

R1

R1

R1

R2
R2

R2
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i0
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b

+
–

+
–

+
–

+
–

+
–

+
–

+
–

+
–

+–

+
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+
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(a)

(d) (e) (f)

(g) (h)

(b) (c)

Fig. P 4.3 See Problem P 4.2,

47

v1

vcd

i
i1

o

c

d

i

vcd

+

−

Fig. P 4.6 See Problem P 4.5

a

b

R1
R2

v0 i0

+ –

Fig. P 4.7 See Problem P 4.6
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P 4.8: Repeat Problem P 4.5 for the circuit shown

in Fig. P 4.9.

Section 4.2 is prerequisite for the following

problems.

P 4.9 Show that the tolerance of a series connection

of two resistors is in general bounded by the tolerance

of the least precise resistor. Do not assume the (nomi-

nal) resistances are equal.

P 4.10 Repeat Problem P 4.9 for a parallel connec-

tion of two resistors.

P 4.11 A 470 O� 5% resistor is connected in series

with a 121 kO� 1% resistor. Give the nominal resis-

tance and the tolerance of the series connection.

P 4.12 A 470 O� 5% resistor is connected in par-

allel with a 121 kO� 1%. Give the nominal resistance

and the tolerance of the parallel connection.

P 4.13 The tolerance of a parallel connection of two

resistors R1, R2 must be � 2% or better. What toler-

ance is required of each resistor?

P 4.14 A trimmer resistor is in series with a

91 kO� 5% fixed resistor. The range of the trimmer

must be such that the total (series) resistance can be

set to 100 kO. What is the required resistance of the

trimmer?

P 4.15 Two resistors having 25	C resistances R1,

R2 and 25	C temperature coefficients a1, a2 are

connected in series. (a) Obtain an expression for the

25	C temperature coefficient of the equivalent resis-

tance. (It is a function of the individual nominal

resistances and temperature coefficients.) (b) What

is the temperature coefficient if the two resistors have

equal nominal resistances and temperature coeffi-

cients? (c) If they have equal temperature coefficients

but different nominal resistances? (d) Equal nominal

resistances but different temperature coefficients?

P 4.16 Two resistors having 25	C resistances

R1 ¼ 1 kO, R2 ¼ 2:2 kO and 25	C temperature coeffi-

cients a1 ¼ 0:001K�1, and a2 ¼ 0:0005K�1 are

connected in series. (a) Obtain a symbolic expression

for the equivalent resistance as a function of the tem-

perature difference DT ¼ T � T0, where T0 ¼ 25	C.
(b) Calculate the equivalent resistance for T ¼ �50	C
and T¼ 100	C, and use the two data points to obtain a
linear (straight-line) approximation to the equivalent

resistance as a function of temperature. (c) What is the

theoretical error in the linear expression obtained in

Part (b)? Calculate the actual error at the endpoints of

the range� 50	C 
 T 
 100	C.
P 4.17 : Two resistors having 25	C resistances

R1 ¼ 100 kO; R2 ¼ 220 kO and 25	C temperature

coefficients a1 ¼ 0:003K�1; a2 ¼ 0:004K�1 are

connected in parallel. (a) Obtain a symbolic expres-

sion for the equivalent resistance as a function of

the temperature difference DT ¼ T � T0, where

T0 ¼ 25	C. (b) Calculate the equivalent resistance

for T ¼ �50	C and T ¼ 100	C, and use the two data

points to obtain a linear (straight-line) approximation

to the equivalent resistance as a function of tempera-

ture. (c) Construct graphs of the true equivalent resis-

tance and the linear approximation on the same axes,

for � 50	C 
 T 
 100	C. (d) Calculate and plot (on

another pair of axes) the percent error in the approxi-

mation over the same range.

P 4.18 Obtain an expression for the equivalent

resistance at the terminals a–b for each circuit shown

in Fig. P 4.10.

P 4.19 Obtain expressions for the resistors R1,

R2, R3 in terms of Ra, Rb, Rc such that the circuits in

Fig. P 4.11 are equivalent at each pair of terminals

(w–x, y–z, w–y).

i0

v0 v2

R1

R1R0

a

b
+
–

+
–

Fig. P 4.8 See Problem P 4.7

a

b

R1

R2 R1

R2i0

Fig. P 4.9 See Problem P 4.8
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P 4.20 Obtain expressions for the resistors Ra,

Rb, Rc in terms of R1, R2, R3, such that the circuits of

Fig. P 4.11 are equivalent at each pair of terminals

(w–x, y–z, w–y).
P 4.21 Show that the circuits shown in Fig. P 4.12

are equivalent at each of the three possible terminal

pairs.

P 4.22. Show that the circuits shown in Fig. P 4.13

are equivalent at each of the three possible terminal

pairs.

Section 4.3 is prerequisite for the following

problems.

P 4.23 : See Fig. P 4.14. (a) Use source transfor-

mations to obtain a circuit consisting of a voltage

source in series with a resistance that is equivalent to
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the original circuit at the terminals a–b. Express the

source voltage and series resistance as functions of the

original circuit parameters. (b) Let i0 ¼ 5mA,

v0 ¼ 10V, and R ¼ 1 kO. Construct a graph of the

terminal characteristic for the reduced equivalent cir-

cuit, regarding the circuit as a source. (c) Simulate the

equivalent circuit with a load RL ¼ 2:2 kO attached to

the terminals a–b and verify that the load current and

load voltage are consistent with the terminal charac-

teristic obtained above. (d) Simulate the original cir-

cuit using the same load and verify that the load

current and load voltage equal those obtained in part

(c) (from the equivalent circuit).

P 4.24 : Repeat Problem P 4.23 for the circuit

shown in Fig. P 4.15.

P 4.25 : Repeat Problem P 4.23 for the circuit

shown in Fig. P 4.16.

P 4.26 : Repeat Problem P 4.23 for the circuit

shown in Fig. P 4.17.

P 4.27 Repeat Problem P 4.23 for the circuit shown

in Fig. P 4.18.

P 4.28 Repeat Problem P 4.23 for the circuit shown

in Fig. P 4.19.

P 4.29 For each circuit of Fig. P 4.20, use source

transformations to obtain an expression for the voltage

vx. Check your answers using node or mesh analysis.

Section 4.4 is prerequisite for the following

problems.

P 4.30 : In Fig. P 4.21, v0 ¼ 5V, v1 ¼ 10V,

i0 ¼ 5mA, i1 ¼ 10 mA, R0 ¼ 1 kO, and R1 ¼ 2:2 kO.
(a) Use simulation to obtain the open-circuit voltage

and short-circuit current at the terminals a–b. (b)

Simulate the original circuit, the Thévenin equivalent,

and the Norton equivalent with a load RL ¼ 2:7 kO
attached to the terminals a–b and show that the load

current (or voltage) is the same for all three cases

(allowing for small computational errors).

P 4.31 : See Fig. P 4.22, where i0 ¼ 5mA, v0 ¼
10V, R0 ¼ 1 kO, and R2 ¼ 1:5 kO. (a) Use simulation

to obtain the Thévenin equivalent for the source at the

terminals to which the load is connected. (b) Draw a

graph of the terminal characteristic for the source. (c)

Use the Thévenin equivalent with the load attached

and plot the load current iL as a function of the load

resistance RL, for 0O 
 RL 
 10 kO.
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P 4.32 In Fig. P 4.23, i0 ¼ 5mA, v0 ¼ 10V, v1 ¼
12V, R0 ¼ 1 kO, and R1 ¼ 2:2 kO. (a) Use a method

of your choice to obtain the terminal characteristics of

the source and load. (b) Plot the terminal characteris-

tics of the source and load on the same axes, and find

(graphically) the load current iL that results when the

source and load are connected. (c) Using a method of

your choice, but different from that used in part (a),

find the load current iL when the load is connected to

the source. Compare the result with that obtained in

part (b) and explain any differences.

P 4.33 Repeat Problem P 4.32 for the source and

load shown in Fig. P 4.24.

P 4.34. Measurements of voltage and current are

made at terminals a–b of a resistive circuit for three

different resistive loads. Figure P 4.25 shows a graph

of the measured values. Find the Thévenin and Norton

equivalents for the circuit at the terminals a–b.
P 4.35. Figure P 4.26 shows the terminal character-

istic for a certain two-terminal circuit. The positive

direction for the terminal current is out of the positive

terminal of the circuit.

(a) Find the Thévenin and Norton equivalents for the

circuit.

(b) A 400 O resistor is connected to the terminals of

the circuit. Find the voltage across and current

through the resistor.

(c) The 400 O resistor is removed and a 15V indepen-

dent source is connected to the terminals of the

circuit, with the positive terminal of the source

connected to the positive terminal of the circuit.

Find the current out of the positive terminal of the

15 V source.

P 4.36 Repeat Problem P 4.35 for the graph in

Fig. P 4.27.

P 4.37 Use a method specified by your instructor

to find the Thévenin and Norton equivalent circuits at

the terminals a–b for each circuit in Fig. P 4.28, where

i0 ¼ 5mA, v0 ¼ 5V, and R ¼ 1kO.

source load
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Fig. P 4.23 See Problem P 4.32
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P 4.38 N identical Norton source models are

connected in series, as in Fig. P 4.29. Find the (single)

Norton equivalent at the terminals a–b.

P 4.39 N identical Thévenin source models are

connected in parallel, as in Fig. P 4.30. Find the

(single) Thévenin equivalent at the terminals a–b.

P 4.40 Refer to Fig. P 4.31, where the resistance R
is known and fixed and the voltage v0 is variable. It is

found that for v0 ¼ v1, vR ¼ va and that for v0 ¼ v2,

vR ¼ vb. Obtain an expression for the voltage vR as a

function of the voltage v0 and in terms of the known

quantities v1, v2, va, vb, R.

P 4.41 Refer to Fig. P 4.31, where the voltage v0 is

known and fixed and the resistance R is variable. It is

found that for R ¼ R1, vR ¼ va and that for R ¼ R2,

vR ¼ vb. Obtain an expression for the voltage vR as a
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function of the resistance R and in terms of the known

quantities R1, R2, va, vb, v0.
P 4.42 Refer to Fig. P 4.32. Let vT1; RT1 and

vT2; RT2 denote the Thévenin voltage and resistance

at the terminals a–b and c–d, respectively, where a and
c are the positive terminals. Find the Thévenin equiv-

alent at the terminals e–f.

P 4.43 Refer to Fig. P 4.33, where the boxes enclose

resistive circuits. Let vT1; RT1 and vT2; RT2 denote the

Thévenin voltage and resistance at the terminals a–b

for circuits 1 and 2, respectively, where a is the positive
terminal. Obtain expressions for the Thévenin equiva-

lent voltage and resistance at the terminals a–b in terms

of vT1; RT1 and vT2; RT2.

P 4.44 Refer to Fig. P 4.33, where the boxes

enclose resistive circuits. Let vT1; RT1 denote the

Thévenin voltage and resistance for circuit 1. Let

iN ; RN denote the Norton current and resistance at

the terminals a–b. Obtain expressions for the Théve-

nin equivalent voltage and resistance for circuit 2 in

terms of vT1; RT1 and iN; RN .

P 4.45 Two sources having the same open-circuit

voltage VOC ¼ 10V are connected in series, and then

to a load RL ¼ 200O, as shown in Fig. P 4.34. It is

found that VL ¼ 5V. Obtain the Thévenin equivalent

for the series connection of the sources.

P 4.46 Two sources having the same short-circuit

current ISC ¼ 100mA are connected in series, and

then to a load RL ¼ 500O, as shown in Fig. P 4.34.

It is found that VL ¼ 15V. Obtain the Thévenin equiv-

alent for the parallel connection of the sources.

P 4.47 In essence, Problem P 4.2 asks for the

terminal characteristics of the circuits in Fig. P 4.3,

treating the circuits as sources. Using results of that

problem, obtain the terminal characteristic at a–b for

each circuit, treating each as a load.

P 4.48 Refer to Fig. P 4.35, where R ¼ 2O and the

sources v0; i0 are independently variable. It is found

that for v0 ¼ 10V and i0 ¼ 2A, the voltage v ¼ 12V,

and that for v0 ¼ 20V and i0 ¼ 6A, the voltage

v ¼ 24V. Find the voltage v if v0 ¼ 30V and

i0 ¼ 10A.

P 4.49 : Refer to Fig. P 4.36, where the boxes

enclose resistive circuits. The Thévenin voltage and
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resistance, respectively, at the terminals a–b for the

circuit in box 1 are vT1 ¼ 5V; RT1 ¼ 2kO, where a is

the positive terminal. A known resistance R is

connected as shown, and the voltage v is measured.

It is found that for R ¼ 1 kO; v ¼ 1:143V and that for

R ¼ 2 kO; v ¼ 1:600V. Find the Thévenin equivalent

for the circuit in box 2. Use simulation to verify your

answer.

P 4.50 A current source i0 ¼ 5mA is connected to

terminals a–b of a resistive circuit, with the positive

direction of current into terminal a. It is found that

vab ¼ 10V. Then the current source is removed and it

is found that vab ¼ 5V. Find the Thévenin equivalent

for the circuit at the terminals a–b.

P 4.51 A voltage source v0 ¼ 5V is connected to

terminals a–b of a resistive circuit, with the positive

terminal connected to circuit terminal a. It is found

that the current into the positive terminal of the source

is i ¼ 10mA. Then the voltage source is removed, a

2 kO resistor is connected to the terminals a–b, and the

voltage across the resistor is found to be 2 V. Find the

Thévenin equivalent for the circuit at the terminals

a–b.

P 4.52 A current source i0 ¼ 5mA is connected to

terminals a–b of a resistive circuit, with the positive

direction of current into terminal a. It is found that

vab ¼ 10V. Then a 2 kO resistor is connected in paral-

lel with the current source and it is found that

vab ¼ 5V. Find the Thévenin equivalent for the circuit

at the terminals a–b.

P 4.53: A voltage source v0 ¼ 5V is connected to

terminals a–b of a resistive circuit, with the positive

terminal connected to circuit terminal a. It is found

that the current into the positive terminal of the source

is i ¼ 10mA. Then a 2 kO resistor is connected in

series with the voltage source, the series connection

is connected to the terminals a–b, and it is found that

vab ¼ 2 V. Find the Thévenin equivalent for the circuit

at the terminals a–b. Use simulation to verify your

answer.

P 4.54 A variable resistor is connected to terminals

a–b of a resistive circuit. Neither terminal is directly

connected (inside the circuit) to an independent

source. Does the current through the resistor increase

or decrease as the resistance is decreased? Use Théve-

nin’s theorem to justify your answer.

P 4.55 A variable resistor is connected to a terminal

pair of a resistive circuit, as shown in Fig. P 4.37. The

current through the resistor is measured and plotted

versus the resistance R. The resulting plot also is

shown in Fig. P 4.37. Find the Norton equivalent for

the circuit at the terminals a–b.
P 4.56 A voltage source is connected to the-

terminals of a resistive circuit, as shown in Fig.

P 4.38. The Thévenin voltage and resistance for the

circuit are vT ¼ 20V and RT ¼ 10 kO, respectively.
Construct a graph of the current i through the source

versus the source voltage v0 for � 10V 
 v0 
 30V.

Show how you would obtain the Thévenin equivalent

for the circuit from the graph if vT and RT were

unknown.

P 4.57 Refer to Fig. P 4.39. The circuits enclosed in

the boxes are resistive and are equivalent at the

+

–
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b
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Fig. P 4.36 See Problem P 4.49
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terminals a–b, each having open-circuit voltage vOC ¼
50mV. Find the voltage v and the current i.

P 4.58 Refer to Fig. P 4.40. Find the Thévenin

equivalent circuit at (a) the terminals C–E and (b) the

terminals B–E. (c) Draw graphs of the two terminal

characteristics.

P 4.59 Suppose we agree that a source represented

by a Thévenin equivalent can be considered a good

voltage source if the load voltage varies by no more

than 1% (of the Thévenin voltage) over the range of

expected values of load resistance. If a certain source

model has Thévenin resistance RT ¼ 1O, for what

values of load resistance can the source be considered

a good voltage source?

P 4.60 Suppose we agree that a source represented

by a Norton equivalent can be considered a good

current source if the load current varies by no more

than 1% (of the Norton current) over the range of

expected values of load resistance. If a certain source

model has Norton resistance RN ¼ 10 kO, for what

values of load resistance can the source be considered

a good current source?

P 4.61 Imagine you are presented with a resistive

circuit sealed in a box, but with access to a terminal

pair. You also have access to a full complement of

laboratory instruments. Describe fully all of the meth-

ods you can think of for finding the Thévenin equiva-

lent for the circuit at the exposed terminals.

P 4.62 An automotive lead-acid battery can be

modeled as shown in Fig. P 4.41. The leakage resis-
tance R‘ accounts for the fact that the battery will

eventually self-discharge, even if not connected to a

load. The series resistance Rs accounts (approxi-

mately) for the fact that the terminal voltage decreases

as load current increases. Obtain the Norton equivalent

for the battery at the terminals. What happened to the

leakage resistance? In what sense is the Norton model

equivalent to the battery?

P 4.63 Repeat Problem P 4.62 using a Thévenin

equivalent for the battery.

P 4.64 Figure P 4.42 shows another model for the

battery described in Problem P 4.62. (a) Obtain the

Norton equivalent for this model. (b) Obtain the

Thévenin equivalent for this model. (c) What kinds

of studies cannot be performed using the Thévenin

or Norton models for the battery? What kinds can

be performed? (d) Under what condition are the mod-

els in Figs. P 4.42 and P 4.41 equivalent at their

terminals?
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Chapter 5

Work and Power

Work is an amount of energy converted from one

form to another and power is the rate of such conver-

sion. The instantaneous power p(t) corresponding to

instantaneous work w(t) is given by

p ¼ dw

dt
: (5.1)

Brightness of a light bulb or computer display,

loudness of music from a loudspeaker, and time

required for a pump to drain a flooded basement all

depend upon rate of energy conversion. Consequently,

electrical engineers usually are more interested in the

rate at which work is done (power) than work itself.

Exceptions are design of storage batteries, where

energy stored per unit volume and per unit mass are

prime concerns, and in management of electric-utility

companies, which sell energy. But even in those cases,

engineers are interested in the rate at which stored

energy can be drawn from a battery and the rate at

which energy can be delivered to a customer.

Power is of concern in circuit analysis and design

for various reasons, including:

• An electric circuit must do work at a specified rate

on a load, such as a light bulb, a loudspeaker, a

transmitting antenna, or an electric motor. Each

component of the circuit must be capable of doing

the work required of the component at the specified

rate.

• The power supply for a circuit must be able to

provide energy to the circuit at a rate sufficient to

support operation of the circuit. That is, the power

supply must be able to provide power equal to or

greater than the total power dissipated (converted

to another form) by the circuit.

• Work done on circuit components generates heat,

which must be removed quickly enough to keep the

temperatures of the components from rising above

acceptable values. The temperature of a dissipative

device will rise until the rate at which heat is

removed equals the rate at which the heat is pro-

duced. This equilibrium condition must be reached

at a temperature the device can endure. As a rule,

the lifetime of a device decreases as the equilibrium

operating temperature increases. Also, because

resistivity generally increases with increasing tem-

perature, performance usually decreases with in-

creasing temperature. Consequently, it usually is

desirable to keep the equilibrium temperature of a

device below the maximum permissible value.

• Most circuit components, as a by-product of normal

operation, generate electrical noise (e.g., thermal

noise in resistors) that contaminates other voltages

and currents of interest. Electrical noise produced

by most components increases with increasing tem-

perature, which, in turn, usually increases with the

rate at which work is done on or by the component.

• Many circuits are described at least in part by power

gain (or loss), which is the ratio of the power deliv-

ered by a circuit to a load to the power provided to

the circuit by a source. Power gain (or loss) is an

especially important parameter in communication

systems.

In electrical engineering, there is a rich vocabulary

associated with work and power. Practicing engineers

refer to power being absorbed, consumed, dissipated,

generated, produced, delivered, transmitted or distri-

buted. Strictly speaking, it is energy, not power, that is

absorbed, generated, distributed, or the like. Instanta-

neous power is the rate at which energy is being
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converted or transmitted at a particular time and place.

Power does not go anywhere and power is not generated

or dissipated. Nonetheless, practicing engineers under-

stand what is meant by such terminology, and the ter-

minology is useful because it makes descriptions and

discussions much more compact than they would be

otherwise.

In this chapter, we obtain expressions for electrical

work and power as functions of voltage, current, and

circuit parameters.

5.1 Instantaneous Power and the
Passive Sign Convention

Instantaneous power, denoted by p, is the instanta-

neous rate at which energy is converted from one form

to another. Equivalently, instantaneous power is the

rate at which the associated work is done. Instanta-

neous power corresponding to instantaneous work w is

given by (5.1), repeated below for ready reference.

p ¼ dw

dt
: (5.2)

The SI unit of power is the watt (W), where

1W ¼ 1 J s�1. Instantaneous power is (in general) a

function of time.

We are interested in work and power in the context

of circuit analysis, so we wish to express instantaneous

power in terms of voltage and current. Because

voltage is work done (on an electric field) by a charge

per unit charge, we may write

v ¼ dw

dq
; (5.3)

where dq is a small quantity of positive charge and dw

is the work done by the charge. It follows that

dw ¼ v dq: (5.4)

Using the right side of (5.4) for dw in (5.2) gives

p ¼ v
dq

dt
¼ v i: (5.5)

In (5.5), v and i denote voltage across and current

through a terminal pair of a device or circuit. The

power p given by (5.5) is called the instantaneous

power dissipated by the device or circuit (at the

terminal pair in question).

Above, we define positive work as work done by a

charge dq. Because energy is conserved, we could as

well define positive work as work done on the charge,

but defining positive work as work done by the charge
is consistent with the passive sign convention used in

almost all circuits textbooks, according to which

power is positive if the positive direction of current

in (5.5) is in the direction of a voltage drop; i.e., into

the positive terminal of a device or circuit element

under consideration. Thus positive power means that

positive work is being done by the current (the device

or circuit is consuming energy) and negative power

means that work is being done on the current (the

device or circuit is producing energy). Figure 5.1

illustrates the definition of power dissipated according

to the passive sign convention.

Generally, we follow the passive sign convention,

to the extent that power dissipated by an element,

device, or circuit means power dissipated in accord

with the passive sign convention. But in many cases, it

is more convenient (and meaningful) to refer to power

delivered by an element, device, or circuit, where

power delivered is the negative of that determined

using the passive sign convention. Specifically, for a

resistor, we almost always compute power dissipated

(consumed), but for a source, we frequently compute

power delivered to a load. For example, for the circuit

shown in Fig. 5.2, the instantaneous power dissipated

+

–

+

–

v

i i

v
p = vi p = –vi

Fig. 5.1 Passive sign convention: The instantaneous power

dissipated at a terminal pair is the product of the instantaneous

voltage across the terminals and the instantaneous current into
the positive terminal

R

i

v+
–

Fig. 5.2 Power delivered by

the source is dissipated by the

resistor (see text)
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by the resistor and the power delivered by the source

are both given by p ¼ v i, where the positive direction
for current is out of the positive terminal of the source

and into the positive terminal of the resistor.

Example 5.1. The voltage across a certain elec-

trical device and the current entering the positive

terminal of the device are given by

vðtÞ ¼ V0 cos o tð Þ; iðtÞ ¼ I0 cos o tð Þ;
respectively. Obtain an expression for the instan-

taneous power dissipated by the device.

Solution: The positive direction for current is

consistent with the passive sign convention.

From (5.5), the instantaneous power dissipated

is given by

p ¼ v i ¼ V0 I0 cos
2 o tð Þ ¼ V0 I0

2
1þ cos 2o tð Þ½ �;

where we have used the identity

cos2 að Þ � 1

2
1þ cos 2 að Þ½ �:

Exercise 5.1. The voltage across a certain

electrical device and the current entering the

positive terminal of the device are given by

vðtÞ ¼ V0 cos o tð Þ; iðtÞ ¼ I0 cos o tþ yð Þ;

respectively. Show that the instantaneous

power dissipated by the device is given by

p tð Þ ¼ V0 I0
2

cos yð Þ þ cos 2o tþ yð Þ½ �:

Example 5.2. Obtain expressions for the

instantaneous power dissipated by each compo-

nent in the circuit shown in Fig. 5.3, where

I0 > 0 and V0> 0. Is the current source produc-

ing energy or consuming energy? Is the voltage

source producing energy or consuming energy?

Solution: From (5.5) and Ohm’s law, the instan-

taneous power dissipated by the resistor is given

by

pR ¼ vR i0 ¼ i0 Rð Þ i0 ¼ R i0
2 ¼ R I0

2 cos2 o0 tð Þ

and is independent of the source voltage v0. The
power dissipated by the voltage source is given

by

pv ¼ i 0v0 ¼ I0 V0 cos
2 o tð Þ:

Because the positive direction for the current

i0 is into the positive terminal of the voltage

source. The power dissipated by the current

source is given by pi ¼ �i0 vi because the posi-

tive direction for the current i0 is out of the

positive terminal of the current source. Kirchh-

off’s voltage law gives

� vi þ vR þ v0 ¼ 0 ) vi ¼ vR þ v0 ¼ i0 Rþ v0
¼ I0 Rþ V0ð Þ cos o tð Þ:

Thus the power dissipated by the current

source is given by

pi ¼ �i0 vi ¼ �I0 I0 Rþ V0ð Þ cos2 o tð Þ:

Because the quantities R; I0; V0; and

cos2 o tð Þ are all positive, the power dissipated

by the current source is negative and the power

dissipated by the voltage source is positive. It

follows that the current source is producing

energy, whereas the voltage source is consuming

energy.

Exercise 5.2. Obtain expressions for the

instantaneous power dissipated by each com-

ponent in the circuit shown in Fig. 5.4, where

R
i0 v0

vR+

vi

+

+
–

–

–

i0 = I0 cos(w0 t)
v0 = V0 cos(w0 t)

Fig. 5.3 See Example 5.2
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I0 > 0 and V0 > 0. Is the current source produc-

ing energy or consuming energy? Show that

the powers dissipated by the resistors are posi-

tive. Is the voltage source producing energy or

consuming energy?

Examples and exercises above illustrate the fact

that a current or voltage source in a circuit containing

two or more sources can either dissipate or deliver

power, depending upon the configuration of the cir-

cuit.1 As a physical example, a battery connected to a

light bulb delivers power to the bulb (the battery

produces energy), whereas a battery connected to a

battery charger receives energy from the charger (the

battery consumes energy). The examples and exer-

cises also illustrate the fact that the power dissipated

by a physical resistor is always positive. If you obtain

a negative value for the power dissipated by a physical

resistor, you have made an error.2

According to the passive sign convention, power at

the terminals of an electric heater, for example, is

positive, whereas power at the terminals of an electric

generator is negative. In practice, despite preferences

of textbook authors, what is meant by positive power

usually depends upon circumstances. In describing an

electric heater, which converts electrical energy to

heat energy, one might define positive power as the

rate at which work is done on the heating element,

which is consistent with the passive sign convention.

On the other hand, in describing an electric generator,

we are interested in the rate at which the generator can

convert mechanical energy to electrical energy, and

we might define positive power in opposition to the

passive sign convention. No manufacturer of electric

generators would advertise a “�5 kW generator.”

Nonetheless, if applied consistently and interpreted

correctly, the passive sign convention facilitates anal-

ysis. We do not need to determine whether an element

is consuming or generating energy before choosing

reference directions for voltage and current. We sim-

ply assign directions to currents and polarities to vol-

tages and then use the passive sign convention

(Fig. 5.1) for power calculations; that is, we use

p ¼ v i if the positive direction for current is into the

positive terminal of a device, and p ¼ �v i if the

positive direction for current is out of the positive

terminal of a device. If the power thus obtained is

positive, then electrical energy is being converted to

some other form (the device dissipates power). If the

power turns out to be negative, then some other form

of energy is being converted to electrical energy (the

device generates power).

5.2 Instantaneous Power Dissipated
by a Resistor: Joule’s Law

Using Ohm’s law v ¼ R i in (5.5) shows that instanta-

neous power dissipated by a resistor is given by

p ¼ v i ¼ R i2 ¼ v2

R
: (5.6)

Because (physical) resistance is non-negative, the

instantaneous power dissipated by a physical resistor

is non-negative and equals zero only if the current

through or voltage across the resistor equals zero.3

Equation (5.6) is essentially an expression of Joule’s

law.
Integrating (5.6) over an interval t1 � t< t2 gives

the total work done on a resistor in the interval:

w ¼
ðt2
t1

pðtÞ dt ¼R

ðt2
t1

i2ðtÞdt ¼ 1

R

ðt2
t1

v2ðtÞ dt: (5.7)

Electrical energy delivered to a resistor is conver-

ted to heat or other radiant energy (as by a light bulb).

R

2R

v1

i0
+
–

i0 = I0 cos (w0 t)
v0 =V0 cos (w0 t)

v0

Fig. 5.4 See Exercise 5.2

1Also, a source can dissipate power during some time intervals

and deliver power during others.
2Using electronic devices, it is possible to construct a two-

terminal circuit that has the properties of a negative resistance;

however, such a circuit is not a physical resistor.

3Certain two-terminal circuits are equivalent to a negative resis-

tance at their terminals.
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The radiant energy produced in an interval t1 � t< t2
is given by (5.7). The instantaneous rate at which the

radiant energy is produced is given by (5.6).

Example 5.3. The voltage across a resistor hav-

ing resistance R ¼ 1 kO is V ¼ 10V.

Calculate the instantaneous power dissipated

by the resistor, the current through the resistor,

and the total work done on the resistor in 1 s.

Solution: From (5.6), the power dissipated is

p ¼ V2

R
¼ 10Vð Þ2

103 O
¼ 0:100W ¼ 100mW:

Because p ¼ i2 R, the current is

I ¼
ffiffiffi
p

R

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:100W

103O

r
¼ 0:010A ¼ 10mA:

Check:

p ¼ VI ¼ 10Vð Þ 0:01Að Þ ¼ 0:10W ¼ 100mW:

Because the applied voltage and the resis-

tance are independent of time, the instantaneous

power and current also are independent of time.

From (5.7), the total work done in 1 s is

w ¼
ðt2
t1

pðtÞ dt ¼
ð1s
0

100mWð Þ dt

¼ 100mWð Þ 1 sð Þ ¼ 100mWs ¼ 100 mJ:

Exercise 5.3. The current through a resistor

having resistance R ¼ 1kO is I ¼ 5mA.

Calculate the instantaneous power dissipated

by the resistor, the voltage across the resistor,

and the total work done on the resistor in 2 s.

Because a resistor converts electrical energy to

radiant energy which is then lost forever from the

circuit, a resistor always dissipates power. You

might think dissipates carries a negative connotation,

and sometimes it does; for example, the cost to an

electric power company of energy lost in the resistance

of power-transmission lines can be significant. But

dissipation of electric power as heat or other radiant

energy also can be useful. Everyday examples include

light bulbs, electric ovens, electric heaters, electric

ranges, and electric water heaters. Moreover, even a

power company finds the resistance of its lines useful

during winter, when heat caused by current in the lines

can melt ice that otherwise might accumulate and

break the lines.

Virtually all circuit components, and resistors in

particular, generate heat while operating, which is why

a television receiver, for example, is warmer when on

than when off. Some devices become hot enough to burn

skin when operating normally. But there are limits to the

temperatures that resistors, transistors, and other electri-

cal devices can endure and still operate as intended; for

example, a typical off-the-shelf discrete bipolar junction

transistor will operate normally at temperatures below

about 75�C ¼ 167�F. Bipolar transistors built to

military specifications (mil-spec devices) will operate

normally at somewhat higher temperatures, up to

about 125�C ¼ 257�F. Typically, circuits are designed
such that components operate below the maximum

permissible temperatures because operation at higher

temperatures shortens component lifetime, affects

cooling requirements, increases electrical noise pro-

duced by components, and increases the resistance of

(and power losses in) conductors and resistors. Ability

of a component to operate at a safe temperature in

ambient air depends upon the size, composition, and

surface area of the component; e.g., a ½ W resistor is

larger than a ¼ W resistor of the same kind.

Barring catastrophic failure, the temperature of a

device rises until an equilibrium temperature is

reached, at which point the power dissipated as heat

equals the rate at which heat is removed from the

device. A sustained temperature above the maximum

temperature a device can endure will damage the

device or at least cause permanent changes to proper-

ties of the device. Most devices are rated, based upon

maximum permissible temperature, in terms of the

average power that can be dissipated in ambient air

(in absence of heat sinks and forced cooling)4 without

damage; for example, a ½ W resistor can dissipate

½ W in ambient air without harm, but if called upon

4The ambient-air power-dissipation rating of a component can

be exceeded if heat sinks and/or forced cooling are used.
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to dissipate more than that would either exhibit

increased resistance (due to overheating) or fail,

depending upon the actual power delivered to the

resistor and the time for which the power dissipated

exceeds the rated dissipation.5 Specifying an appropri-

ate power-dissipation rating for each component in a

circuit is as important as specifying any other circuit

parameter, such as resistance. Specifying an unneces-

sarily large power-dissipation rating needlessly

increases the size, weight, and cost of a circuit. Spe-

cifying a too-small power-dissipation rating for one or

more components can cause a circuit to function

poorly and fail prematurely because of overheating.

In undemanding, low-power applications, radia-

tion, conduction through the leads to a circuit board,

and convection by the surrounding air might provide

sufficient cooling to keep device temperatures below

maximum permissible values. But in some applica-

tions and in many integrated circuits in particular, it

is impossible or impractical to make components large

enough to provide sufficient power dissipation in

ambient air. In such cases heat sinks, fans, or even

liquid cooling might be required to maintain accept-

able operating temperatures.6 Some large mainframe

computers require liquid cooling. Even small desktop

computers use fans to remove heat from their enclo-

sures and high-performance microprocessors come

packaged with an integral heat sink and cooling fan.7

Example 5.4. In steady state, the power

radiated from a heated body is given (approxi-

mately) by the Stefan-Boltzmann law

p ¼ e sAT4; (5.8)

where e is the emissivity of the body (dimen-

sionless), s ¼ 5:67� 10�8Wm�2 K�4 is the

Stefan-Boltzmann constant, A is the surface

area of the body, and T is the temperature of

the body (K). A certain ¼ W cylindrical com-

position resistor must operate at or below

150�C to maintain its resistance within �5%

of the nominal (specified) value. The emissiv-

ity of the surface of the resistor is e ¼ 0.8.

What should the surface area of the resistor

be (assuming radiation is the only heat-loss

mechanism)?

Solution: At 150�C and in steady state, the

power radiated by the resistor must equal

¼ W, denoted by p0. Thus

p0 ¼ e sAT4 ) A ¼ p0
e sT4

¼ 0:25W

0:8ð Þ 5:67� 10�8Wm�2 K�4
� �

423Kð Þ4

¼ 1:72� 10�4m2:

The surface area of a cylindrical resistor

having diameter d and length l is given by

A ¼ pdl. If the resistor is 1.25 cm long, then

the diameter must be

d ¼ A

pl
¼ 1:72� 10�4 m2

p 1:25� 10�2 m
� � ¼ 4:38� 10�3m

¼ 4:38mm:

The Stefan-Boltzmann law (5.8) gives a

pessimistic value for the power-dissipation

rating of a resistor because heat also is lost

through convection to the surrounding air and

conduction through the leads. In absence of

heat sinks or forced cooling, radiation accounts

for only about 20% of heat loss. Thus the

surface area of a resistor need not be as large

as that implied by the Stefan-Boltzmann law.

Exercise 5.4. A certain cylindrical resistor

is 2 cm long and 0.6 cm in diameter. The

operating temperature of the resistor must not

exceed 150�C. Assume that radiation is the

5Common ratings for ordinary composition resistors are 1/8, 1/4,

1/2, and 1W. Composition resistors having ratings up to 5W are

easily obtained. If a much higher power-dissipation rating is

warranted, one can use metallic-film or wire-wound resistors,

or use forced cooling, or both.
6Many books give guidelines for sizing heat sinks with and

without forced-air cooling. See, for example, Paul Horowitz

and Winfield Hill, The Art of Electronics (2nd Ed.), Cambridge

University Press, pp 312 ff.
7The power dissipated by a modern high-performance micro-

processor is on the order of 100 W cm�2.
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principal heat-removal mechanism and use the

Stefan-Boltzmann law to find the power-dissi-

pation rating of the resistor if the emissivity of

the surface is 0.8.

5.3 Conservation of Power

Energy is conserved. If all energy sources (e.g.,

current and voltage sources) and circuit components

are accounted for, the total energy dissipated (work

done) in a circuit equals zero (recall that, according

to the passive sign convention, energy generated is

negative). We may express the total instantaneous

work done in a circuit comprising N elements as

w ¼ w1 þ w2 þ 	 	 	 þ wN ¼ 0; (5.9)

where wk is the work done in the kth element. It

follows that total power dissipated by the circuit also

equals zero; that is

dw

dt
¼ dw1

dt
þ dw2

dt
þ 	 	 	 þ dwN

dt
¼ 0 (5.10)

or

p ¼ p1 þ p2 þ 	 	 	 þ pN ¼ 0: (5.11)

The most frequent uses of (5.11) are (1) calculating

the power requirements of a circuit (sizing a power

supply) and (2) specifying heat-removal methods,

such as heat sinks, fans, and liquid cooling. Also, the

fact that power is conserved can provide a useful

check on the correctness of an analysis.8

Example 5.5. Find the power dissipated by

each element in the circuit of Fig. 5.5. Show

that the total power dissipated equals zero.

Solution: Writing Kirchhoff’s current law at

the node a gives

Va � V0

R1

þ Va

R2

þ Va � V1

2R2

¼ 0

) Va¼ 2R2V0 þ R1V1

3R1 þ 2R2

;

whence

I1 ¼ Va � V0

R1

¼ V1 � 3V0

3R1 þ 2R2

;

and

I2 ¼ Va � V1

2R2

¼ R2V0 � R1 þ R2ð ÞV1

R2 3R1 þ 2R2ð Þ :

From (5.5) and (5.6), the powers dissipated

by the circuit elements are

pR1
¼ R1I

2
1 ¼

R1 V1 � 3V0ð Þ2
3R1 þ 2R2ð Þ2 ffi 7:40 mW;

pR2
¼ V2

a

R2

¼ 2R2V0 þ R1V1ð Þ2
R2 3R1 þ 2R2ð Þ2 ffi 213:02 mW;

p2R2
¼ 2R2I

2
2 ¼

2 R2V0 � R1 þ R2ð ÞV1½ �2
R2 3R1 þ 2R2ð Þ2

ffi 144:97 mW;

pv0 ¼ V0I1 ¼ V0 V1 � 3V0ð Þ
3R1 þ 2R2

ffi �96:15 mW;

pv1 ¼ V1I2 ¼ V1 R2V0 � R1 þ R2ð ÞV1½ �
R2 3R1 þ 2R2ð Þ

ffi �269:23 mW:

V0 V1

R1

R2

2R2I1 I2a

ref

+
–

+
–

V0 = 5V, V1 = 10V, R1 = 20 Ω , R2 = 100 Ω  

Fig. 5.5 See Example 5.5

8Equation (5.11) states that the total power dissipated equals

zero. It is also true that the total power delivered equals zero, or

that the total power dissipated equals the total power delivered

(in a circuit).
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The total power dissipated by the circuit is

pR1
þ pR2

þ p2R2
þ pv0 þ pv1 ¼ 0:

Note the use of the passive sign convention;

e.g., to compute the power dissipated by the

voltage source, we take the positive direction

for current into the positive terminal of the

source.

Exercise 5.5. Show that the total power

dissipated in the circuit of Exercise 5.2 equals

zero.

Electrical energy provided by a source can be

derived from an electrochemical reaction (as in a bat-

tery), from electromechanical devices (such as a gen-

erator), from radiation (as in a solar cell), or other

means. The electrical energy provided to a circuit

component might be converted to rotational mechani-

cal energy (as in an electric motor), to heat (as in a

resistor or an electric heater) or other electromagnetic

radiation (as in a radio transmitting antenna), or other

form. In all cases, total energy and power are con-

served. Also in all cases, at least some electrical

energy is converted to heat, not all of which can be

recovered for good use. No energy-conversion device

is 100% efficient.

5.4 Peak Power

The peak power, denoted by p̂, associated with a

current and voltage is the maximum value of the

magnitude of the instantaneous power caused to be

dissipated by the current and voltage. In general,

p̂ ¼ max pðtÞj j ¼ max vðtÞ iðtÞj j: (5.12)

From (5.12) and Ohm’s law, the peak power

dissipated by a resistor having resistance R is given by

p̂ ¼ Rmax i2ðtÞ�� �� ¼ 1

R
max v2ðtÞ�� ��; (5.13)

where i and v are the current through and voltage

across the resistor, respectively. Unlike instantaneous

power, peak power is not conserved (peak power is

non-negative).

Example 5.6. See Fig. 5.6, where v0 ¼
V0 cos o tð Þ; i0 ¼ I0 cos o tð Þ. Obtain expres-

sions for the instantaneous and peak powers

dissipated by each element.

Solution: Writing Kirchhoff’s current law at

node a gives

va
R2

þ va � v0
R1

� i0 ¼ 0 ) va ¼ R2 v0 þ R1i0ð Þ
R1 þ R2

;

whence

i1 ¼ va
R2

¼ v0 þ R1i0
R1 þ R2

; v1 ¼ v0 � va

¼ R1 v0 � R2i0ð Þ
R1 þ R2

:

From (5.5) and (5.6), the instantaneous

powers dissipated by the circuit elements are

pR1
¼ v21

R1

¼ R1 V0 � R2I0ð Þ2
R1 þ R2ð Þ2 cos2 o tð Þ;

pR2
¼ R2 i

2
1 ¼

R2 R1I0 þ V0ð Þ2
R1 þ R2ð Þ2 cos2 o tð Þ;

pv0 ¼ �v0 i1 ¼ �V0 R1I0 þ V0ð Þ
R1 þ R2

cos2 o tð Þ;

pi0 ¼ v1 i0 ¼ R1I0 V0 � R2I0ð Þ
R1 þ R2

cos2 o tð Þ:

As a check, we confirm that pR1
þ pR2

þ pv0þ
pi0 ¼ 0. Because max cos2 o tð Þ½ � ¼ 1, the peak

powers dissipated by the elements are given by

R1

R2

i0

i1
v1

v0

a
+

+

–

–

Fig. 5.6 See Example 5.6
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p̂R1
¼ R1 V0 � R2I0ð Þ2

R1 þ R2ð Þ2 ;

p̂R2
¼ R2 R1I0 þ V0ð Þ2

R1 þ R2ð Þ2 ;

p̂v0 ¼
V0 R1I0 þ V0ð Þj j

R1 þ R2

;

p̂i0 ¼
R1I0 V0 � R2I0ð Þj j

R1 þ R2

:

Exercise 5.6. The instantaneous power dissi-

pated by a certain device is given by

p ¼ P0 cos o tð Þ cos o tþ yð Þ;P0 > 0:

Obtain an expression for the peak power

dissipated.

Peak power is of interest partly because there can

occur relatively short-duration (transient) current or

voltage spikes in a circuit, some of which can have

very large amplitudes. A large spike can transfer a

large amount of energy to a device in a very short

time, which means that the instantaneous power

dissipated by the device is very large during that

time. That energy might be sufficient to destroy the

device, even if the device were capable of absorbing

the same amount of energy over a longer time.

As an analogy, the total energy transferred to a

tree by an average lightning strike might be only a

fraction of the energy received by the tree from the

sun in the course of an average month. But such a

strike could destroy the tree, whereas the sunlight

would not.

Peak power is of interest also because all physical

sources (and other components) are peak-power-lim-

ited; that is, there is a limit to the magnitude of the

instantaneous power that can be dissipated by any

physical source or component.

A peak-power limit on an ideal voltage source

limits the current the source can provide (the current

through the source). Similarly, a peak-power limit on

an ideal current source limits the voltage the source

can produce. For example, if a current source produces

current I and the maximum possible voltage across the

source is Vmax, then the source is peak-power limited

to pmax ¼ VmaxI.

Example 5.7. See Fig. 5.7. The source VS is

peak-power limited to 48 W. What is the mini-

mum resistance that one should connect to the

terminals a–b?
Solution: The maximum current the source can

deliver is Imax ¼ pmax=VS ¼ 2A. (a) The mini-

mum resistance one should connect to the

terminals is obtained as follows:

VS

RS þ Rmin

¼ Imax ) Rmin ¼ VS

Imax

� RS ¼ 4O:

Example 5.8. In Fig. 5.8, the maximum

instantaneous power the source VS can deliver

is 50 W. What is the maximum possible cur-

rent through the source? What is the minimum

allowable value of the resistance R2?

Solution: The maximum possible current

through the source is

RS

VS

a

+
–

b
VS = 24V, RS = 8 ΩFig. 5.7 See Example 5.7

R1 R2

RS

VS
+
–

VS = 25V, RS = 5 Ω, R1 = 100 Ω

Fig. 5.8 See Example 5.8
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Imax ¼ pmax

VS
¼ 50W

25V
¼ 2A:

The actual current through the source is

given by

I ¼ VS

RS þ R1 R2k :

It follows that

RS þ R1 R2kð Þmin ¼
VS

Imax

¼ 25V

2A
¼ 12:5O

and

R1 R2kð Þmin ¼
R1 R2ð Þmin

R1þ R2ð Þmin

¼ 12:5O�RS

¼ 7:5O¼R;

which yields

R2ð Þmin ¼
R1R

R1�R
¼ 100Oð Þ 7:5Oð Þ

100O�7:5O
ffi 8:12O:

5.5 Available Power

A physical source can be modeled using either the

Thévenin or Norton equivalent for the source at

the source terminals, as illustrated by Fig. 5.9. If

VOC; ISC denote the open-circuit voltage and short-

circuit current, respectively, at the terminals of the

source, then

VS ¼ VOC; RS ¼ VOC

ISC
; IS ¼ ISC: (5.14)

A Thévenin or Norton source model is by its nature

peak-power limited. To show this, we consider the

circuit in Fig. 5.10, where the power delivered to the

load RL by the Thévenin source model is given by

PL ¼ VL
2

RL
¼ 1

RL

VSRL

RS þ RL

� �2

¼ VS
2RL

RS þ RLð Þ2 : (5.15)

The power delivered to the load equals zero for

both RL ¼ 0 and RL ! 1, so must have a maximum

value, which we can find by solving

dPL

dRL
¼ 0 ) d

dRL

VS
2RL

RS þ RLð Þ2
" #

¼ VS
2

RS þ RLð Þ2 �
2VS

2RL

RS þ RLð Þ3 ¼ 0: (5.16)

Thus the load resistance that draws maximum

power from the source is RL ¼ RS, and the maximum

power that can be drawn from the source is given by

PL max ¼ VS
2RS

RS þ RSð Þ2 ¼
VS

2

4RS
: (5.17)

In other words, the Thévenin source model is peak

power limited. The maximum power that can be

drawn from the source, given by (5.17), is called

the available power for the source. The resistance

RS is called the internal resistance of the source.

These important quantities are discussed at length in

Section 5.16.

Exercise 5.7. Show without using (5.17) that

the available power for a Norton source model

is given by

a

b

source ⇒

Norton source model

Thévenin source model

a

a

b

b

RS

RS

VS

IS

+
–

Fig. 5.9 Equivalent source models, where VS ¼ RSIS

RS
RLVS

VL

+

–

+
–

Fig. 5.10 Pertaining to the definition of available power (see

(5.17))
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PLmax ¼ IS
2RS

4
: (5.18)

Exercise 5.8. A certain fully-charged battery

has an open-circuit terminal voltage of 12.6V

and an internal resistance of approximately

0.1O. Draw circuit diagrams for the Thévenin

and Norton models for the battery. What is the

maximum power that can be drawn from the

battery? What is the maximum current that can

be drawn from the battery?

Exercise 5.9. The power available from a

certain source is 50W. A 10O load draws

1A from the source, where positive current

exits the positive terminal of the source. Obtain

the Thévenin and Norton models for the

source.

5.6 Time Averages

In most circuit applications, average power dissipated

(or delivered) is of more interest than instantaneous

power. Household light bulbs, electric heaters, electric

water heaters, electric generators, electric motors,

audio amplifiers, radio transmitters, and a host of

other devices, circuits, and systems are rated according

to average power dissipated or delivered, not instanta-

neous power.

Intuitively, average power dissipated over an

interval is the total work done in the interval, divided

by the duration of the interval. For average power to

be meaningful, the averaging interval must be long

enough to obtain a true average; that is, the duration

of the interval must be such that increasing the dura-

tion yields no significant change in the calculated

average power. Physical instruments that measure

average power must use a finite interval. Otherwise,

a measurement could never be completed. But using

mathematical models for physical currents and

voltages, we can calculate average power over an

infinite interval, which is easier than attempting to

decide how long to make the interval based upon

knowledge of each particular instantaneous power

of interest.

Average current and voltage, such as the average

voltage produced by a power supply and the average

current provided by a battery charger, also are of

interest. Average currents and voltages also are of

considerable importance in electronic circuits, as you

will find when you study that subject.

In this section, we introduce time averages in

general. We describe how one computes the average

value of a function of time, regardless of whether

the function represents power, current, voltage, or

other physical quantity. The relations developed in

this section are used repeatedly in subsequent sections

and chapters, and most likely in subsequent courses

and later, in practice.

The time average of a function of time x(t) is

denoted by x and is defined by

x ¼ lim
T!1

1

T

ðT
0

xðtÞ dt: (5.19)

Note: In some texts, and probably in later

work, you will see the time average of a func-

tion defined as

x ¼ lim
T!1

1

T

ðT=2
�T=2

xðtÞ dt: (5.20)

It is easy to cook up functions for which

the two definitions give different results; for

example,

xðtÞ ¼ 5V; t � 0;

10V; t > 0:

(
:

For functions that are either constant or

periodic, the two definitions give identical

results, in which cases (5.19) is often easier

to apply than (5.20). Also, (5.19) is more con-

sistent with measurements, which must begin

at some finite time.
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The dimension of an average is that of the quantity

averaged; e.g., if x(t) in (5.19) is a voltage, the dimen-

sion of the average x is voltage. Because time averages

are the only averages we use, we refer to the right side

of (5.19) as simply the average of x(t).
Two specific averages are especially useful. First,

the average of a constant is the constant itself:

a ¼ a: (5.21)

Second, the average of a sinusoid equals zero:

cos o tþ yð Þ ¼ 0; o 6¼ 0: (5.22)

Equation (5.21) is obtained from (5.19) as follows:

Because a is independent of time,

lim
T!1

1

T

ðT
0

a dt ¼ lim
T!1

1

T
a t½ �t¼T

t¼0 ¼ lim
T!1

1

T
a T½ �

¼ lim
T!1

að Þ ¼ a:

Equation (5.22) is obtained from (5.19) as follows:

lim
T!1

1

T

ðT
0

cos o tþyð Þdt¼ lim
T!1

1

T

1

o
sin o tþyð Þ

� 	t¼T

t¼0

¼ lim
T!1

1

T

1

o
sin oTþyð Þ � 1

o
sin yð Þ

� 	
¼ 0:

because (for o 6¼ 0) the quantity in the brackets is

finite.

The time average of a function of time exists if the

function is bounded; i.e., if xðtÞj j<1 for all values of

time t.9 We are concerned only with averages of func-

tions representing physical currents, voltages, and

powers, all of which are bounded. Furthermore, in

this introductory treatment, we are concerned only

with averages of constant and periodic functions.

You might learn more about time averages in general

in subsequent courses.

Two useful properties of averages in general follow

immediately from (5.19):

First, if a is a constant

a x ¼ a x: (5.23)

In words, the average of the product of a constant

and a function of time is the product of the constant

and the average of the function of time. Equation

(5.23) follows from the fact that the constant a can

be taken outside both the integral and the limiting

operation in (5.19). Second, if x1; x2; 	 	 	 ; xN denote

functions of time, then

x1 þ x2 þ 	 	 	 þ xN ¼ x1 þ x2 þ 	 	 	 þ xN: (5.24)

In words, the time average of a sum of functions

equals the sum of the time averages of the functions.

Equation (5.24) follows from the fact that both inte-

gration and limiting distribute over a sum.

In addition to the relations given above, a few

trigonometric identities are useful in finding averages

of sinusoidal functions of time, as illustrated by the

following examples.

Example 5.9. Obtain an expression for the

average value of xðtÞ ¼ cos2 o tþ yð Þ, where

o>0 and y is a constant but otherwise arbitrary

angle.

Solution: We use the identity

cos2ðaÞ � 1

2
þ 1

2
cos 2 að Þ

to obtain

xðtÞ ¼ cos2 o tþ yð Þ ¼ 1

2
þ 1

2
cosð2o tþ 2 yÞ:

From (5.24),

�x¼ 1

2
þ1

2
cosð2o tþ2yÞ¼ 1

2
þ1

2
cosð2o tþ2yÞ:

From (5.21),

1

2
¼ 1

2
:

From (5.23) and (5.22),
9This condition is more stringent than necessary, but in this

book, we do not need to compute time averages of functions

not satisfying the condition.
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1

2
cosð2o tþ 2 yÞ ¼ 1

2
cosð2o tþ 2 yÞ ¼ 0:

Thus

�x ¼ cos2ðo tþ yÞ ¼ 1

2
:

Exercise 5.10. Obtain an expression for the

average of xðtÞ ¼ sin2 o tþ yð Þ, where o>0

and y is a constant but otherwise arbitrary

angle. You may use the result obtained in

Example 5.9.

Example 5.10. Obtain an expression for the

average of xðtÞ ¼ cos o tþ y1ð Þ cos o tþ y2ð Þ,
where o>0 and y1; y2 are constant but other-

wise arbitrary angles.

Solution: We use the identity

cosðaÞ cosðbÞ � 1

2
cosðaþ bÞ þ 1

2
cosða� bÞ

to obtain

xðtÞ ¼ cosðo tþ y1Þ cosðo tþ y2Þ

� 1

2
cosð2o tþ y1 þ y2Þ þ 1

2
cosðy1 � y2Þ:

From (5.24),

�x ¼ 1

2
cosð2o tþ y1 þ y2Þ þ 1

2
cosðy1 � y2Þ

¼ 1

2
cosð2o tþ y1 þ y2Þ þ 1

2
cosðy1 � y2Þ:

From (5.23) and (5.22),

1

2
cosð2o tþ y1 þ y2Þ

¼ 1

2
cosð2o tþ y1 þ y2Þ ¼ 0:

From (5.21),

1

2
cosðy1 � y2Þ ¼ 1

2
cosðy1 � y2Þ;

because y1 � y2 is a constant. Thus

�x¼ cosðo tþy1Þ cosðo tþy2Þ¼ 1

2
cosðy1�y2Þ:

Exercise 5.11. Obtain an expression for the ave-

rage of xðtÞ ¼ cos o tþ y1ð Þ þ cos o tþ y2ð Þ½ �2,
whereo>0 and y1; y2 are constant but otherwise
arbitrary angles.

Exercise 5.12. Show by example that if x1; x2
are both functions of time, then

x1x2 6¼ x1 x2:

That is, show that the average of the product

of two functions is in general not equal to the

product of the average values.

Example 5.11. Obtain an expression for the

average of xðtÞ¼ cos o1 tþy1ð Þþcos o2 tþy2ð Þ,
where o2>o1>0 and y1 ;y2 are constant but

otherwise arbitrary angles.

Solution: We use the identity

cos að Þ cos bð Þ � 1

2
cos aþ bð Þ þ 1

2
cos a� bð Þ

to obtain

x ¼ cos o1 tþ y1ð Þ cos o2 tþ y2ð Þ

� 1

2
cos o1 þ o2ð Þ tþ y1 þ y2½ �

þ 1

2
cos o1 � o2ð Þ tþ y1 � y2½ �:

From (5.24) and (5.23)
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�x ¼ 1

2
cos o1 þ o2ð Þ tþ y1 þ y2½ �

þ 1

2
cos o1 � o2ð Þ tþ y1 � y2½ �:

From (5.22), the last two terms equal zero

because o1 6¼ o2. Thus

x¼ cos o2 tþy1ð Þcos o1 tþy2ð Þ¼0; o1 6¼o2:

Exercise 5.13. Obtain an expression for the

average of xðtÞ¼ cos o1tþy1ð Þþcos otþy2ð Þ½ �2,
where o2>o1>0 and y1;y2 are constant but

otherwise arbitrary angles.

Results obtained in Example 5.9, Example 5.10 and

Example 5.11 are collected below for future reference.

cos2ðo tþyÞ¼ 1

2
; o 6¼ 0;

cosðo tþy1Þ cosðo tþy2Þ¼ 1

2
cosðy1�y2Þ; o 6¼ 0;

cos o2 tþy1ð Þcos o1 tþy2ð Þ¼ 0; o1 6¼o2:

(5.25)

5.7 Average Power

The average power dissipated by a two-terminal ele-

ment is conventionally denoted by P rather than p, and
is defined by

P ¼ p ¼ v i: (5.26)

In (5.26), p is the instantaneous power dissipated by
the element and v and i are the instantaneous voltage

across and current through the element. Average

power is conserved, as can be shown by applying

(5.24) to (5.11).

Equation (5.26) applies to any two-terminal

element. From (5.26) and Ohm’s law, the average
power dissipated by a resistor having resistance

R is given by

P ¼ v i ¼ R i2 ¼ R i2 or P ¼ v i ¼ 1

R
v2 ¼ 1

R
v2;

(5.27)

where i and v are the current through and voltage

across the resistor. The quantities i2 and v2 are called

themean squared amplitudes of the current i and the

voltage v, respectively.10

If the current through a resistor is a constant given

by i ¼ I0, then from (5.6), the instantaneous power

dissipated by the resistor is a constant given by

p ¼ I0
2 R, where R is the resistance of the resistor.

It follows that if a resistor having resistance R is

subjected to a constant current i ¼ I0 or a constant
voltage v ¼ V0, the instantaneous power dissipated,

the peak power dissipated, and the average power

dissipated are equal and given by

p ¼ p̂ ¼ P ¼ I0
2 R or p ¼ p̂ ¼ P ¼ V0

2

R
: (5.28)

Example 5.12. The voltage across a 100 O
resistor is 24 V. From (5.6), the instantaneous

power dissipated is

p ¼ V I ¼ V
V

R
¼ V2

R

¼ ð24VÞ2
100O

ffi 5:76W:

(5.29)

From (5.28), the average power dissipated

and peak power dissipated are

P ¼ p̂ ffi 5:76W (5.30)

From (5.27) and (5.25), the average power

dissipated by a resistor having resistance R subjected

to a sinusoidal current or voltage is given by

10In this context, mean is a synonym for average.
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iðtÞ ¼ I0 cos o tþ yð Þ ) P ¼ R I0
2cos2 o tþ yð Þ

¼ I0
2 R

2
;o 6¼ 0;

vðtÞ ¼ V0 cos o tþ yð Þ ) P ¼ 1

R
V0

2cos2 o tþ yð Þ

¼ V0
2

2R
; o 6¼ 0:

(5.31)

Example 5.13. The voltage at the terminals of

a certain 1500W electric heater when the heater

is operating is

vðtÞ ¼ V0 cos 2 p f tð Þ; V0 ¼ 165V:

Find the hot resistance of the heater element.

Solution: From (5.31),

P ¼ V0
2

2R
¼ 1500W ) R ¼ V0

2

2P
¼ 165Vð Þ2

2ð Þ 1500Wð Þ
ffi 9:08O:

Exercise 5.14. The current through a resistor

having resistance R ¼ 15O is given by

i ¼ I0 cosð2pf tÞ;

with I0 ¼ 10 A and f ¼ 60 Hz. Find the instan-

taneous power, the peak power, and the aver-

age power dissipated by the resistor.

Example 5.14. Obtain expressions for the aver-

age powers dissipated by the elements in the

circuit shown in Fig. 5.11.

Solution: By the definition of an ideal current

source, the current through the resistor equals

i0. From (5.31), the average power dissipated by

the resistor is given by

PR ¼ I0
2 R

2
:

The current entering the positive terminal of

the voltage source is i0. Thus (passive sign con-

vention) the average power dissipated by the

voltage source is given by

Pv ¼ v0 i0 ¼ V0 I0 cos o tð Þ cos o tþ yð Þ:

From (5.23) and (5.25),

Pv ¼ V0 I0 cos o tð Þ cos o tþ yð Þ ¼ V0 I0
2

cos yð Þ:

By Kirchhoff’s voltage law, the voltage vi
across the current source is given by

� v0 � R i0 þ vi ¼ 0 ) vi ¼ v0 þ R i0:

The current i0 exits the terminal designated as

positive in the definition of vi, so the average

power dissipated by the current source (passive

sign convention) is given by

Pi ¼ �vi i0 ¼ � v0 þ R i0ð Þ i0 ¼ � v0 i0 � R i0
2:

From (5.24) and results already obtained,

Pi ¼ �v0 i0 � R i0
2 ¼ �Pv � PR

¼ �V0 I0
2

cos yð Þ � I0
2 R

2
;

as expected, because total average power is

conserved.

Exercise 5.15. Obtain expressions for the

average powers dissipated by the elements in

the circuit shown in Fig. 5.12.

+

–

R
vii0

+
–

i0 = I0 cos (wt+ q)
v0 = V0 cos (wt)
w > 0

v0

Fig. 5.11 See Example 5.14
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Figure 5.13 shows a graph of instantaneous power

for a sinusoidal voltage applied to a resistor. Indicated

on the figure are the peak power p̂ ¼ V0
2=R and

the average power P ¼ V0
2=ð2RÞ. For a sinusoidal

current or voltage applied to a resistor, the average

power equals one-half of the peak power.

In summary, the instantaneous power p, the peak

power p̂, and the average power P dissipated by

a resistor having resistance R and subjected to a

sinusoidal current iðtÞ ¼ I0 cos o tþ yð Þ or sinusoidal
voltage vðtÞ ¼ V0 cos o tþ yð Þ are given by

p¼ I0
2R

2
1þcos 2otð Þ½ �; p̂¼ I0

2R; P¼ p̂

2
¼ I0

2R

2

or

p¼V0
2

2R
1þcos 2otð Þ½ �; p̂¼V0

2

R
; P¼ p̂

2
¼V0

2

2R

9>>>>>=
>>>>>;
o>0:

(5.32)

Equation (5.32) applies only when the applied cur-

rent or voltage is sinusoidal and the resistance R is
independent of both time and applied current or volt-

age. It is not difficult to err in this regard. The most

common error is applying (5.32) to a resistor subjected

to a non-sinusoidal current or voltage. As an example

of a more subtle error, consider an ordinary incandes-

cent light bulb driven by a fixed-amplitude sinusoidal

voltage source. The resistance of the light-bulb fila-

ment is larger when the filament is hot than when cold.

If the frequency of the applied voltage is sufficiently

large, the filament does not cool significantly between

peaks of the applied voltage, the resistance of the

filament remains nearly constant (at the hot value),

and the average power delivered to the bulb is given

by (5.32). But if the frequency of the applied voltage is

sufficiently low, the bulb varies between bright and

dark, the resistance of the filament varies between hot

and cold (or warm) values, and the average power

applied to the bulb cannot be computed using (5.32).

In such a case, we might express the resistance as a

function of the applied current, which is a function of

time, and calculate the average value of the instanta-

neous power p ¼ i2ðtÞR iðtÞ½ �, but such problems are

beyond the scope of this book.

Example 5.15.
(a) Obtain expressions for the instantaneous

power dissipated (passive sign convention)

by each element in the circuit shown in

Fig. 5.14.

(b) Let v ¼ V0 ¼ 5V; i ¼ I0 ¼ 2mA and cal-

culate the peak and average powers

dissipated by each element.

(c) Let v0 ¼ V0 cos o tð Þ, i0 ¼ I0 cos o tð Þ,
with V0 ¼ 5V, I0 ¼ 2mA, and o>0.

Calculate the peak and average powers

dissipated by each element.

Solution:

(a) We first obtain expressions for the current

through and voltage across each element.

Kirchhoff’s current law yields

i1R1 R2i0

i0 = I0 cos (wt)
i1 = I1 cos (w t + q)
w > 0

Fig. 5.12 See Exercise 5.15

1
2f0

1
f0

3
2f0

t

V0
2

p̂ =
R

V0
2

P =
2R

0

0

p(t) =      cos2 (2π f0 t)
V0

2

R

Fig. 5.13 An illustration of the definitions of peak power and

average power

i0v0

ref

i2i1 aR1

R2
+
–

R1 = 1k Ω
R2 = 5k Ω

Fig. 5.14 See Example 5.15
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va � v0
R1

� i0 þ va
R2

¼ 0

) va ¼ R2 v0 þ R1 i0ð Þ
R1 þ R2

;

whence

i1 ¼ va � v0
R1

¼ R2 v0 þ R1 i0ð Þ
R1 R1 þ R2ð Þ � v0

R1

¼ R2 i0 � v0
R1 þ R2

; i2 ¼ va
R2

¼ v0 þ R1 i0
R1 þ R2

:

:

Let pv denote the power dissipated by the

voltage source, pi denote the power dissipated
by the current source, p1 the power dissipated

by resistor R1, and p2 the power dissipated by

resistor R2. The instantaneous powers dissi-

pated are given by

pv ¼ v0 i1 ¼ v0
R2 i0 � v0
R1 þ R2

� �
;

pi ¼ �i0 va ¼ �i0
R2 v0 þ i0 R1ð Þ

R1 þ R2

� 	
;

p1 ¼ i1
2 R1 ¼ R2 i0 � v0

R1 þ R2

� �2

R1;

p2 ¼ i2
2 R2 ¼ v0 þ R1 i0

R1 þ R2

� �2

R2:

(b) Because both sources are constant, all

currents or voltages in the circuit are con-

stant. Thus the instantaneous, peak, and

average powers dissipated by each compo-

nent are the same. From part (a) above,

pv¼ p̂v ¼ Pv ¼ V0
R2 I0 � V0

R1 þ R2

� �

¼ 5Vð Þ 5 kOð Þ 2mAð Þ � 5V

1 kOþ 5 kO

� 	
ffi 4:17 mW;

pi ¼ p̂i ¼ Pi ¼ �I0
R2 V0 þ I0 R1ð Þ

R1 þ R2

� 	

¼ �2mAð Þ 5 kO½ � 5Vþ 2mAð Þ 1 kOð Þ½ �
1 kOþ 5 kO


 �
ffi �11:67mW;

p1¼ p̂1 ¼ P1 ¼ i1
2 R1 ¼ R2 I0 � V0

R1 þ R2

� �2
R1

¼ 5 kOð Þ 2mAð Þ � 5V

1 kOþ 5 kO

� 	2
1 kOð Þ

ffi 694 mW;

p2¼ p̂2 ¼ P2 ¼ i2
2 R2 ¼ V0 þ R1 I0

R1 þ R2

� �2
R2

¼ 5Vþ 1 kOð Þ 2mAð Þ
1 kOþ 5 kO

� 	2
5 kOð Þ

ffi 6:81mW:

(c) From part (a), the instantaneous powers

dissipated are

pv ¼ V0 cos o tð Þ

� R2 I0 cos o tð Þ � V0 cos o tð Þ
R1 þ R2

� �

¼ V0

R2 I0 � V0

R1 þ R2

� �
cos2 o tð Þ

¼ V0

2

R2 I0 � V0

R1 þ R2

� �
1þ cos 2o tð Þ½ �

ffi 2:08 1þ cos 2o tð Þ½ � mW;

pi ¼ �I0 cos o tð Þ

� R2 V0 cos o tð Þ þ I0 cos o tð ÞR1ð Þ
R1 þ R2

� 	

¼ �I0
R2 V0 þ R1I0ð Þ

R1 þ R2

� 	
cos2 o tð Þ

¼ � I0
2

R2 V0 þ R1I0ð Þ
R1 þ R2

� 	

� 1þ cos 2o tð Þ½ �
¼ �5:83 1þ cos 2o tð Þ½ �mW;

p1¼ R2 I0 cos o tð Þ � V0 cos o tð Þ
R1 þ R2

� �2

R1

¼ R2 I0 � V0

R1 þ R2

� �2

R1cos
2 o tð Þ

¼ 1

2

R2 I0 � V0

R1 þ R2

� �2

R1 1þ cos 2o tð Þ½ �

ffi 347 1þ cos 2o tð Þ½ �mW;
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and

p2 ¼ V0 cos o tð Þ þ R1 I0 cos o tð Þ
R1 þ R2

� �2

R2

¼ V0 þ R1 I0
R1 þ R2

� �2

R2 cos2 o tð Þ

¼ 1

2

V0 þ R1 I0
R1 þ R2

� �2

R2 1þ cos 2o tð Þ½ �

ffi 3:40 1þ cos 2o tð Þ½ �mW:

The peak and average powers are [see

(5.32)]

p̂v ffi 4:17mW; p̂i ffi �11:67mW;

p̂1 ffi 694 mW; p̂2 ffi 6:81mW;

and

Pv ffi 2:08mW; Pi ffi �5:83mW;

P1 ffi 347 mW; P2 ffi 3:40mW;

respectively.

All physical circuit components are peak-power-

limited and average-power limited. Typically, the

average power a component can dissipate is less than

the (short-term) peak power the component can dissi-

pate. For example, an audio amplifier rated at 100 W

might be able to provide as much as 150 W for a short

time (a few milliseconds), but cannot provide more

than 100 W on average (over a long time).

5.8 Root Mean Squared (RMS)
Amplitude of a Current or Voltage

The root mean squared amplitudes (rms amplitude)

of a current and voltage are denoted by the subscript

rms and are defined by

Irms ¼
ffiffiffiffiffiffiffiffiffi
i2ðtÞ

q
; Vrms ¼

ffiffiffiffiffiffiffiffiffiffi
v2ðtÞ

q
: (5.33)

We use upper-case letters to denote rms amplitudes

because an rms amplitude is independent of time.

Thus Irms denotes the rms amplitude of i tð Þ, Vrms

denotes the rms amplitude of v tð Þ, I1 rms denotes the

rms amplitude of i1 tð Þ, and so on. The dimension of

the rms amplitude of a current or voltage is current or

voltage, respectively.

The rms amplitude of a current or voltage is the

positive square root of the mean (average) of the

squared current or voltage. The order of the operations

is important: First square the current or voltage, then

compute the average, then take the positive square root.

In general, these operations are not interchangeable.

Example 5.16. Obtain an expression for the

rms amplitude of a constant current i ¼ I0,

where I0 might be positive or negative.

Solution: From (5.21), the mean squared

amplitude is

i2 ¼ I0
2 ¼ I0

2:

From (5.33), the rms amplitude is

Irms ¼
ffiffiffiffiffiffi
I0

2
p

¼ I0j j:

Example 5.17. Obtain an expression for

the rms amplitude of a sinusoidal voltage

v ¼ V0 cos o tþ yð Þ.
Solution: From (5.25), the mean squared

amplitude of a sinusoidal voltage having peak

amplitude V0j j is given by

v2 ¼ V0
2 cos2 o tþ yð Þ ¼ V0

2

2
:

From (5.33), the rms amplitude of a sinu-

soidal voltage having peak amplitude V0j j is
given by

Vrms ¼
ffiffiffiffiffiffiffiffiffiffi
v2ðtÞ

q
¼

ffiffiffiffiffiffiffi
V0

2

2

s
¼ V0j jffiffiffi

2
p :
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Example 5.17 shows that the rms amplitudes of

a sinusoidal current and a sinusoidal voltage are

given by

iðtÞ ¼ I0 cos o tþ yð Þ ) Irms ¼ I0j jffiffiffi
2

p

vðtÞ ¼ V0 cos o tþ yð Þ ) Vrms ¼ V0j jffiffiffi
2

p

9>>=
>>;o>0: (5.34)

The mean squared and rms amplitudes of a sinusoi-

dal current or voltage having frequency o > 0 are

independent of both the frequency o and the initial

phase y of the current or voltage. Equation (5.33)

applies to any current or voltage. Equation (5.34)

applies only to sinusoidal currents and voltages.

Because the rms amplitude of a sinusoidal current or

voltage is independent of the initial phase of the cur-

rent or voltage (of the angle y in (5.34)), the rms

amplitude of a sinusoidal current or voltage is inde-

pendent of the algebraic sign of the current or voltage

and of whether the current or voltage is expressed as a

cosine or sine; for example,

vðtÞ ¼ V0 sin o tþ yð Þ ¼ V0 cos otþ y� p=2|fflfflfflffl{zfflfflfflffl}
y0

0
B@

1
CA

) Vrms ¼ V0j jffiffiffi
2

p :

Exercise 5.16. Give the rms amplitude of

each of the following: (a) i tð Þ ¼ �25mA, (b)

vðtÞ ¼ 5V, (c) v tð Þ ¼ �10 cos 2p f tþ p=4ð ÞV,
(d) i tð Þ ¼ 10 sin 2p f t� p=4ð ÞmA:

In general, rms amplitudes are not additive,

because (in general)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v1 þ v2ð Þ2

q
6¼

ffiffiffiffiffiffi
v12

q
þ

ffiffiffiffiffiffi
v22

q
: (5.35)

For example, if V ¼ V1 þ V2, where V1 ¼ 5V and

V2 ¼ �5V, then V ¼ V1 þ V2 ¼ 0 and Vrms ¼ 0

whereas V1 rms þ V2 rms ¼ 10V.

5.9 Average Power Dissipated
in a Resistive Load

From (5.33), Irms
2 ¼ i2 and Vrms

2 ¼ v2, so we may

express the power dissipated by a resistive load as

P ¼ Irms
2 R or P ¼ Vrms

2

R
: (5.36)

Under the passive sign convention, the power

dissipated by a resistor is positive. Thus, from (5.36),

the average power dissipated by a resistor having

resistance R also can be expressed as

P ¼
ffiffiffiffiffi
P2

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vrms

2

R

� �
Irms

2 R
� �s

¼ Vrms Irms; (5.37)

where Irms and Vrms are the rms amplitudes of the

current through and voltage across the resistor. Equa-

tions (5.36) and (5.37) apply (in general) only to
resistive loads and to power delivered by a source.

Example 5.18. Refer to Fig. 5.15, where

i0 ¼ I0 cos o tð Þ and v0 ¼ V0 cos o tð Þ, with

o> 0. Obtain expressions for the rms ampli-

tudes of vR; v1; iR. Then obtain expressions for

the average powers dissipated in the resistors.

Solution: Kirchhoff’s current law gives

v1
R
þ v1 � v0

R
� i0 ¼ 0

) v1 ¼ Ri0 þ v0
2

¼ RI0 þ V0

2
cos o tð Þ;

whence

V1 rms ¼ RI0 þ V0j j
2
ffiffiffi
2

p :

It follows that

iR ¼ v1
R

) IR rms ¼ V1 rms

R
¼ RI0 þ V0j j

2
ffiffiffi
2

p
R

and
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vR ¼ v0 � v1 ¼ V0 � RI0
2

cos o tð Þ

) VRrms ¼ V0 � RI0j j
2
ffiffiffi
2

p :

The average power dissipated in the resistor

on the left is given by

P1 ¼ VRrms
2

R
¼ V0 � RI0ð Þ2

8R
:

The average power dissipated in the resistor

on the right is given by-

P2 ¼ V1 rms
2

R
¼ RI0 þ V0ð Þ2

8R

and by

P2 ¼ IR rms
2R ¼ RI0 þ V0

2
ffiffiffi
2

p
R

� �2

R ¼ RI0 þ V0ð Þ2
8R

:

Exercise 5.17. Refer to Fig. 5.15 and Example

5.17. Assume V0> 0; I0> 0. Obtain expres-

sions for the average powers dissipated by the

sources. Show that the total power dissipated

equals zero.

In the electric utility industry, where currents and

voltages are sinusoidal and where power is a primary

concern, it is convenient and conventional to specify

currents and voltages in terms of their rms amplitudes,

rather than peak amplitudes. For example, the voltage

available at a residential wall receptacle in North

America is commonly said to be 120 V, which actually

is the rms amplitude of a 60-Hz sinusoidal voltage

whose peak amplitude is approximately 170 V.

Using rms amplitudes in power calculations involving

sinusoidal currents and voltages avoids cluttering ex-

pressions with the factors1=2 and 1=
ffiffiffi
2

p
.

It follows from (5.36) that any two currents or

voltages having the same rms amplitudes deliver the

same average power to a resistive load, even if the

current or voltage waveforms are different. In other

words, two currents or two voltages having equal rms

amplitude are equally effective in delivering power to

a resistive load.11

Example 5.19. In the circuit shown in

Fig. 5.16, R ¼ 1:5 kO and

iðtÞ ¼ I0 cos 2 p f tð Þ; I0 ¼ 3mA:

Find the average powers dissipated by the

resistor and the source.

Solution: The rms amplitude of the current is

Irms ¼ I0j jffiffiffi
2

p ¼ 2:12 mA:

Thus the average power dissipated by the

resistor is

PR ¼ Irms
2 R ¼ 2:12� 10�3 A

� �2
1500Oð Þ

¼ 6:75 mW:

Because power is conserved, the average

power dissipated by the source (passive sign

convention) is

Pi ¼ �PR ¼ �6:75 mW:

R
R

iRv1+   vR    –

i0v0
+
–

Fig. 5.15 See Example 5.18

i R

Fig. 5.16 See Example 5.19

11For this reason, the rms amplitude of a current or voltage also

is called the effective value of the current or voltage; however,

this terminology is falling into disuse.
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5.10 Summary: Power Relations

Table 5.1 summarizes definitions and relations given

above.

5.11 Notation

Conventionally, rms is appended to the unit of a cur-

rent or voltage to denote rms amplitude; for example,

V ¼ 10 Vrms. However, keep in mind that Vrms and

Arms are not true units. For example, the relation

between rms amplitude and peak amplitude of a cur-

rent or voltage depends upon the waveform of the

current or voltage. Alternatively, we often use expres-

sions such as Vrms ¼ 10 V, which means that the rms

amplitude of v(t) is 10 V. We do not express time-

dependent currents or voltages using rms amplitudes

because rms amplitude is independent of time. For

example, we do not write expressions such as

irmsðtÞ ¼ 10 cos o tð Þ V. Moreover, we avoid expres-

sions such as vðtÞ ¼ ffiffiffi
2

p
Vrms cos o tð Þ, which is invalid

for o ¼ 0.

Other pseudo units you will encounter are Vac or

VAC, which are synonymous with Vrms, and Vdc or

VDC, which indicate a constant voltage. For example,

a nameplate rating of 120 VAC@ 60 Hz in and 5 VDC

out on small plug-in power supply means the supply

should be plugged into an outlet providing a 60 Hz

sinusoidal voltage having rms amplitude 120 V,

and that under that condition the output is a constant

voltage having amplitude 5 V. Such terminology is

common in practice, and you should understand it. But

in analysis and design, stick with precise terminology.

5.12 Measurement of RMS Amplitude

No instrument can take the limits specified by the

mathematical definitions

Irms ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lim
T!1

1

T0

ðT0
0

i2ðtÞdt
s

;

Vrms ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lim
T!1

1

T0

ðT0
0

v2ðtÞ dt
s

;

(5.38)

because such measurements would take forever. For-

tunately, we do not need to average forever to measure

the rms amplitude of a physical current or voltage. The

rms amplitude of a current or voltage can be measured

with any necessary precision by an instrument that

computes rms amplitude using an average over a finite
but sufficiently long interval. The required averaging

time T0 depends upon the nature of the current or

voltage and upon the required precision of the result.

For example, let i ¼ I0 cos o tð Þ. Then, for finite T0 a

measurement of rms amplitude yields

Table 5.1 Expressions for power dissipation in a resistor

Quantity General (Definition) Current through or voltage

across a resistor (any

waveform)

Constant current I0
through or voltage V0

across a resistor

Sinusoidal current I0 cos o tð Þ
through or voltage V0 cos o tð Þ
across a resistor

Instantaneous

power

p ¼ v i
p ¼ i2 R ¼ v2

R

p¼ I0
2 R

¼ V0
2

R
¼ V0 I0

p¼ I0
2 Rcos2 o tð Þ

¼ V0
2

R
cos2 o tð Þ

¼ I0 V0 cos
2 o tð Þ

Peak power p̂ ¼ max pj j p̂¼ R max i2
�� ��

¼ max v2
�� ��
R

p̂¼ I0
2 R

¼ V0
2

R
¼ V0 I0

p̂¼ I0
2 R ¼ V0

2

R

¼ V0 I0

Average

power
P ¼ lim

T!1
1
T

R T
0
p dt P¼ Irms

2 R

¼ Vrms
2

R
¼ Vrms Irms

P¼ I0
2 R

¼ V0
2

R
¼ V0 I0

P¼ I0
2 R

2
¼ V0

2

2R

¼ V0 I0
2
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Irms ffi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

T0

ðT0
0

i2ðtÞ dt
s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

T0

ðT0
0

I0
2 cos2 o tð Þ dt

s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I0

2

2 T0

ðT0
0

1þ cos 2o tð Þ½ � dt
s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I0

2

2 T0
T0 þ 1

2o
sin 2o T0ð Þ

� 	s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I0

2

2
þ I0

2

4o T0
sin 2o T0ð Þ

s

¼ I0j jffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sin 2o T0ð Þ

2o T0

s
: (5.39)

The factor I0j j= ffiffiffi
2

p
is the mean squared amplitude

(the desired result). Because sin 2o T0ð Þj j � 1, the

error (magnitude) is bounded as

ej j � I0j jffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

2o T0

r
� I0j jffiffiffi

2
p :

We assume 2o T0 � 1 and use the approximationffiffiffiffiffiffiffiffiffiffiffi
1þ x

p ffi 1þ x=2 to obtain

ej j � I0j jffiffiffi
2

p 1þ 1

4o T0

� �
� I0j jffiffiffi

2
p ¼ I0j j= ffiffiffi

2
p

4o T0
:

Thus the error expressed as a percent of the true

value is bounded as

ej jð%Þ � 100

4o T0
ffi 4

f T0

; (5.40)

where f is frequency in hertz (o ¼ 2p f ). For example,

if the magnitude of the error must be smaller than 1%

of the actual rms amplitude, we would require

4

f T0
< 1 ) T0 >

4

f
:

For any specified percent error, the required averag-

ing time decreases as the frequency is increased. A

longer averaging time is needed for a low-frequency

sinusoid than for a higher frequency one. Conversely, if

the averaging time T0 is fixed, increasing (decreasing)

the frequency of an applied current or voltage

increases (decreases) the accuracy of the measure-

ment. Again, the required averaging time depends

upon both the required precision of the result and

one or more properties of the current or voltage

(frequency, in this example).

More generally, to measure the rms amplitude of a

non-sinusoidal, time-varying current or voltage, we

need only average over a time much longer than the

duration of the most slowly varying component of

the current or voltage. For example, inspection of the

current waveform shown in Fig. 5.17 suggests that

the period of the most slowly varying component

of the waveform is (approximately) equal to the time

t1 shown on the graph. To measure the rms amplitude

of the current shown in Fig. 5.17, we would average

for a time much longer than t1.

Example 5.20. The averaging time employed

by a certain rms voltmeter is fixed and is such

that the maximum percent error in a measure-

ment of the rms amplitude of a 100 Hz sinu-

soidal voltage is 0.1%. What is the maximum

percent error in a measurement of the rms

amplitude of a 10 Hz sinusoidal voltage?

Solution: We use (5.40) to find the averaging

time:

4

f T0
¼ 0:1 ) T0 ¼ 40

f
¼ 40

100Hz
¼ 0:4 s:

We use (5.40) with T0 ¼ 0:4 s and

f ¼ 10Hz to obtain

max ej jð%Þ½ � ffi 4

f T0
¼ 4

10Hzð Þ 0:4 sð Þ ¼ 1%:

t1

t

i

Fig. 5.17 Pertaining to the time required to measure the rms

amplitude of a current or voltage (see text)
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Exercise 5.18. A certain rms voltmeter is

advertised as providing �0.1% accuracy for

sinusoidal voltages having frequencies from

10 Hz to 10 MHz. (a) What is the minimum

averaging time used by the voltmeter? (b) If

the error is�0.1% at 10 Hz, what is the error at

10 MHz? Assume that finite averaging time is

the only source of error.

Exercise 5.19. The rms amplitude of a certain

voltage is to be measured. If it is known that

the voltage is sinusoidal, is there a fast way to

perform the measurement that does not rely on

averages and provides high accuracy?

Finite averaging time is a significant source of rms

measurement error for low-frequency signals, but

diminishes in effect as frequency is increased (see

(5.40)). This does not mean that rms measurements

are arbitrarily precise for high-frequency signals, how-

ever, because finite averaging time is only one of

several sources of error. Other sources of error domi-

nate at high frequencies, where the error due to finite

averaging time is minimal. In fact, measurement accu-

racy generally increases with increasing frequency up

to a point, but then begins to fall as frequency is

increased further. Manufacturers of measurement

devices supply data sheets for their products which

specify the cumulative effects of the most significant

error sources at various frequencies. In practice, engi-

neers rely on these data sheets to determine the accu-

racy of a particular measurement.

5.13 Dissipation Derating

The ability of a resistor to safely dissipate power

generally decreases with increasing temperature. For

example, a ½ W resistor that can safely dissipate ½ W

when its temperature is 25�C might be able to safely

dissipate only ¼ W when its temperature is 120�C. In
practice, the power-dissipation ratings of resistors

(and other components) are reduced (derated) by a

percentage depending upon the expected maximum

operating temperature. Derating is based upon infor-

mation given on manufacturers’ data sheets. For

example, Fig. 5.18 shows part of the data sheet (high-

lights added) for a particular family of thick-film

resistors. The derating specification means that a

resistor from this family can dissipate at least 35 W

at case temperatures up to 25�C, but the power dissi-

pation rating decreases linearly above 25�C, reaching
zero at 150�C. Derating specifications also are often

presented graphically. For example, the derating

specification given in Fig. 5.18 can be presented

graphically, as in Fig. 5.19.

Example 5.21. Refer to Fig. 5.19. What is the

safe dissipation rating for a resistor of that

family if the operating (case) temperature is

75�C?
Solution: From the graph, the safe dissipation

rating is 21 W, or 60% of rated dissipation (at

25�C).

A resistor carrying current exhibits self heating due

to Joule’s law (P ¼ Irms
2R). The increase in tempera-

ture due to self heating is calculated using the self-
heating coefficient ’ defined by

’ ¼ DT
DP

; (5.41)

where DP is a change in power dissipated and DT is

the associated change in temperature. The self-heating

coefficient for a resistor is the reciprocal of the slope

of the derating characteristic. For temperatures above

25�C, the self-heating coefficient for a resistor having

the derating characteristic in Fig. 5.19 is

’ ¼ 150�C� 25�C
35W

¼ 3:57�CW�1: (5.42)

The operating temperature of a resistor is deter-

mined by adding the ambient (environmental) temper-

ature to the temperature increase due to self heating.

Once the operating temperature has been determined,

the resistor can be derated using the manufacturer’s

specifications.
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Example 5.22. A 13.9 O resistor having the

derating characteristic in Fig. 5.19 will carry

rms current Irms ¼ 1:00A. What is the maxi-

mum safe ambient temperature?

Solution: The power that must be safely

dissipated by the resistor is

P ¼ Irms
2R ¼ 1:00Að Þ2 13:9Oð Þ ¼ 13:9W:

From (5.42), the self-heating coefficient is

3:57�CW�1. Thus the temperature increase

due to self heating is

DT ¼ 3:57�CW�1
� �

10:0Wð Þ ¼ 35:7�C:
From Fig. 5.19, the maximum operating

temperature for which the resistor can safely

dissipate 13.9W is approximately T ¼ 100�C.
Thus the maximum safe ambient temperature is

TA ¼ T � DT ¼ 100�C� 35:7�C ¼ 76:3�C

Example 5.23. A particular application re-

quires a 5O resistor to carry rms current

Irms ¼ 2A in an environment where the ambi-

ent temperature is Ta ¼ 50�C. Can a 35W

Solder Process: The TDH35P
   cannot exceed 220°C (260°C
   for the TDH35H) for more than
   10 seconds during soldering
   process.

−55°C to +175°C
Working Temperature Range:

Electrical

Power Rating: Depends upon
   case temperature. See derating
   curve.

Max. Operating Voltage: 350V
Insulation Resistance: 10GΩ
   min.

Tolerance: ±1% to ±10%
   (0.5% on request)

Resistance Range: 0.05 Ω to
   10 KΩ other values on request

Material
Terminal: Copper
Terminal Plating: Lead Free
   Solder (97% Tin, 3% Silver)

S P E C I F I C A T I O N S

F E A T U R E S
35 Watt power rating at 25°C
SMD - DPAK package configura-
tion
Heat resistance to cooling plate:
Rth < 4.28°C / W
A molded case for environmental
protection.
Resistor element is electrically
insulated from the metal sink tab.

Inductance: less than 20 nano-
   henries
Flatness: less than 0.1mm toler-
   ance

Temperature Coefficient: 10 Ω
   and above, ±50ppm/°C, ref-
   erenced to 25°C, ΔR taken at
   +105°C. Between 1 and 10 Ω,
   ±(100ppm+0.002 Ω) / °C, refer-
   enced to 25°C, ΔR taken at
   +105°C. For under 10 Ω:
   0R6 - 9R9 ..... 100PPM
   0R4 - 0R59 ... 150PPM
   0R2 - 0R39 ... 250PPM
   0R1 - 0R19 ... 500PPM
   0R05 - 0R09 = 1000PPM

Operating Temperature Range:
   −55°C to +150°C

Dielectric Strength: 1,800VAC

Derating: 100% @ 25°C to 0% @
   150°C curve referenced to case
   temperature

Fig. 5.18 Extracted from the

data sheet for Ohmite’s TDH

series of 35 W thick-film

power surface mount resistors

(highlights added) (Courtesy

of Ohmite Manufacturing

Corporation)
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Fig. 5.19 Power dissipation derating specification for

Ohmite’s TDH series of 35 W thick-film power surface mount

resistors, expressed graphically

136 5 Work and Power



resistor having the derating characteristic in

Fig. 5.19 be used in this application?

Solution: The power to be dissipated is

P ¼ Irms
2R ¼ 2Að Þ2 5Oð Þ ¼ 20W:

From (5.42), the self-heating coefficient is

’ ¼ 3:57�CW�1. Thus the temperature in-

crease due to self heating is

DT ¼ ’P ¼ 3:57�CW�1
� �

20Wð Þ ¼ 71:4�C:

The operating temperature is

T ¼ Ta þ DT ¼ 50�Cþ 71:4�C ¼ 121:4�C:

From Fig. 5.19, the maximum safe dissipa-

tion at this temperature is only slightly more

than 7W, whereas the required dissipation is

20W. We must look for a resistor having a

larger power rating or a smaller self-heating

coefficient (or both). Alternatively, we might

use some kind of forced cooling, which can be

expensive but is often necessary.

Example 5.24. The power-dissipation rating for

a certain resistor is 250 mW at 25�C, derated
linearly to zero at 125�C. (a) What is the self-

heating coefficient for this resistor? (b) What is

the power-dissipation rating at 100�C? (c) Draw
a graph of permissible power dissipation versus

temperature for this resistor.

Solution: (a) From (5.41), the self-heating coeffi-

cient is

’ ¼ DT
DP

¼ 125� 25ð Þ�C
0:25� 0ð ÞW ¼ 400�CW�1: (5.43)

(b) For an operating temperature of 100�C, the
temperature increase above the rated operating

temperature is DT ¼ 100�C� 25�C ¼ 75�C and

the corresponding decrease in permissible power

dissipation is given by:

DP ¼ DT
’

¼ 75�C
400�CW�1

ffi 188mW:

Thus the permissible power dissipation at

100�C is 250� 188mW ¼ 62mW.

(c) Figure 5.20 shows a graph of power-dissi-

pation rating versus temperature.

Resistance varies with temperature, and operating

temperature is one of the two main sources of uncer-

tainty regarding the resistance of a resistor. The other

is the initial tolerance, which is the precision of the

nominal resistance at the temperature corresponding to

rated power dissipation, often 25�C. Initial tolerance
can range from �20% for some carbon-composition

resistors down to �0.05% or less for high-precision

resistors.

From Chapter 2, resistance R as a function of tem-

perature T is given by

R ¼ R0 1þ a0 T � T0ð Þ½ �; (5.44)

where R0 is the resistance at temperature T0 and a0 is
the temperature coefficient of resistance (TCR) at

that temperature. For present purposes, the tempera-

ture of a resistor is given by T ¼ TA þ DT, where TA
is ambient temperature and DT is the temperature

increase due to self heating, given by DT ¼ ’P

¼ ’Irms
2R0, where ’ is the self-heating coefficient

and Irms is the rms current through the resistor. Using

these relations in (5.44) gives
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R ¼ R0 1þ a0 TA þ ’Irms
2R0 � T0

� � �
: (5.45)

It follows that the error due to operating tempera-

ture is given by

DR ¼ R0a0 TA þ ’Irms
2R0 � T0

� �
: (5.46)

Thus the effective tolerance (%) is given by

b ¼ b0 þ 100
DR
R0

¼ b0 þ 100a0 TA þ ’Irms
2R0 � T0

� �
; (5.47)

where b0 is the initial tolerance (%).

Example 5.25. A certain resistor has resis-

tance R0 ¼ 100 kO� 5% and temperature

coefficient of resistance a0 ¼ 0:001�C�1, both

at 25�C. The power-dissipation rating is

250 mW at 25�C, derated linearly to zero at

100�C. The rms current through the resistor is

Irms ¼ 1mA and the ambient temperature is

TA ¼ 40�C. (a) What is the operating tempera-

ture of the resistor? (b) What are the resistance

and effective tolerance at that temperature? (c)

What is the power-dissipation rating at the

operating temperature?

Solution: (a) The self-heating coefficient is

’ ¼ DT
DP

¼ 100� 25ð Þ�C
0:250ð ÞW ¼ 300�CW�1:

The temperature increase DT due to self

heating is given by

DT ¼ ’DP ¼ ’Irms
2R0

¼ 300�CW�1
� �

1mAð Þ2 100 kOð Þ ¼ 30�C:

The operating temperature is T ¼
TA þ DT ¼ 40�Cþ 30�C ¼ 70�C.

(b) The resistance at that temperature is

R ¼ R0 1þ a0 Tð Þ
¼ 100 kOð Þ 1þ 0:001�C�1

� �
70�Cð Þ �

¼ 107 kO;

so the percent error due to heating alone is 7%.

The effective tolerance is the sum of the error

due to heating and the initial tolerance.

effective tolerance ¼ 5%þ 7% ¼ 12%:

(c) For temperatures above 25�C, the power
dissipation must be derated. The permissible

dissipation is expressed as a percentage of the

25�C rating by

D ¼ 100 1� T � 25�C
Tmax � 25�C

� �
; Tmax ¼ 100�C:

Thus

D ¼ 100 1� 70�C� 25�C
75�C

� �
¼ 40%:

So the permissible dissipation is

0:40ð Þ 250mWð Þ ffi 100 mW:

Example 5.26. A certain 1 W resistor has resis-

tance R ¼ 1 kO� 1% at 25�C. The rms ampli-

tude of the current through the resistor is

Irms ¼ 8mA. The self-heating coefficient is

’ ¼ 100�CW�1. The temperature coefficient of

resistance at 25�C is a ¼ 5� 10�4 �C�1 (5000

ppm) and the environmental temperature due to

heat from other components ranges from 15�C to

70�C. What is the maximum value of the actual

resistance?

Solution: The maximum resistance at 25�C is

1kOþ1% ¼ 1:010kO. The corresponding power

dissipated by the resistor is

P ¼ 8mAð Þ2 1:010 kOð Þ ffi 64:6mW:

The temperature increase due to self heating is

DTSH ¼’P¼ 100�CW�1
� �

64:6mWð Þ¼ 6:46�C

and the corresponding increase in resistance due

to self heating is
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DRSH ¼ aDTSHR

¼ 5� 10�4 �C�1
� �

6:46�Cð Þ 1:010 kOð Þ
ffi 3:26O:

The maximum increase in resistance due to

ambient temperature is

DRA¼aTmax¼ 5�10�4 �C�1
� �

70�Cð Þ 1:010kOð Þ
ffi35:4O:

Thus the maximum possible resistance is

Rmax ¼ 1:010kOð Þþ3:26Oþ35:4Offi 1:049kO:

So the actual upper limit on the resistance is

4.9%, not 1%.

Exercise 5.20. What is the minimum resis-

tance of the resistor considered in Example

5.26 above?

Anticipating and allowing for resistance variation

with temperature is an important part of circuit design.

In demanding applications, specifying small tempera-

ture coefficients and small self-heating coefficients is

at least as important as specifying a small tolerance. If

sufficiently small temperature coefficients and self-

heating coefficients cannot be achieved, some sort of

forced cooling is indicated.

5.14 Power Dissipation in Physical
Components and Circuits

Elements in a circuit diagram (model) do not necessarily

correspond to physical components in an associated

physical circuit.12 Power dissipated by a non-physical

element is itself non-physical and often meaningless.
For example, the average powers dissipated (individu-

ally) by a Thévenin equivalent resistance and Théve-

nin equivalent source are in general meaningless,

because the Thévenin resistance and the Thévenin

source are non-physical elements. An expression or

value for the power dissipated by an element in a

circuit diagram (circuit model) is meaningful only if

the element corresponds to a physical component in an

associated physical circuit. Alternatively, the power

dissipated by a two-terminal circuit is meaningful

only if the voltage across and current through the

circuit equal the voltage across and current through a

physical component modeled by the circuit.

Example 5.27. Consider the circuit shown in

Fig. 5.21(a), where each resistor corresponds

to a physical resistor and the source corre-

sponds to a physical source (e.g., a battery).

The average power delivered by the source is

given by

PS ¼ V0

V0

4R

� �
¼ V0

2

4R
:

This is a meaningful calculation, because

the source represents a physical component.

In a design context, the calculation tells us

that the voltage source must be capable of

delivering the power thus calculated.

Now consider Fig. 5.21(b), where the cir-

cuit has been replaced by its Thévenin equiva-

lent. In this case, the power delivered by the

Thévenin source is given by

P0
S ¼ 2V0=3

4Rþ 4R=3

� �
2V0

3
¼ V0

2

12R
;

which is only one-third of the value obtained

above. The power delivered by the Thévenin

2R
4R 4R 4RV0

4R/3
2V0

3

source load source load

(a) Original circuit (b) Source replaced by
Theveinin equivalent

+
–

+
–

Fig. 5.21 See Example 5.2712Review Section 3.1 of Chapter 3.
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equivalent source is non-physical, and cannot

be interpreted as the power required of a phys-

ical source. In general, meaningful power cal-

culations must be based upon physical circuit

models; i.e., models in which circuit elements

correspond to physical components.

Exercise 5.21. Show that the power dissipated

by the load in Fig. 5.21(b) equals the power

dissipated by the load in Fig. 5.21(a).

When calculating the power dissipated by a partic-

ular physical component, it is permissible to replace

the rest of the circuit by the (non-physical) Thévenin

or Norton equivalent, because doing so does not

change the terminal characteristics (the i – v relation-

ship) at the terminals of the component in question.

Example 5.28. In the circuit shown in

Fig. 5.22(a),

I0 ¼ 10mA; V0 ¼ 500mV; R1 ¼ 50O;

R2 ¼ 100O:

(1) Calculate the power dissipated by each

resistor. (2) Repeat for the “equivalent” circuit

shown in Fig. 5.22(b), where the circuit to the

left of the resistor R2 is replaced by its Norton

equivalent. Compare the computed values and

explain.

Solution: (1) Applying Kirchhoff’s current law

to the circuit in Fig. 5.22(a) gives

Va � V0

R1

þ Va

R2

� I0 ¼ 0

) Va ¼ V0 þ R1 I0ð ÞR2

R1 þ R2

¼ 667mV:

The powers P1; P2 dissipated by R1; R2,

respectively, are

P1 ¼ Va � V0ð Þ2
R1

¼ 556 mW;

P2 ¼ Va
2

R2

¼ 4:44mW:

For the “equivalent” circuit in Fig. 5.22(b),

we obtain (current division)

I1¼R2 I0þV0=R1ð Þ
R1þR2

; I2¼R1 I0þV0=R1ð Þ
R1þR2

;

and so

P1¼ I1
2R1¼8:89mW;P2¼ I2

2R2¼4:44mW:

The power dissipated by R2 is the same for

both circuits because the circuit seen by R2 in

Fig. 5.22(b) is the Norton equivalent of that

seen by R2 in Fig. 5.22(a); that is, the terminal

characteristic of the circuit to the left of R2 is

the same in both cases. The power dissipated

by R1 is different for the two circuits because

the circuit seen by R1 in Fig. 5.22(b) is not the
Norton equivalent of that seen by R1 in

Fig. 5.22(a). In other words, if the resistor R2

in Fig. 5.22(a) represents a physical resistor,

then so does the resistor R2 in Fig. 5.22(b),

because only the rest of the circuit has been

transformed. On the other hand, if the voltage

source and the resistor R1 in Fig. 5.22(a) repre-

sent a physical source and resistor, then the

current source and resistor R1 in Fig. 5.22(b)

do not. Do not be misled by the fact that the

original resistor and the Norton equivalent resis-

tor are both labeled R1, which means only that

the two resistors have the same resistance, not

that they are the same physical resistor.

a

ref

⇒V0 I0 R2 R2

I2I1

R1I0 +
V0

R1

R1

+
–

(a) (b)

Fig. 5.22 See Example 5.28
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To calculate average and peak power for each

component in a circuit, we must know (in general)

the instantaneous voltage across and current into the

terminals of each component under all operating con-

ditions. In many cases, we must also account for

resistance in wires that otherwise might be represented

by ideal conductors in a circuit model, and we must

know the efficiency with which some components

convert electrical energy to the desired form (some is

converted to heat); for example, much of the energy

delivered to a loudspeaker is converted to acoustic

energy, not to heat (the efficiency of a typical high-

quality loudspeaker is about 70% or smaller).

5.15 Active and Passive Devices, Loads,
and Circuits

In the discussion that follows, device means physical

component, not idealized circuit element. For exam-

ple, a battery is a physical component, whereas an

independent voltage source is an idealized circuit ele-

ment (which often is a useful model for a battery).

Devices often are described as being either active

or passive. In common usage, an active device is a

device that allows one current or voltage to control

another. Transistors are important active devices, as

are most integrated circuits. Without active devices,

there would be no electronic circuits (and little need

for electrical engineers).

A device that is not active is a passive device. Most

passive devices have only two terminals, whereas

active devices have three or more terminals. A resistor

is a passive device.

An active circuit is a circuit incorporating one

or more active devices and which allows some cur-

rents or voltages to control others. An audio ampli-

fier is an active circuit because it incorporates active

devices and because it allows the current or voltage

from (e.g.) a microphone to control the current or

voltage delivered to a loudspeaker. The power deliv-

ered to the loudspeaker is provided by a power

supply, not by the microphone, but is controlled by

the current or voltage produced at the terminals of

the microphone.

A passive circuit is a circuit containing only pas-

sive devices. Passive circuits are important compo-

nents of many larger, active circuits; for example,

one or more passive circuits may be needed to estab-

lish the conditions under which a transistor can per-

form as an active device. Thus, although virtually all

electrical systems for communication, control, and

other applications require active devices and circuits,

they also contain a great many passive circuits.

The terms load and source are used in various

ways in various contexts. Generally, a two-terminal

element, device, or circuit is regarded as a load if the

average power dissipated by the element, device, or

circuit is positive and as a source if the average power

dissipated by the element, device, or circuit is nega-

tive. When we say that one element, device, or circuit

loads a second element, device, or circuit, we mean

that the first draws average power from the second;

i.e., that the total average power dissipated by the first

(the load) is positive and that the total average power

dissipated by the second (the source) is negative. When

we say that a source is lightly loaded, we mean that the

power delivered by the source is a small fraction of the

power available from the source. Conversely, the aver-

age power delivered by a heavily loaded source is a

large fraction of the available power. As an analogy,

the engine of a car idling at a traffic light is lightly

loaded, whereas the engine of a car pulling a heavy

trailer up a steep grade might be heavily loaded. For an

electrical example, refer to Fig. 5.23, which shows a

source driving a load. For simplicity, the voltage VS is

constant. Thus the current I is constant and the average

power delivered by the source VS to the load RL is

given by

PL ¼ IS
2 RL ¼ VS

2RL

RS þ RLð Þ2 :

From (5.17), the available power is given by

PL max ¼ VS
2

4RS
;

VS RL

RS

I

loadsource

+
–

Fig. 5.23 Source driving a load
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so the fraction of the available power delivered to the

load is given by

a ¼ PL

PL max

¼ VS
2RL

RS þ RLð Þ2
4RS

VS
2
¼ 4RLRS

RS þ RLð Þ2 :

If RL ffi RS, then a ffi 1 and the source is heavily

loaded. If either RL � RS or RL � RS, then a � 1 and

the source is lightly loaded.

Loads (two-terminal circuits) also are called active
or passive, depending upon whether they require a

separate source of power to be effective. An active

load is essentially an active device, in the sense that an

active load controls (or dissipates) power provided by

a supply that is separate from the current or voltage

driving the load. In some applications, a dc electric

motor is wired such that the armature current is

provided by a fixed source and the relatively small

field current produced by an electronic circuit controls

the speed of the motor. A dc motor operated in this

manner is an active load. A passive load requires no

separate power source.Whereas the power dissipated by

an active load comes partly (or mostly) from a separate

power supply, the power dissipated by a passive load

comes entirely from the circuit driving the load.

Do not attach too much significance to the defini-

tions above of the terms active and passive. The terms

are useful and much-used by electrical engineers, but a

rigorous definition that would allow us to determine

whether any particular circuit is active or passive

would be of little value in circuit analysis and design.

Also be aware that not all authors are in agreement

regarding the definitions.

5.16 Power Transfer and Power Transfer
Efficiency

Power transfer refers to average power transferred to

a load from a source, where the source, the load, or

both might be circuits. The power transferred to a load

is the power dissipated in the load.

Refer to the model shown in Fig. 5.24, where a

source drives a load. We wish to express the power

transferred to the load in terms of the model para-

meters vS; RS; RL. The power transferred to the load

is given by

PL ¼ IL rms
2RL ¼ VS rms

RS þ RL

� �2

RL

¼ RL VS rms
2

RS þ RLð Þ2 : (5.48)

We consider power transfer from two perspectives:

First, from the perspective of someone who is design-

ing the circuit that will serve as the load and second

from the perspective of one who is designing the

circuit that will serve as the source.

If the source is fixed but the load resistance is

variable, the load resistance that maximizes power

transfer is that for which

dPL

dRL
¼ 0 ) d

d RL

RL VS rms
2

RS þ RLð Þ2
" #

¼ RS þ RLð Þ2VS rms
2 � 2RL VS rms

2 RS þ RLð Þ
RS þ RLð Þ4

¼ 0;

which yields

RL ¼ RS: (5.49)

If the source is fixed, then the load resistance

that maximizes power transfer is equal to the source

resistance, provided the source resistance is not

zero. Recall from Section 5.5 that the maximum

power that can be drawn from a source is called

the available power for the source. With reference

to Fig. 5.24, the load that draws the available

(maximum) power from a source equals the source

resistance RS.

vS vL

RS

RL

+

–

iL

source load

+
–

Fig. 5.24 Model used to study power transfer
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Exercise 5.22. Obtain an expression for the

maximum power that can be transferred to a

load by the source (voltage divider) in

Fig. 5.25. If the maximum power is delivered

to a load (not shown), what is the power deliv-

ered by the source V0? What is the power

dissipated in each of R0 and R?

Inspection of (5.48) reveals that if the load resis-

tance RL is fixed and the voltage vS is independent of
the source resistance, then minimizing the source

resistance maximizes the power transferred to the

load. From the perspective of one designing a circuit

regarded as a source, minimizing the source resistance

is desirable, whether or not maximum power transfer

is a design goal, because power dissipated in the

source is wasted and generates unwanted heat. For

example, we may regard an audio amplifier as a

source and a loudspeaker as a load. One designing

such an amplifier would strive to achieve the lowest

possible output resistance to avoid wasting power and

generating unwanted heat. But there is a limit to the

current an amplifier can provide without suffering

damage, so the designer would also call for fuses or

circuit breakers to protect the amplifier in case some-

one attaches a load that would otherwise draw too

much current.

In general, to maximize the power transferred to a

load, we would minimize the source resistance and

then make the load resistance equal to the source

resistance (assuming the source can provide the theo-

retical maximum power). But there is a subtle trap one

can fall into regarding maximum power transfer.

Inspired by the derivation above, one might be

tempted to try to achieve maximum power transfer

by first finding the Thévenin equivalent for a source

and then finding the values of the variable circuit

parameters for which the Thévenin equivalent resis-

tance is minimum. This approach can fail if, as is

usual, both the Thévenin resistance and the Thévenin

voltage depend upon some of the same parameters. In

that case, decreasing the Thévenin resistance might

also decrease the Thévenin voltage and decrease,

rather than increase, the power delivered to the load.

For example, suppose we wish to maximize the power

transferred to the fixed load RL by the circuit shown in

Fig. 5.26(a). Suppose we proceed by first obtaining the

Thévenin equivalent shown in Fig. 5.26(b), where

vT ¼ R1v0
R0 þ R1

; RT ¼ R0 R1k ¼ R0R1

R0 þ R1

: (5.50)

Suppose further that R0 and R1 represent physical

resistors, where R0 is fixed and R1 is somewhat vari-

able. With reference to the Thévenin equivalent in

Fig. 5.26(b), the analysis above tells us to minimize

the Thévenin equivalent resistance RT. Because R0 is

fixed, the only way to do that is to minimize the

resistance R1. However, minimizing R1 minimizes the
power transferred to the load. To achieve maximum

power transfer in this case, we must maximize R1

which maximizes the Thévenin equivalent resistance.

Again, keep in mind that the elements of the Thévenin

(or Norton) equivalent for a source are non-physical,

and consequently that the powers dissipated by those

elements (individually) might have little or no relation

to the power dissipated by elements in the associated

physical circuit.

In general, finding conditions for maximum power

transfer if source parameters are variable requires

obtaining a circuit model whose elements correspond

to physical components, writing an expression for the

power transferred to the load in terms of the variable

parameters, and maximizing the power transferred to

the load, subject to whatever constraints are imposed

on those parameters (e.g., the permissible values of a

certain variable resistance might be 10O � R � 5kO).

R0

RV0

source

+
–

Fig. 5.25 See Exercise 5.22

RL RL

R0

v0 R1

RT

vT
+
–

+
–

(a) (b)

Fig. 5.26 A circuit (a) and its Thévenin equivalent (b)
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Problems of this kind generally require numerical

methods or techniques based on the calculus of varia-

tions, and are beyond the scope of this book.

The power transfer efficiency of the circuit in

Fig. 5.24 is denoted by � and is defined by

� ¼ PL

PT
; (5.51)

where PL is the power delivered to the load and PT is

the total power produced by the voltage source. The

difference PT � PL is dissipated (wasted) in the source

resistance, usually as heat. From (5.48), the power

transferred to the load is given by

PL ¼ RL VS rms
2

RS þ RLð Þ2 : (5.52)

The total power produced by the voltage source is

given by

PT ¼ IL rms
2 RL þ RSð Þ

¼ VS rms

RS þ RL

� �2

RL þ RSð Þ ¼ VS rms
2

RL þ RS
: (5.53)

Therefore the power transfer efficiency is given by

� ¼ PL

PT
¼ RL VS rms

2

RS þ RLð Þ2
RL þ RS

VS rms
2

¼ RL

RL þ RS
: (5.54)

To maximize power transfer efficiency, we would

minimize the source resistance and maximize the load

resistance, possibly subject to a constraint on the

minimum power that must be transferred to the load.

Here again, elements in the source must correspond to

physical components. If vS; RS are the (non-physical)

parameters of a Thévenin source model, then minimiz-

ing RS by varying the physical parameters upon which

RS depends usually will not maximize power transfer

efficiency.

Exercise 5.23. If the circuit in Fig. 5.24

achieves maximum power transfer, what is

the power transfer efficiency of the circuit?

Refer again to Fig. 5.25. Equations (5.48) and

(5.54) show that reducing the source resistance RS

increases both power transfer and power transfer

efficiency. Consequently, if either power transfer or

power transfer efficiency is desirable, minimizing the

source impedance is a design goal.

Achieving maximum power transfer is of interest in

a few applications, mainly in the output stages of

circuits driving energy-conversion devices, such as

motors and loudspeakers, or in the output stages of

circuits driving certain signal-transmission compo-

nents, such as long cables and transmitting antennas.

But for most other electronic systems, achieving max-

imum power transfer efficiency is more important than

maximizing power transfer. Power dissipated in a

source resistance usually is dissipated as heat that

can shorten the lives of nearby components, increase

electrical noise, and require extra measures for cool-

ing. Also, power dissipated in the source resistance

must be provided by the power supply, even though it

is wasted power that contributes nothing to the pur-

pose of the circuit. Moreover, even where actual

power transfer is of interest, it is usually the case that

a source is being designed to drive a fixed load. Con-

sequently, one designing such a source would try to

minimize the source output resistance, thus maximiz-

ing both power transfer efficiency and actual power

transfer.

The development above can be summarized as

follows:

• If the load is variable and the source is fixed,

maximum power transfer is achieved by making

the load resistance equal to the (Thévenin equiva-

lent) source resistance.

• If one or more physical resistors in the source (and,

possibly, the load) are variable, we must express

the power transferred to the load or power transfer

efficiency as a function of the (physical) resistances

and find the values of those resistances that maxi-

mize that expression. We cannot (in general) sim-

ply minimize the Thévenin equivalent resistance of

the source.

In practice, there arise cases where specifications

on power transfer or power transfer efficiency cannot

be met because of insufficient variability of the source

or load parameters; i.e., where the source and load

cannot be made equal. In such cases, it often is possi-

ble to achieve maximum (or near maximum) power

transfer or power transfer efficiency by inserting a

transformer or other matching network between

the source and the load, as described in Chapter 13.
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However, in many applications, power transfer as a

function of load resistance has a broad maximum (is

not sharply peaked), so that moderate departure from

the ideal (5.49) is acceptable. We can illustrate this

remark and other conclusions drawn above as follows.

Refer to Fig. 5.27, where a source drives a load RL. We

assume the source is fixed and the load is variable and

we examine power transfer and power transfer effi-

ciency as functions of load resistance. In this analysis,

the source model consisting of vS and RS can be the

Thévenin equivalent for a more complicated circuit,

because we are interested in the power dissipated in

the load and not in the powers dissipated in the source

model.

In Fig. 5.27, let RL ¼ aRS. From (5.48), the power

delivered to the load can be expressed as

PL ¼ RL VS rms
2

RS þ RLð Þ2 ¼
aVS rms

2

1þ að Þ2RS

: (5.55)

The power delivered to the load is maximum for

RL ¼ RS and is given by

max PLð Þ ¼ RS VS rms
2

RS þ RSð Þ2 ¼
VS rms

2

4RS
:

The actual power delivered to the load, expressed

as a fraction of the maximum, is given by

PL

max PLð Þ ¼
aVS rms

2

1þ að Þ2RS

 !
4RS

VS rms
2

� �

¼ 4a

1þ að Þ2 : (5.56)

From (5.54), the power transfer efficiency is

given by

� ¼ RL

RL þ RS
¼ a

1þ a
: (5.57)

Figure 5.28 shows graphs of the functions defined

by (5.56) and (5.57) versus the variable a ¼ RL=RS.

The graph of PL=max PLð Þ can be misleading if not

interpreted correctly. Equation (5.49) is derived under

the assumption that the source resistance RS is fixed

and the load resistance RL is variable, so those

assumptions apply also to (5.56) and the graph of

PL=max PLð Þ. That is, although a ¼ RL=RS depends

upon both RL and RS, we must regard RS as fixed

when interpreting the graph.

As expected, the graphs show that maximum

power transfer and 50% efficiency occur for a ¼ 1

(for RL ¼ RS). The peak in power transfer is broad,

RL

RS

vS+
–

Fig. 5.27 Circuit used for

illustrative maximum power

calculation (see text)

0.01 0.1 1 10 100
0

0.25

0.5

0.75

1

max(PL )

PL

η

RL

RS

Fig. 5.28 Power transfer and power transfer efficiency as functions of load resistance for the circuit shown in Fig. 5.27
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and the actual power delivered to the load exceeds

90% of the maximum possible for (approximately)

0:5RS <RL < 2RS. Thus, if 90% of maximum power

transfer is acceptable, then it is acceptable to match the

load to the source resistance to within a factor of two.

Example 5.29. A certain fixed source has

source resistance RS ¼ 1kO. The source must

deliver 95% or more of the maximum possible

power to a load RL. Find the range of accept-

able load resistance.

Solution: Let RL ¼ aRS. With reference to

(5.56), we require

4 a

1þ að Þ2  0:95;

which leads to

a2 � 2:21 aþ 1 � 0:

The roots of the quadratic (parabolic) left

side are

a1 ¼ 0:635; a2 ¼ 1:576;

as illustrated by Fig. 5.29.

Therefore, 95% or more of the maximum

possible power is delivered to a load RL

constrained by

0:635RS � RL � 1:575RS

or, for RS ¼ 1kO,

635O � RL � 1575O:

It is advisable to make a calculation such as

this before embarking on a (possibly expen-

sive) load-matching process. It might well be

that the marginal gain in power delivered is not

worth the cost of matching.

The introductory treatment above of power transfer

efficiency ignores certain internal losses that occur in

any physical source. Some such losses are incurred

even if no load is attached to a source, but are not

reflected in a Thévenin model for the source. For

example, consider the circuits (sources) shown in

Fig. 5.30. The two circuits are equivalent at the term-

inals a–b, but are not internally equivalent. In the

circuit on the left, power is dissipated internally (in

R1) when the terminals a-b are open (when there is no

load), whereas no power is dissipated in the circuit on

the right under the same condition. If a load RL is

attached to each circuit, the power delivered by the

source in the circuit on the left is given by

PS1 ¼ VS rms
2

R1 R2 þ RLð Þk

and for the circuit on the right is given by

PS2 ¼ VS rms
2

R2 þ RL
:

The power delivered to the load for each circuit is

the same, and is given by

PL ¼ VS rms
2RL

R2 þ RLð Þ2 :

Thus the power transfer efficiency for the circuit on

the left is

�1 ¼
PL

PS1
¼ RL R1 R2 þ RLð Þk½ �

R2 þ RLð Þ2

α0

0.635 1.575

a 2 − 2.21a + 1

Fig. 5.29 See Example 5.29

R1

R2 R2
RL RLvS vS

a

b

a

b

+
–

+
–

Fig. 5.30 Internal losses reduce power transfer efficiency (see

text)
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and for the circuit on the right by

�2 ¼
PL

PS2
¼ RL

R2 þ RL
;

which can be written

�2 ¼
R2 þ RL

R1 R2 þ RLð Þk �1:

Because R2 þ RL  R1 R2 þ RLð Þk , the power

transfer efficiency for the circuit on the right exceeds

that for the circuit on the left. The point of the discus-

sion and example above is that the Thévenin model for

a source can conceal internal losses that can be impor-

tant to power transfer efficiency. Designing a circuit

(source) for maximum power transfer efficiency often

involves considerations other than simply minimizing

the Thévenin equivalent resistance (as seen at the

output terminals).

Thévenin and Norton source models can be good

models for physical sources, but are not necessarily so.

Limits on the current and power that can be drawn

from any particular physical source are not necessarily

related as indicated by a linear Thévenin model for the

source, often because the physical source becomes

nonlinear for large terminal current. The Thévenin

model for a source implies that if we short the term-

inals of the source, the resulting current is given by

iSC ¼ vS=RS. But the physical source so modeled

might be unable to deliver that current. As another

example, the current any electronic amplifier can

deliver is limited, and many such amplifiers (and

other circuits), regarded as sources, have very small

source resistances. Although a linear model for the

amplifier might be valid under or near normal

operating conditions, shorting the amplifier terminals

can ask for more current (and power) than the ampli-

fier can deliver without damage. For this reason, most

modern high-power home audio amplifiers have cir-

cuit breakers in the output stage that open if the output

current exceeds a pre-set limit.

5.17 Superposition of Power

In certain cases, mean squared amplitudes are addi-

tive. The only such case we need consider is that of a

current or voltage that is expressed as a sum of sinu-

soids, no two of which have the same frequency, and

one of which may have zero frequency (may be dc).

Using (5.25), it can be shown that

A0 þ A1 cos o1 tð Þ þ A2 cos o2 tþ y2ð Þ þ 	 	 	½ �2

¼ A0
2 þ A1

2

2
þ A2

2

2
þ 	 	 	 ; 0 < o1 < o2 < 	 	 	 :

:

(5.58)

It follows that if the current through a resistor is

given by

i ¼ I0 þ I1 cos o1 tð Þ þ I2 cos o2 tþ y2ð Þ
þ 	 	 	 ; 0<o1<o2 < 	 	 	 ;

then the average power dissipated by the resistor is

given by

P¼ I0
2Rþ I1

2R

2
þ I2

2R

2
þ			

¼ I0rms
2þ I1rms

2þ I2rms
2þ			� �

R; 0<o1<o2< 	 	 	
:

(5.59)

Likewise, if the voltage across a resistor is

given by

v ¼ V0 þ V1 cos o1 tð Þ þ V2 cos o2 tþ y2ð Þ
þ 	 	 	 ; 0<o1<o2< 	 	 	 ; (5.60)

then the average power dissipated by the resistor is

given by

P ¼ V0
2

R
þ V1

2

2R
þ V2

2

2R
þ 	 	 	

¼ V0 rms
2 þ V1 rms

2 þ V2 rms
2 þ 	 	 	� � 1

R
;

0<o1 <o2 < 	 	 	 :

(5.61)

Equations (5.59) and (5.61) comprise a special case

of the principle of superposition of power. Superpo-

sition of power applies where the voltages or currents

involved are sinusoids having different, non-zero fre-

quencies. Superposition of power also applies where

the currents or voltages involved are derived from

physically independent sources and have no dc com-

ponents, and where a current or voltage is represented

by a sum of orthogonal functions.

5.17 Superposition of Power 147



Example 5.30. Calculate the average power

dissipated by the resistor R2 in the circuit of

Fig. 5.31.

Solution: The circuit is a current divider. The

current through the resistor R2 is given by

ix ¼ R1

R1 þ R2

I1 þ i2 þ i3ð Þ:

The currents I1; i2; i3 have different fre-

quencies, so we may use superposition of

power. The average power dissipated by the

resistor R2 is

P ¼ R1

R1 þ R2

� �2

I1 rms
2 þ I2 rms

2 þ I3 rms
2

� �
R2

¼ R1

R1 þ R2

� �2

I0
2 þ 1

2
2 I0ð Þ2 þ 1

2
I0

2

� �
R2

¼ 1

9
1þ 2þ 1

2

� �
I0

2 R2

¼ 7

18
ð5mAÞ2ð2kOÞ ¼ 19:44mW

Exercise 5.24. Refer to Fig. 5.32, where

R0 ¼ 10 kO, R1 ¼ 100O, RL ¼ 5 kO,
i0 ¼ I0 cos o0 tð Þ, and v0 ¼ V0 cos 2o0 tð Þ, with

I0 ¼ 2mA and V0 ¼ 25V: Obtain an expression

for the power dissipated in the load RL. Then

calculate the value of the power dissipated in the

load. Assume o0>0.

5.18 Problems

Section 5.1 is prerequisite for the following

problems.

P 5.1 A 12-V automobile battery causes a current

I ¼ 15A through the automobile headlights for total

time t ¼ 1h. Calculate the power dissipated by the

headlights, the total charge that passes through the

headlights, and the total work done on the headlights

during that time.

P 5.2 One calorie is the energy required to raise the

temperature of 1cm3 of water 1�C. In winter in the mid-

Atlantic states, the average temperature of city water is

about 50�F. If electric power is $0.10 per kW h, how

much does it cost to heat 40 gal of water to 140�F?
P 5.3 An ordinary incandescent lamp converts only

about 8% of applied electrical power to visible light.

Most of the remaining 92% is infrared radiation. If a

25 W fluorescent lamp provides as much visible light

as a 100 W incandescent lamp, what fraction of elec-

trical power applied to a fluorescent lamp is converted

to visible light?

P 5.4 A 100 W incandescent lamp delivers about

8 W of visible light. A compact fluorescent lamp (CFL)

delivers about the same light while consuming 25 W. If

a certain light in your home is on 8 h each day, 365 days

per year, and if electric power costs $0.10 per kW h,

how much would you save per year if you replace the

100 W incandescent lamp with a 25 W CFL?

P 5.5 A certain car operating at maximum effi-

ciency can travel about 30 miles on 1 gal of gasoline.

If the car were electric (all else equal), how far could it

travel on one 12 V, 100 A h battery?

P 5.6 The maximum instantaneous electrical power

available to many single-family homes built since

about 1990 in the US is approximately 190 kW (lim-

ited by one or more circuit breakers). If the voltage is

sinusoidal and has peak amplitude V0 ¼ 340V, what

I1

I1 = I0 = 5mA
i2 = 2I0 cos(w1t); w1 > 0
i3 = I0 cos(2w1t)
R1 = 1kΩ, R2 = 2kΩ

i2 i3 R1 R2

Fig. 5.31 See Example 5.30

RL

v0

v0

i0 R0 R1

i0 R0 R1

+–
+–

Fig. 5.32 See Exercise 5.24
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is the peak amplitude of the (sinusoidal) current when

maximum instantaneous power is being delivered?

P 5.7 Express the instantaneous power dissipated

by each element in the circuit shown in Fig. P 5.1 in

terms of the quantities i0; v0; R1; R2.

Section 5.2 is prerequisite for the following

problems.

P 5.8 The voltage across a certain resistor having

resistance R is given by

vðtÞ ¼ V0 cosð2p f tÞ:

(a) Obtain expressions for the current through the

resistor, the instantaneous power dissipated by the

resistor, and the total work done on the resistor during

an interval 0 � t � t1. (b) Let V0 ¼ 155V, f ¼ 60Hz,

and R ¼ 10O. Calculate the total work done on the

resistor during the interval 0 � t � 5s.

P 5.9 What is the largest constant current to which a

1kO, ½ W resistor should be subjected in ambient air?

What is the largest constant voltage?

P 5.10 Refer to Fig. P 5.2. (a) Obtain an expression

for the power dissipated by the resistor R2. (b) Assume

the resistor R1 is fixed and resistor R2 is variable, and

obtain an expression for the value of R2 that maxi-

mizes the power dissipated by R2. (c) Assume the

resistor R2 is fixed and resistor R1 is variable, and

obtain an expression for the value of R1 that maxi-

mizes the power dissipated by R2.

P 5.11 Which resistor in Fig. P 5.3 must have the

largest power-dissipation rating?

P 5.12 Which resistor in Fig. P 5.4 must have the

largest power-dissipation rating?

P 5.13 Refer to Fig. P 5.5, where V0 ¼ 50V. The

power delivered by the source is 90.2 mW, the voltage

VA equals 32 V, and R3 ¼ 91 kO. Find R1 and R2.

P 5.14 A resistor having resistance R is connected

first to the terminals of one resistive linear circuit and

then to the terminals of another. In each case, the

power dissipated by the resistor is the same. Does

this mean the circuits are equivalent? Give at least

two examples that justify your answer.

P 5.15 Two identical resistors are connected in

series. The power-dissipation rating of each is denoted

by P. What is the power-dissipation rating of the series

connection?

P 5.16 Two identical resistors are connected in

parallel. The power-dissipation rating of each is

denoted by P. What is the power-dissipation rating of

the parallel connection?

P 5.17 A ½ W, 1 kO resistor is connected in series

with a 1 W, 2:2 kO resistor. What are the maximum

allowable constant current through and voltage across

the series connection?

P 5.18 A ½W, 1 kO resistor is connected in parallel

with a 1 W, 2:2 kO resistor. What are the maximum

allowable constant current through and voltage across

the parallel connection?

P 5.19 Refer to Fig. P 5.6, where the circuit para-

meters V0 and R0 are known and R1 is unknown, but it

i0 v0 R2

R1

+
–

Fig. P 5.1 See Problem P 5.7

I0 R1 R2
Fig. P 5.2 See Problem

P 5.10

V0

R R
R2R+

–

Fig. P 5.3 See Problem P 5.11

V0

R1

R2 R3

A+

–

Fig. P 5.5 See Problem

P 5.13

I0
R

R
2R

4R

Fig. P 5.4 See Problem P 5.12

5.18 Problems 149



is known that resistor R1 dissipates power P1. Under

what condition(s) is the value of R1 determined

uniquely by this information?

Section 5.3 is prerequisite for the following
problems.

P 5.20 In Fig. P 5.7, the power delivered by the

source VS is PS ¼ 200mW. Use conservation of power

to find the resistance R2.

P 5.21 Obtain an expression for the total power

delivered by the source in the circuit of Fig. P 5.8.

P 5.22 In Fig. P 5.9, the power delivered by the

source is ps ¼ 2W. Use conservation of power to find

the resistance R3.

P 5.23 In Fig. P 5.10, the power delivered by the

source is 1 W. Use conservation of power to find the

resistance R1.

P 5.24 Refer to Fig. P 5.11. The power delivered by

the source is 3.16 W and the power dissipated in R1

and R2 is 500 mW. Find the source resistance RS.

Assume RS is non-zero.

P 5.25 Refer to Fig. P 5.12. A certain 90 V dc motor

is 83% efficient, meaning that 83% of the electrical

power provided to the motor is delivered to a mechani-

cal load and that 90 V is the maximum voltage that

should be applied continuously to the motor terminals.

The motor can deliver at most 1.5 hp to a mechanical

load without damage. If the motor operates at rated load

(1.5 hp) and voltage (VM ¼ 90V) from a source having

open-circuit voltage VS ¼ 100V, what are the losses

(inW) in the source resistance and motor (individually)?

P 5.26 Refer to Fig. P 5.13. The total power

dissipated in the three resistors is 250 mW and the

V0

R0

R1
+
–Fig. P 5.6 See Problem

P 5.19

+

–
R1 R2

RS

VS

VS = 5V, RS = 50 Ω, R1 = 100 Ω

Fig. P 5.7 See Problem P 5.20

+

–

R R
2R

2R

V0
Fig. P 5.8 See Problem

P 5.21

I0 R1 R2 R3

I0 = 1A, R1 = 100 Ω, R2 = 300 Ω

Fig. P 5.9 See Problem P 5.22

VS

RS

R1 R2

VS = 15V, RS = 75 Ω, R2 = 500 Ω

+
–

Fig. P 5.10 See Problem P 5.23

IS RS

R1

R2

IS = 5mA,R1 = 4.7 k Ω

Fig. P 5.11 See Problem P 5.24

motor and loadVS

RS

VM

IM

+

–
–
+

Fig. P 5.12 See Problem P 5.25

I0

V0

R1 R0 R2

I0 = 50mA, R1 = R2 = 100 Ω

+ –

Fig. P 5.13 See Problem P 5.26

150 5 Work and Power



power delivered by the current source is 187.5 mW.

Find the resistance R0 and the source voltage V0.

P 5.27 A motor drives a generator, as shown in

Fig. P 5.14. The efficiency of the motor is 80% and

the efficiency of the generator is 90%. This means that

the mechanical power delivered to the generator

equals 80% of the electrical power delivered to the

motor, and that the electrical power delivered to the

load RL equals 90% of the mechanical power delivered

to the generator. The motor is rated at 90 V and 1 hp,

meaning that the mechanical output is 1 hp when the

voltage applied to the motor terminals equals 90 V

(assuming the source can deliver the required current).

Assume that the motor is operating at rated mechani-

cal output, and that the generator is producing 200 V at

its output terminals. (a) What is the load resistance RL?

(b) What is the electrical power delivered to the

motor? (c) If the source voltage is VS ¼ 100V, what

is the electrical loss in the source resistance RS? (d)

What is the source resistance?

Section 5.6 is prerequisite for the following

problems.

P 5.28 The open-circuit voltage for a certain source

is 10V. The source delivers 8W to a 2O load. Obtain

Thévenin and Norton models for the source.

P 5.29 As a battery discharges, its terminal voltage

under load decreases. A certain 24V battery, when

fully charged, delivers 20A to a 1O load, but when

50% discharged, delivers 19A to the same load. What

is the internal resistance of the battery in each case?

P 5.30. Refer to Fig. P 5.15, where the switch

changes position at times tn ¼ nDT. Obtain expres-

sions for the average and mean-squared values of v(t).

P 5.31 Obtain the time average of each of the

following functions:

(a) sin2 o tð Þ; o>0;

(b) x tð Þ ¼ 1� exp �s tð Þ½ �; t>0

0 t � 0

( )
;

(c) y tð Þ ¼ a cos o tð Þ þ b sin o tð Þ½ �2;

(d) z tð Þ ¼
t

t

� �2
exp � t

t

� �
; t>0

0 t � 0

8<
:

9=
;:

P 5.32 By definition, the dc component of a cur-

rent or voltage is the average of the current or volt-

age. Thus, the average of v(t) is �v ¼ Vdc. The ac

component of a current or voltage is what remains

if the dc component is removed; i.e. vac tð Þ ¼ v tð Þ�
Vdc. Study the definitions just given and then answer

the following questions. (a) Does the ac component

of a current or voltage have a dc component? (b)

Does the dc component of a current or voltage have

an ac component? (c) Is a current or voltage the sum

of the ac and dc components of the current or volt-

age? (d) Is the mean-squared amplitude of a current

or voltage equal to the sum of the mean-squared

amplitudes of the ac and dc components of the cur-

rent or voltage? (e) Does Ohm’s law hold for the ac

and dc components (individually) of the current

through and voltage across a resistor? Justify all of

your answers.

Section 5.7 is prerequisite for the following
problems.

P 5.33 A sinusoidal current passes through a sample

of material having resistance R. Express the peak

amplitude of the current in terms of the average

power dissipated by the sample.

P 5.34 The voltage across a certain 10 O resistor is

500 V for 10 s, then zero for 20 s, then 600 V for 5 s,

then off for 60 s. This cycle is repeated indefinitely.

What is the average power dissipated by the resistor?

P 5.35 The current through a sample of material

having resistance R ¼ 1:5kO is given by

i¼ I0 3þ2 cos o1 tð Þþ cos o2 tð Þ½ �; 0<o1<o2;

I0 ¼ 25mA:

dc motor
VS

RS RL

dc generator
+
–

Fig. P 5.14 See Problem P 5.27

+–

+–

v
+

–

V1

V2Fig. P 5.15 See Problem

P 5.30
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Find the average power dissipated by the sample.

P 5.36 When a 12 V battery (a dc source having

negligible internal resistance) is connected across a

sample of material, the resulting current is I ¼ 2A.

When the battery is disconnected and a sinusoidal

voltage is applied to the same sample, the average

power dissipated is 12 W. What is the peak amplitude

of the sinusoidal voltage?

P 5.37 The full-load current rating of a dc motor is

the average current the motor can draw without over-

heating. A certain motor has a full-load current rating

of 12 A. If the motor is on for 20 s then off for 20 s,

then on again for 20 s, then off for 20 s, and so on

indefinitely, what is the maximum current the motor

can draw during the on times?

P 5.38 In Fig. P 5.16, all resistors have the same

power-dissipation rating Pmax. (a) Express the maxi-

mum permissible value of the source voltage in terms

of R and Pmax if the source voltage is a constant given

by v0 ¼ V0. (b) Repeat for v0 ¼ V0 cos o tð Þ.

P 5.39 In Fig. P 5.17, all resistors have the

same power-dissipation rating Pmax. (a) Express the

maximum permissible value of the source current in

terms of R and Pmax if the source current is a constant

given by i ¼ I0. (b) Repeat for i ¼ I0 cos o tð Þ.
P 5.40 Refer to Fig. P 5.18. The switch is closed

at times t ¼ 0; T; 2T; 3T; 	 	 	 , and opened at times

t ¼ T=2; 3T=2; 5T=2; 	 	 	 . Obtain an expression for

the average power dissipated in each element.

P 5.41 Figure P 5.19 shows one cycle of a peri-

odic voltage that is applied to a resistor. (a) If the

resistance of the resistor is 100O, what must the

power-dissipation rating of the resistor be? (b)

If the power-dissipation rating of the resistor is 1

W, what is the minimum allowable value of the

resistance?

Section 5.8 is prerequisite for the following

problems.

P 5.42 Show that Ohm’s law applies to the rms

current through a resistor and the rms voltage across

the resistor; that is, show that if v is the voltage across
and i is the current through a resistor having resistance

R, then Vrms ¼ R Irms. Show this in general, not just for

constant or sinusoidal current and voltage. Is the rela-

tion Vrms ¼ R Irms valid if the resistance R is a function

of time? Is the relation Vrms ¼ R Irms valid if the resis-

tance R is a function of the current through the resis-

tor? Justify your answers.

P 5.43 Does Kirchhoff’s current law hold for rms

currents? Explain.

P 5.44 Does Kirchhoff’s voltage law hold for rms

voltages? Explain.

P 5.45 Can you express the rms amplitude of

v ¼ v1 þ v2 in terms of V1 rms and V2 rms? Do so or

explain why not.

P 5.46 The ratio of the peak amplitude to the rms

amplitude of the ac component of a periodic current or
voltage is called the crest factor of the current or

voltage. For example, the crest factor for a sinusoidal

waveform is
ffiffiffi
2

p
. Find the crest factor for each wave-

form shown in Fig. P 5.20.

R R
R2Rv0

+
–

Fig. P 5.16 See Problem P 5.38

RR

R2Ri

Fig. P 5.17 See Problem P 5.39

+

–
V0

R R
2R

Fig. P 5.18 See Problem P 5.40
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P 5.47 Refer to Problem P 5.46. Can the crest factor

of a waveform be less than unity? Explain why or why

not. Give two examples of waveforms having unity

crest factors.

P 5.48 Refer to Problem P 5.46. Assume each

periodic waveform shown in Fig. P 5.20 is a voltage

across a resistor having resistance R. Express the

peak power dissipated in terms of the average

power dissipated and the crest factor for the wave-

form.

P 5.49 Refer to Fig. P 5.21. Obtain an expression

for the average power dissipated by the unspecified

element in terms of the rms amplitudes of the terminal

current and voltage.

v (V)

t (s)

10

15

50

15

10

−2 3 8 12 17 22
Fig. P 5.19 See Problem

P 5.41

t

t t

t

x x

x x

T

T

T

T

2
T

2
T

2
T

X0

−X0

X0

−X0

X0

−X0

X0

−X0

X0

−X0

X0

−X0

x x

tt
T

8
T

2
T

T

2
T

3T

8

(a)

(c)

(e) (f)

(d)

(b)

Fig. P 5.20 See Problem

P 5.46, 48
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P 5.50 For what fraction of a period does the mag-

nitude of a sinusoidal current or voltage exceed the

rms amplitude of the current or voltage?

P 5.51 A certain 100O resistor is rated at ½ W. (a)

What is the peak amplitude of the largest sinusoidal

current the resistor can safely carry? (b) The resistor

will be damaged if the instantaneous power dissipated

exceeds ½ W for more than 200 ms. If the amplitude of

a sinusoidal current through the resistor equals 100 mA,

what is the minimum safe frequency of the current?

P 5.52 In Fig. P 5.22, R ¼ 1 kO, V0 ¼ 5V, and

v tð Þ ¼ vac tð Þ þ Vdc, where Vdc ¼ 2V and vac tð Þ has

peak amplitude 25 V and crest factor 2.2. Find the

average power dissipated in the resistor.

Section 5.10 is prerequisite for the following
problems.

P 5.53 The resistance of a certain transmission line

is 0:6O km�1. The voltage applied to the line is 65 kV

(rms). The line delivers 88% of the input power to a

5 kO load. If the line resistance is the only loss mech-

anism, what is the length of the line?

P 5.54 In the circuit shown in Fig. P 5.23, R2>R1.

(a) Which resistor dissipates more power? (b) Does the

answer change if the current source is replaced with a

voltage source?

P 5.55 In the circuit shown in Fig. P 5.24, R2>R1.

Which resistor dissipates more power? Does the

answer change if the voltage source is replaced with

a current source?

P 5.56 Refer to Fig. P 5.25. (a) Which resistor

dissipates more power than any of the others? (b)

What fraction of the total power dissipated is

dissipated by the resistor having resistance 4 R? (c)

Do the answers to any of the questions above change if

the current source is replaced with a voltage source?

P 5.57 What is the smallest permissible resistance

for a 1 W resistor that must endure a terminal voltage

Vrms ¼ 120V in ambient air?

P 5.58 The voltage v(t) at a residential wall outlet

(in the US) is a sinusoidal voltage having rms ampli-

tude Vrms ffi 120V. Refer to Fig. P 5.26, which repre-

sents a small space heater having low (S1 closed, S2, S3
open), medium (S1, S2 closed, S3 open), and high (S1,

S3 closed, S2 open) settings, which, when the heater is

connected to a wall outlet, provide 750, 1000, and

1500 W, respectively. Find the values of R1; R2; R3.

P 5.59 The standard power-dissipation ratings of

ordinary composition resistors are 1=8; 1=4; 1=2;

and 1W: Assume these ratings apply if the resistance

v(t)

i(t)
i(t) = I0 cos (w t+ qi )

v(t) = V0 cos (w t+ qv)

+

–

Fig. P 5.21 See Problem P 5.49

v (t)

+

–
V0 R

+ –

Fig. P 5.22 See Problem

P 5.52

R1 R2i
Fig. P 5.23 See Problem

P 5.54

R1

R2v+
–

Fig. P 5.24 See Problem P 5.55

R 4R

2R 3R
i

Fig. P 5.25 See Problem P 5.56

v(t)

+

–
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S2

S3

R1

R2

R3

Fig. P 5.26 See Problem P 5.58
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equals the specified value and that the rated dissipation

must not be exceeded. The standard precisions for

such resistors are � 1%; �5%; �10%; and� 20%.

Express the maximum permissible rms current through

and the maximum permissible rms voltage across a

composition resistor in terms of the precision, the resis-

tance, and the power-dissipation rating.

P 5.60 See Problem P 5.59, above. A resistor having

nominal resistance Rmust be able to dissipate the rated

power P for any resistance within the specified toler-

ance; e.g., a 1 kO� 10%, ½ W resistor must be able to

dissipate ½ W if the actual resistance is anywhere in

the range 1 kO� 10%. In Fig. P 5.27, the resistor has

tolerance � 100a (%). Let P denote the power dissipa-

tion rating for the resistor and express the actual power

dissipated as a fraction of the power dissipation rating

if the resistor happens to have its nominal resistance.

P 5.61 The temperature coefficient for a certain

1 kO� 1% resistor is 0:001K�1 at 25�C. The resistor
will be used in an environment where the temperature

ranges from 0�C to 80�C. If the voltage across the

resistor will be given by v tð Þ ¼ V0 cos 2pf tð Þ, where
the maximum value of v0 is 15 V, what should be the

power-dissipation rating for the resistor? Does the

frequency of the voltage matter?

P 5.62 Assume that the lifetime of the filament in an

incandescent lamp is inversely proportional to the

mean squared current through the filament, provided

the rms current does not exceed 1.5 A. A certain

manufacturer’s 100 W lamp for residential use is

advertised to have a lifetime of 1000 h under normal

operating conditions (Vrms ¼ 120V). Approximately

how long would the lamp last if the rms amplitude of

the applied voltage were 130 V? 110 V?

P 5.63 Figure P 5.28 shows a voltage divider

driving a resistive load. It is known that the rms ampli-

tude of the source voltage v(t) will not exceed a known

value Vrms, but RL is unknown. Specify safe power-

dissipation requirements for the resistors R1; R2 in

terms of R1, R2, and Vrms.

P 5.64 The labels on the resistors in the circuit

in Fig. P 5.29 denote the resistance and power-

dissipation ratings of the resistors. Obtain expressions

for safe values of the power-dissipation ratings in

terms of R1, R2, and Va, where Va is the rms amplitude

of the voltage vab. By safe values, we mean dissipation

ratings that are safe regardless of the values or relative

values of R1 and R2.

P 5.65 A certain amplifier drives four 16O speakers

and one 8 O speaker, all in parallel. The Thévenin

equivalent for the amplifier at the speaker terminals

has open-circuit voltage 30 V (rms) and output resis-

tance 1.5 O. (a) What is the power delivered to each

speaker? What is the total power delivered by the

Thévenin source? (b) The owner wishes to add more

speakers. What is the maximum number of 16 O
speakers that can be added if the amplifier would be

damaged by a power load exceeding 250 W? (d) What

is the maximum number of 8 O speakers that can be

added if the amplifier would be damaged by a power

load exceeding 250 W?

P 5.66 (Review skin effect in Chapter 2) Wire is

rated according to its current-carrying capacity, called

ampacity, which depends upon the size (e.g., AWG),

material (e.g., copper), insulation, and environment

(e.g., force cooled or ambient, in the open or in con-

duit, etc.). Ordinary plastic-coated AWG 24 copper

wire, similar to what you might buy at your local

electronics store, has an ampacity of about 3.5 A in

the open (in ambient air) and can safely dissipate about

1:25Wm�1 in open air when carrying 3.5 A at dc. If

the current is sinusoidal, having rms amplitude 3.5 A,

at what frequency would skin effect cause the power

dissipation to exceed 1:25Wm�1 by 15% in an AWG

24 copper wire carrying 3.5 A (rms)?

P 5.67 Currents encountered in electric-utility sub-

stations and in high-power radio and television trans-

mitters can be quite large, and large conductors are

+

–
V0 R

Fig. P 5.27 See Problem

P 5.60

RLv(t)
R1

R2
+
–

Fig. P 5.28 See Problem P 5.63

2R1, P1 R2, P3

R2, P2 3R2, P4

V1
a

b

Fig. P 5.29 See Problem P 5.64
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needed to keep losses to acceptable levels. Because of

skin depth, conductors for large ac currents do not

need to be solid cylinders, but can often be hollow

tubes. Such construction can save a significant amount

of expensive copper. Suppose a certain copper con-

ductor must carry a sinusoidal current having rms

amplitude Irms and frequency f, and let ’ denote the

maximum permissible power loss per unit length.

(a) Obtain an expression for the required cross-

sectional area of the copper conductor. (b) Calculate

the required cross-sectional area if the rms amplitude

of the current and the allowable loss are 1 kA and

1Wm�1 respectively. What is the diameter of a solid

cylindrical wire having that cross-sectional area? (c) If

the frequency of the current is 60 Hz, what is the skin

depth? What fraction of the cross-sectional area of the

solid conductor referred to above is utilized by the

current? What is the loss in that case? (d) : What

are the inner and outer radii of a hollow copper tube

that would meet the loss specification for the specified

current and frequency? (e) What is the diameter of a

solid copper conductor that meets the loss specifica-

tion? (f) What is the volume of copper saved per meter

by using the tube instead of a solid conductor? What is

the percent of the copper saved by using a hollow-tube

conductor?

P 5.68 Household incandescent lamps are designed

to operate at 60 Hz, with an applied voltage of 120 V

(rms). The tungsten filament in a 100 W lamp operates

at about 3000 K and will burn out almost instantly if

the power dissipated exceeds 175 W. The diameter of

the filament is approximately 30 mm and the resistivity

of tungsten at 3000 K is about 92 mO cm. If the current

through the filament is held constant at the design

value and the frequency is increased, at what fre-

quency will the lamp burn out? (Note: The answer

will be inexact because the filament in an incandescent

lamp is tightly and doubly coiled, and the expression

given in Chapter 2 for skin depth does not apply to

such a geometry. Regard this as a drill problem, not as

a real-world design problem.)

Section 5.11 is prerequisite for the following
problems.

P 5.69 If v tð Þ ¼ V0, where V0 is constant, how

would you write an expression for the rms amplitude

of v(t)?

P 5.70 If a current is expressed in standard form

by i tð Þ ¼ I0 cos o0 tþ yð Þ would you write i tð Þ ¼ffiffiffi
2

p
Irms cos o0 tþ yð Þ?
P 5.71 A certain plug-in power supply (adapter) is

labeled

input: 120 VAC 60 Hz 12 W,

output: 12 VDC 500 mA.

(a) What are the rms and peak amplitudes of the

input voltage? (b) What are the allowable effective

loads (O) on the adapter? (c) What is the maximum

power output? (d) To what does “12 W” refer?

P 5.72 The voltage across and current through

a certain resistor having resistance R are denoted by

v(t) and i(t), respectively, where the positive direction

of the current is into the positive terminal. (a) Is it

correct to say that R ¼ v tð Þ=i tð Þ? (b) If not, why not,

and how would you express the relation between v(t),

i(t), and R?

Section 5.12 is prerequisite for the following
problems.

P 5.73 What is the minimum averaging time neces-

sary to measure the rms value of a 1 Hz sinusoidal

voltage with �0.1% accuracy?

P 5.74 A certain voltmeter measures rms amplitude

by averaging, and is advertised not to exceed 0.5%

error (magnitude) for a 10 Hz sinusoidal input. Assum-

ing the averaging time is fixed, what is the error at

1 kHz? (Neglect sources of error other than finite

averaging time.)

P 5.75: The rms amplitude of a voltage or current

is measured by averaging for a finite time. If we start

averaging at time zero and stop averaging at time t, the
measured rms voltage is given by

v̂rms tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

t

ðt
0

v2 t0ð Þdt0
s

:

Given a voltage v tð Þ ¼ V0 cos 2pf1 tð Þþ½ cos 2pf2 tð Þ�,
with V0 ¼ 5V, f1 ¼ 100Hz, and f2 ¼ 1 kHz: (a) What

is the true rms amplitude of v(t)? (b) Obtain an expres-

sion for the measured rms amplitude v̂rms tð Þ defined

above. Plot the measured rms amplitude versus time

for 0 � t � 5=f1. Show the true rms amplitude on the

same graph. (c) Calculate and plot the percent error in

the measured rms voltage over the same interval.
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P 5.76 Some inexpensive multimeters measure the

rms amplitude of the ac component of a voltage as

vrms ¼ vpeak=
ffiffiffi
2

p
, where vpeak is the maximum ampli-

tude of the ac component of the voltage. This mea-

surement is correct only for a sinusoidal voltage. Find

the measurement error (%) for each of the voltages

defined in Fig. P 5.30. Show how to use the crest

factors to correct the measured rms amplitude.

P 5.77 The accuracy with which a “true rms” multi-

meter can measure the rms amplitude of a current or

voltage depends upon the crest factor of the current or

voltage. The error generally increases with increasing

crest factor (see Problem P 5.46). Table P 5.1 shows the

rated accuracy of the Agilent 3458 multimeter when

used to measure the rms amplitude of a sinusoidal
voltage and additional errors incurred for various crest

factors, where the upper limit on the CF is not included

in the range of CF’s; e.g., the additional error for CF¼ 3

is 0.25%, not 0.15%. What is the accuracy with which

this voltmeter can measure the rms value of each wave-

form shown in Fig. P 5.30? For this problem, assume

the frequency of a periodic signal equals the reciprocal

of the period; i.e., f ¼ T�1.

P 5.78 Discuss the following remark:

The rms amplitude of a sinusoid is independent of
the frequency of the sinusoid.

P 5.79 How long would it take to measure to within

0.1% the rms amplitude of a sinusoid whose frequency

is 10�4 Hz?

Section 5.13 is prerequisite for the following
problems.

P 5.80 The power-dissipation rating for a certain

resistor is 500 mW at 25�C, derated linearly to zero

at 175�C. (a) Draw a graph of permissible power

dissipation versus temperature for this resistor. (b)

What is the self-heating coefficient for this resistor?
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Fig. P 5.30 See Problem P 5.76

Table P 5.1 Selected accuracy specifications of the Agilent 3458 multimeter (Data Courtesy of Agilent Corporation)

(a) Rated Accuracy

Frequency Range 10 Hz� f< 20 Hz 20 Hz� f< 40 Hz 40 Hz� f< 100 Hz 100 Hz� f< 20 kHz 20 kHz� f< 50 Hz

Maximun Error (%) 0.40 0.15 0.06 0.03 0.15

(b) Additional Errors for Non-Sinusoidel Inputs

Crest Factor Range 1–2 2–3 3–4 4–5

Additional Error (%) 0.00 0.15 0.25 0.40
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P 5.81 Figure P 5.31 shows the dissipation derating

characteristic for a certain family of high-power, wir-

ewound resistors. Estimate the self-heating coefficient

for a 20 W resistor from this family.

P 5.82 The power-dissipation rating for a certain

resistor is 500mW at 25�C. The self-heating coeffi-

cient for the resistor is 300�CW�1 for temperatures

above 25�C. (a) Draw a graph of percent rated dissipa-

tion versus temperature for this resistor. (b) What is

the power-dissipation rating for this resistor if the

temperature of the resistor is 75�C?
P 5.83 The temperature coefficient of resistance at

25�C for the resistor described in Problem P 5.80 is

4500 ppm. The resistance of the resistor at 25�C is

1 kO� 10%. What is the maximum resistance of this

resistor if it carries an rms current of 5 mA in an

enclosure where the ambient temperature is 75�C?
P 5.84 The temperature coefficient of resistance at

75�C for the family of resistors described in Problem

P 5-81 is 450 ppm. A 10O�5% resistor from this

family is rated at 5 W 75�C and carries an rms current

of 500 mA in an enclosure where the ambient temper-

ature is 100�C. What is the range of operating resis-

tances for the resistor? What is the maximum power

dissipation? Is the 5 W rating adequate?

P 5.85 The temperature coefficient of resistance at

25�C for the resistor described in Problem P 5.82 is

2500 ppm. The resistance of the resistor at 25�C
is 1 kO� 10% and the resistor must carry an rms

current of 15 mA in an enclosure where the ambient

temperature is 70�C. What is the derated power-

dissipation rating for the resistor?

P 5.86 The resistance of a certain resistor is speci-

fied as 2:2 kO� 5% at 25�C. The permissible power

dissipation at 25�C is 5 W, derated linearly to zero

at 225�C. The temperature coefficient of resistance

at 25�C equals 450 ppm. (a) Draw a graph of permis-

sible power dissipation versus temperature for this

resistor. (b) What is the maximum resistance of this

resistor if it carries current 5 mA rms in an enclosure

where the ambient temperature is 75�C?
P 5.87 The rated power dissipation for a certain

2:2 kO� 5% resistor is 5 W at 25�C, derated linearly

to zero at 150�C. The temperature coefficient of resis-

tance at 25�C is 400 ppm. (a) What are the nominal,

minimum, and maximum resistances of this resistor if

it carries an rms current of 5 mA in an enclosure where

the ambient temperature is 80�C? (b) What are the

high, low, and nominal derated dissipation ratings?

P 5.88 A certain resistor has nominal resistance

R ¼ 10 kO at 25�C, temperature coefficient of resis-

tance a ¼ 0:002�C�1 (2 ppm) at 25�C, and a power-

dissipation rating of 250 mW at 25�C, derated linearly
to zero at 125�C. The rms current through the resistor

is 1.5 mA. If the ambient temperature is 25�C, what is
the nominal steady-state temperature of the resistor

and what is the nominal resistance at that temperature?

P 5.89 The power-dissipation rating for a certain

1kO (nominal) resistor is 500 mW at 25�C, derated
linearly to zero at 135�C. (a) What is the power-

dissipation rating when the operating temperature

is 70�C? If the rms current through the resistor in

that case is 10 mA, what is the ambient temperature?

(b) If the operating temperature is 85�C and the ambi-

ent temperature is 30�C, what is the current through

the resistor?

P 5.90 A certain resistor has nominal resistance

2.2 kO at 25�C and self-heating coefficient ’ ¼
180�CW�1. The dissipation derating is linear above

25�C and the temperature of the resistor is 70�C in

ambient (25�C) air when the power dissipated equals

250 mW. (a) What is the power-dissipation rating

at 25�C? (b) At what temperature does the power-

dissipation rating go to zero? (c) What is the operating

temperature of the resistor the rms voltage across the

resistor is 15V, the ambient temperature is 25�C, and
the TCR is 500 ppm?

P 5.91 Figure P 5.32 shows a voltage divider,

where the resistors R1; R2 have identical temperature

coefficients and identical self-heating coefficients.
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Fig. P 5.31 See Problem P 5.81

158 5 Work and Power



The ambient temperature for both is 25�C. (a) Obtain
an expression for the voltage ratio H ¼ V2=V1 as a

function of the rms current Irms through the resistors.

(b) Let a ¼ TCR ¼ 4500 ppm, ’ ¼ self � heating

coefficient ¼ 200�CW�1, R1 ¼ 1 kO; R2 ¼ 2:2 kO
(at 25�C) and construct a graph of the voltage ratio

for 0 � Irms � 20mA. (c) If you design the voltage

divider assuming the resistances have their 25�C
values (are independent of the current Irms), what is

the percent error in the voltage ratio for Irms ¼ 20mA?

P 5.92 Figure P 5.33 shows a current divider, where

the resistors R1; R2 have identical temperature coeffi-

cients and identical self-heating coefficients. The

ambient temperature for both is 25�C. (a) Obtain

an expression for the current H ¼ I2=I1 as a

function of the rms voltage Vrms across the resistors.

(b) Let a ¼ TCR ¼ 4500 ppm, ’ ¼ self � heating

coefficient ¼ 200�CW�1, R1 ¼ 1 kO; R2 ¼ 2:2 kO
(at 25�C) and construct a graph of the current ratio

for 0 � Vrms � 10V. (c) If you design the current

divider assuming the resistances have their 25�C
values (are independent of the current I), what is the

percent error in the current ratio for Vrms ¼ 10V?

Section 5.14 is prerequisite for the following
problems.

P 5.93 Figure P 5.34 shows a load driven by (the

Thévenin-equivalent for) a source and the same load

driven by an equivalent Norton model for the

source. Obtain expressions for the powers dissipated

by all elements in each circuit and discuss the

results.

P 5.94 Refer to Fig. P 5.35. (a) Calculate the power

dissipated in each element. Check your result by

showing that the total power dissipated (passive sign

convention) equals zero. (b) Obtain the Thévenin equiv-

alent for the circuit at the terminals a–b (with the load

RL removed). Then connect the load to the Thévenin

equivalent and calculate the power dissipated by each

element. Check your result by showing that the total

power dissipated (passive sign convention) equals zero.

Is the power dissipated by the Thévenin resistance equal

to the total power dissipated by the resistors R1; R2 in

the original circuit? Is the power dissipated by the

Thévenin source equal to the power dissipated by the

source in the original circuit? Is the power dissipated by

the load the same in each case? (c) Repeat part (b) for

the Norton equivalent. (d) Is the power dissipated by the

Thévenin source equal to that dissipated by the Norton

source? Is the power dissipated by the Thévenin resis-

tance equal to that dissipated by the Norton resistance?

P 5.95 In Fig. P 5.36, the resistive circuit contains

only resistors. The rms voltage V and rms current I are

known. Your lab partner claims that the maximum

power rating required for any resistor in the network

does not exceed P ¼ VrmsIrms. (a) Is he correct? (b) Is

he still correct if the circuit also contains unknown

current or voltage sources?
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Section 5.15 is prerequisite for the following
problems.

P 5.96 Give three everyday examples of devices

containing active circuits. You probably carry at least

two such devices.

P 5.97 Discuss the following statements:

(a) All active devices have three or more terminals.

(b) An active circuit must have at least two sources of

power, one of which is the input.

(c) All energy-conversion devices are active.

P 5.98 (Web research) Which of the following

devices can be active?

(a) Silicon-controlled rectifier (SCR)

(b) Thyristor

(c) MOSFET

(d) JFET

(e) BJT

(f) Selenium rectifier

(g) Solar cell

(h) DC electric motor

(i) DC generator

P 5.99 Classify each of the following as active

(contains active components) or passive.

(a) Flashlight

(b) Microprocessor

(c) Portable radio

(d) Pocket calculator

(e) Digital wristwatch

(f) Cell phone

(g) Automobile battery

P 5.100 Refer to Fig. P 5.37. For each of the

following conditions, describe the source as lightly

loaded or heavily loaded.

(a) vL tð Þ ffi 0:9 vS tð Þ
(b) jiL tð Þj � jvS tð Þ=ð2RSÞj for all times t

(c) RL � RS

(d) RL � RS

(e) IL rmsVL rms � IL rms
2RS

(f) vS tð Þ ffi 1:01 iL tð ÞRS

(g) VLrms=IL rms ffi 0:01RS

Section 5.16 is prerequisite for the following

problems.

P 5.101 The internal resistance of a 9 V alkaline

battery is about 2 O. What is the maximum power the

battery can deliver to a resistive load?

P 5.102 A resistor having resistance R is connected

to the terminals of a linear resistive circuit. It is found

that the power dissipated by the resistor is P1. An

identical resistor is then connected in parallel with

the first, after which it is found that the total power

dissipated by the two resistors is very nearly 2P1.

What can you deduce about the value of the Thévenin

equivalent resistance, relative to R, for the circuit from

these measurements?

P 5.103 Repeat Problem P 5.102 for a case where

the two powers are approximately equal.

P 5.104 A certain linear resistive circuit having a

dc output delivers 80 W to an 8 O resistive load, under

which condition the power-transfer efficiency is 0.8

(80%). Can you obtain the Thévenin equivalent for the

circuit from these data? If so, show how. If not,

explain why not.

P 5.105 A certain linear resistive voltage source

having a sinusoidal output can deliver at most 80 W

(average) to an 8 O resistive load, under which condi-

tion the power-transfer efficiency is 0.8 (80%). Can you

obtain the Thévenin equivalent for the circuit from

these data? If so, show how. If not, explain why not.

P 5.106 It is required to maximize the power deliv-

ered by two identical batteries to a fixed but unknown

resistive load. Is it better to connect the batteries in

series or parallel, or does it matter? Justify your answer.

P 5.107 Refer to Fig. P 5.38, where the load RL is

fixed. (a) Obtain an expression for the power delivered

source load

vS vL
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RL

+

–

+
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iL

Fig. P 5.37 See Problem P 5.100

RLI0 R1 R3

R2 a

b

Fig. P 5.38 See Problem P 5.107
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to the load. (b) For what values of the resistances

R1; R2; R3 is the power delivered to the load maxi-

mum? (c) Obtain an expression for the Thévenin

equivalent resistance of the circuit to the left of the

terminals a–b. (d) For what value of the Thévenin

equivalent resistance is maximum power delivered to

the load? Discuss.

P 5.108 Figure P 5.39 shows a resistor R connected

to a Thévenin source model and graphs of the terminal

characteristics of the source and resistor on the same

axes. The Thévenin resistance is fixed. What is the

relationship between the angles yR; yT when the

power dissipated in the resistor has its maximum value?

P 5.109 Show that the power that can be drawn

from an independent current source having infinite

output resistance is unlimited.

P 5.110 Suppose you must design an amplifier that

will drive a load whose nominal resistance is 8 O. If
maximum power transfer is essential, what value

would you attempt to achieve for the output resistance

of the amplifier?

P 5.111 Even if power transfer from an amplifier to

a load is important, why might it be unwise to mini-

mize the output resistance of the amplifier?Hint: What

limits the current drawn from the amplifier?

Section 5.17 is prerequisite for the following

problems.

P 5.112. Refer to Fig. P 5.40. Obtain expressions

for the average power dissipated by each resistor.

P 5.113 (a) Obtain an expression for the rms ampli-

tude of

i tð Þ ¼ I0 þ
XN
k¼1

Ik cos oktþ ykð Þ;

where 0<o1 <o2 < 	 	 	 <oN . (b) Suppose N ¼ 3,

I0 ¼ 0:5mA, I1 ¼ 1mA, I2 ¼ 1mA, I3 ¼ 1mA.

Calculate the rms amplitude of i(t). What is the

average power dissipated if i(t) is applied to a

4.7 kO resistor?

P 5.114 Refer to Fig. P 5.41 where 0 < o1 < o2.

Obtain an expression for the average power dissipated

in the resistor RL.

P 5.115 Refer to Fig. P 5.42 where 0 < o1 < o2.

Obtain an expression for the average power dissipated

in the resistor RL.

ISC

VOC

I

V

VR

R
IR =

qR qT

RVOC

RT IR

VR

+

(a) (b)

–
–
+

o
Fig. P 5.39 See Problem

P 5.108

v0 v1 v2

R2R1

v0 = V0

v1 = V1 cos(w1t)
v2 = V2 cos(w 2t+q )
0 < w1 < w 2

+– +– +–

Fig. P 5.40 See Problem P 5.112

R1

i0 RL

v0 v1

v0 = V0 cos(w1t ); v1 = V1 cos(w 2t); i0 = I0

+– +–

Fig. P 5.41 See Problem P 5.114

RL
2R2R

i0

v0 v1

v0 = V0 cos(w1t )
v1 = V1 cos(w 2t+ q )
i0  = I0
0 < w1 < w2

+
–

+
–

Fig. P 5.42 See Problem P 5.115
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Chapter 6

Dependent Sources and Unilateral Two-Port Circuits

Circuits are designed and used to establish specified

relations among certain currents and voltages, where

some currents and voltages are identified as inputs

(causes) and others as outputs (effects). Inputs also

are called excitations, and outputs also are called

responses.

Inputs are applied to and outputs are extracted from

terminal pairs. A terminal pair to which an input is

applied or from which an output is extracted is called a

port. To be considered a port, a terminal pair must

satisfy Kirchhoff’s current law (current entering one

terminal equals current out exiting the other).

A two-port circuit is a physical circuit having

one input port and one output port. Figure 6.1 shows

an abstract representation of a two-port circuit, with

v1 or i1 as an input (excitation) and v2 or i2 as the

corresponding output (response). A two-port model

is a particular, simplified representation of a two-

port circuit or device. Whereas a two-port circuit

might contain a great many physical components, a

two-port model for the circuit contains no more than

four elements, and often fewer than four elements;

for example, some operational amplifiers,1 available

as integrated circuits, contain a dozen or more tran-

sistors, but a particular and useful two-port model

for an operational amplifier contains only one ele-

ment. It follows that the circuit diagram for a two-

port model bears little or no resemblance to the

physical structure of the associated physical circuit

or device. Moreover, few, if any components of a

two-port model correspond to physical components.

Rather, a two-port model for a physical circuit uses

idealized circuit elements to depict relations estab-

lished by the circuit among the input and output

currents and voltages. In other words, a two-port

model expresses the terminal characteristics of a

two-port circuit, but says nothing about how those

terminal characteristics are achieved. The circuit

diagram depicting a two-port model is a far cry

from a wiring diagram; nonetheless, specifying

parameters of a two-port model often is a first step

in circuit design.

For simplicity, we often refer to a two-port circuit

or the associated model as simply a two-port. Also,

we usually draw circuit diagrams such that the input

port is on the left and the output port is on the right.

The two-ports treated in this chapter are composed

of only resistors and elements called dependent

sources, defined in Section 6.2. Few useful physical

circuits are purely resistive, so it might seem that

models containing only resistors and sources are of

limited value. However, the principles and methods
described here are applicable to virtually any linear

circuit - even those containing capacitors and induc-

tors.2 In fact, although we have to this point treated

only resistive circuits, everything in previous chapters

and everything in this chapter are readily extended to

circuits that are not entirely resistive. Subsequent

chapters describe how.

Topics covered in this chapter are prerequisite to

fruitful study of subsequent chapters that treat ampli-

fiers and other signal-processing circuits.

1Operational amplifiers are treated in Chapter 7. 2Capacitors and inductors are treated in subsequent chapters.

T.H. Glisson, Introduction to Circuit Analysis and Design,
DOI 10.1007/978-90-481-9443-8_6, # Springer ScienceþBusiness Media B.V. 2011
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6.1 Input Resistance and Output
Resistance

The input resistance Rin of a two-port circuit can be

obtained mathematically (from a circuit model) using

either an ideal voltage source or an ideal current

source, as illustrated by Fig. 6.2, where

Rin ¼ V1

I1
: (6.1)

In general, input resistance depends upon load

resistance, so an appropriate load must be attached to

the output terminals when making such a calculation.

The output resistance Rout of a two-port can be

obtained mathematically (from a circuit model) using

either an ideal voltage source or an ideal current

source, as illustrated by Fig. 6.3, where

Rout ¼ V2

I2
: (6.2)

In general, output resistance depends upon source

resistance, so an appropriate source resistance must be

attached to the input terminals when making such a

calculation.

The input and output resistances of a two-port are

measured essentially the same way they are calcu-

lated, except we might need to account for the internal

resistance RS of the (non-ideal) source used to drive

the measurement. In Fig. 6.4(a) the input resistance is

given in terms of the applied voltage V1 and the

measured current I1 by

Rin ¼ V1

I1
� RS; (6.3)

where the internal resistance RS of the source is sub-

tracted because it is not part of the input resistance.

Similarly, in Fig. 6.4(b),

RL RLV1

I1

two-port
circuit

V1I1
two-port
circuit

+

–

+
–

Fig. 6.2 Definition of input

resistance: Rin ¼ V1=I1

two-port
circuit

V2 I2RS
two-port
circuit

+

–

RS

I2

V2
+
–

Fig. 6.3 Definition of output

resistance: Rout ¼ V2=I2

v1

i1 i2

i1 i2

input port output port

two-port
circuit

+

– –

v2

+

Fig. 6.1 A representation of a two-port circuit

RS

I1

V1 I1
two-port
circuit

(a) (b)

V1
two-port
circuit

+

–

RLRSRL+
–

Fig. 6.4 Measuring input

resistance (see (6.3) and (6.4))
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Gin ¼ 1

Rin
¼ I1

V1

� 1

RS
: (6.4)

Likewise, in Fig. 6.5(a),

Rout ¼ V2

I2
� RS (6.5)

and, in Fig. 6.5(b),

Gout ¼ 1

Rout
¼ I2

V2

� 1

RS
: (6.6)

Note that V2,I2 in Fig. 6.5(a) are not the same as V2,

I2 in Fig. 6.5(b).

We can also determine the output resistance of a

two-port by finding the Thévenin equivalent of the

two-port at the output terminals with either a voltage

source or current source attached to the input, as

illustrated by Fig. 6.6. The output resistance is the

Thévenin (or Norton) equivalent resistance.

Example 6.1. Obtain an expression for the

input resistance of the circuit in Fig. 6.7.

Solution: Because we are obtaining input resis-

tance from a circuit diagram (as opposed to a

laboratory measurement), we may assume an

ideal test source as shown in Fig. 6.8, where we

have connected a load RL, as required. The

input resistance of the circuit is given by

Rin ¼ V1

I1
¼ V1

V1 � Va

� �
R1: (6.7)

Applying Kirchhoff’s current law to the

circuit in Fig. 6.8 gives

Va � V1

R1

þ Va

R3

þ Va

R2 þ RL
¼ 0: (6.8)

which yields

Va¼ R3 R2þRLð ÞV1

R3 R2þRLð ÞþR1 R2þR3þRLð Þ: (6.9)

Using (6.9) in (6.7) yields

two-port
circuit

(a) (b)

two-port
circuit

V1 i1
RS

RS
Thevenin or
Norton Equivalent

⇐ Thevenin or
Norton Equivalent

⇐+
–

Fig. 6.6 Output resistance is

the Thévenin or Norton

equivalent resistance

two-port
circuit

(a) (b)

V2 I2RS RS

+

–

RS

I2

V2

RS

two-port
circuit

+
–

Fig. 6.5 Measuring output

resistance (see (6.5) and (6.6))

R1 R2

R3

Fig. 6.7 See Example 6.1

RLV1 R3

I1

R1 R2

a

ref

+
–

Fig. 6.8 See Example 6.1
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Rin¼R3 R2þRLð ÞþR1 R2þR3þRLð Þ
R2þR3þRL

: (6.10)

We could as well have used series/parallel

reduction to find the equivalent resistance at

the input terminals, which also is the input

resistance. Thus

Rin¼R1þR3 R2þRLð Þk

¼R1þR3 R2þRLð Þ
R3þR2þRL

¼R3 R2þRLð ÞþR1 R2þR3þRLð Þ
R2þR3þRL

:

(6.11)

as above. If R2 � RL, the input resistance is

only weakly dependent upon the load resis-

tance as is evident from the circuit diagram in

Fig. 6.7.

Example 6.2. Use the procedure illustrated by

Fig. 6.3(b) to obtain an expression for the out-

put resistance of the circuit shown in Fig. 6.7.

Solution: Because we are obtaining output

resistance from a circuit diagram (as opposed

to a laboratory measurement), we may use an

ideal dc test source as shown in Fig. 6.9, where

Rout ¼ V2

I2
¼ V2

V2 � Va

� �
R2: (6.12)

Kirchhoff’s current law gives

Va

R1 þ RS
þ Va

R3

þ Va � V2

R2

¼ 0; (6.13)

which yields

Va¼ R3 R1þRSð ÞV2

R3 R1þRSð ÞþR2 R1þR3þRSð Þ: (6.14)

Using this result in (6.12) gives

Rout¼R3 R1þRSð ÞþR2 R1þR3þRSð Þ
R1þR3þRS

: (6.15)

Here also, we could have used series/paral-

lel reduction to obtain the equivalent resistance

at the output terminals. If R1 � RS; the output

resistance is only weakly dependent upon the

source resistance.

Exercise 6.1. (a) Use the procedures illu-

strated by Figs. 6.2(a) and 6.3(a) to obtain

expressions for the input resistance and output

resistance of the circuit shown in Fig. 6.10.

(b) Repeat, using series/parallel reduction.

(c) Obtain an expression for the output resis-

tance by attaching a test source to the input and

finding the Thévenin equivalent at the output

terminals.

6.2 Dependent Sources

A dependent source is a source whose terminal

voltage or terminal current depends upon or is con-

trolled by another voltage or current called the control

voltage or control current. The control current or

voltage for a dependent source may be in the same

circuit as the dependent source or in another circuit

remote from the dependent source. It is not necessary

that a circuit containing a dependent source be

connected to the circuit containing the control current

RS R3

R1 R2

V2 I2

+

a

ref

–

Fig. 6.9 See Example 6.2

R2

R1 R3

Fig. 6.10 See Exercise 6.1
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or voltage by a wire, resistor, or other element. For

example, you might think of a radio receiver as con-

taining a dependent source controlled by a current or

voltage in a distant transmitter.

Dependent sources also are called controlled sources,

which in many applications is a more descriptive term.

We limit our discussion to the four linear dependent
sources whose terminal currents or voltages are pro-

portional to one other current or voltage.3 Table 6.1

gives the circuit-diagram symbols and terminal char-

acteristics for these four sources.

By convention, and for the present, we assume the

parameters m,g,r,b are positive. The sign of the termi-

nal characteristic for a source can be reversed by

reversing either the direction of i or the polarity of v

on the associated symbol given in Table 6.1. The

dimensionless parameters m and b are the intrinsic

voltage gain and the intrinsic current gain, respec-

tively, of the associated sources. The parameters r and
g are the intrinsic transresistance and intrinsic

transconductance, respectively, of the associated

sources.4 Transresistance has the dimension of resis-

tance and is expressed in ohms (O). Transconductance
has the dimension of conductance and is expressed in

siemens (S).

Unless confusion is otherwise possible, we omit the

adjective intrinsic in references to parameters of

dependent sources; e.g., if no confusion is possible,

we refer to the intrinsic voltage gain of a VCVS as the

voltage gain of the source. But where other like-named

quantities are present, we are specific. For example,

we might need to refer to the (overall) voltage gain of

a circuit that contains a VCVS having intrinsic voltage

gain m.
A dependent source is a non-physical but useful

element for exhibiting a relation between two currents,

two voltages, or a current and a voltage. A dependent

source exhibits only the relation, not the physical

mechanism that establishes the relation. This is similar

to using the symbol for a resistor to depict a relation

(Ohm’s law) between current through and voltage

across the terminals of a resistor. Like the symbol for a

dependent source, the symbol for a resistor says nothing

about how that relation is established (physically - in a

solid). Like a dependent source, a resistor in a circuit

Table 6.1 Dependent (controlled) sources

Name Symbol Control Terminal characteristic

Voltage-controlled voltage source (VCVS) mvc

+ –

i

v

+ –

vc v ¼ mvc

Voltage controlled current source (VCCS) gvc

+ –

i

v

vc i ¼ gvc

Current controlled voltage source (CCVS) ric

+ –

i

v

+ –

ic v ¼ ric

Current controlled current source (CCCS) b ic

+ –

i

v

ic i ¼ bic

3In general, the source current or voltage can be a linear or

nonlinear function of one or more other currents and voltages.

More generally, the input or output can be a function of a non-

electrical quantity, such as temperature, pressure, or torque. For

example, an electric motor can be regarded as a controlled

source whose input is current and whose output is torque.

4These names are contractions of transfer resistance and

transfer conductance, respectively.
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diagram might be non-physical; e.g., the Thévenin

equivalent resistance in a model for a two-terminal

circuit is in general non-physical. Still, you might

think, a resistor is more real than a dependent source,

because you can buy resistors, but you cannot find

dependent sources listed in electronics catalogs. How-

ever, you can buy devices called transistors and opera-

tional amplifiers (introduced in the next chapter) that

behave like dependent sources under certain operating

conditions. Thus it can be argued that dependent

sources are as real as resistors, capacitors, and induc-

tors, the main difference being that devices that behave

like dependent sources are sold under other names.

By and large, analysis of circuits containing depen-

dent sources proceeds in the same manner as analysis

of circuits not containing such sources, as illustrated

by the following examples.

Example 6.3. Transform the circuit shown in

Fig. 6.11(a) to the equivalent circuit shown in

Fig. 6.11(b).

Solution: The transformation proceeds exactly

as if the dependent sources were independent

sources, following the procedure for converting

a Norton source model to a Thévenin source

model. The Norton and Thévenin equivalent

resistances are equal and the controlled-source

voltage Rbib is obtained by multiplying the

controlled-source current bib by the Norton

equivalent resistance.

Exercise 6.2. Transform the circuit shown in

Fig. 6.12(a) to the equivalent circuit shown in

Fig. 6.12(b) (express the transconductance g

in terms of the circuit parameters).

Example 6.4. Refer to Fig. 6.13. Obtain an

expression for the voltage vL.
Solution: By voltage division,

vL ¼ RL

Ro þ RL

� �
Ri

RS þ Ri

� �
mvS:

Exercise 6.3. Refer to Fig. 6.14. Obtain an

expression for the voltage vab.

Example 6.5. Find the equivalent resistance

Req one would measure at the terminals a-b of

the circuit shown in Fig. 6.15.

Solution: To find the equivalent resistance, we

use Ohm’s law. We apply (mathematically) a

vS

RS

Ri v1

Ro

RL vL

+

–

+

–

+
–

+
– mv1

Fig. 6.13 See Example 6.4

bib RbibR

R

–
+

(a) (b)

Fig. 6.11 See Example 6.3

mv1 gv1

R

R

(a) (b)

+
–

Fig. 6.12 See Exercise 6.2

v1 Ro RLiS RS Ri

a

b

+

– gv1

Fig. 6.14 See Exercise 6.3
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voltage vin at the terminals a–b, find the result-

ing current iin, and obtain

Req ¼ vin
iin

:

Kirchhoff’s voltage law gives

� vin þ R1iin þ 1þ bð ÞR2iin ¼ 0;

which yields

Req ¼ vin
iin

¼ R1 þ 1þ bð ÞR2:

Note that if the internal resistance of the

dependent current source were infinite, as it is

for an independent current source, the equiva-

lent resistance would be R1 + R2, as one might

be misled to expect from an inspection of the

circuit.

Exercise 6.4. The equivalent or apparent

resistance at a terminal pair is given by

Req ¼ VS=I; where VS is a voltage applied to

the pair and I is the resulting current entering

the positive terminal. Find the apparent resis-

tance at the terminals a–b of the circuit shown

in Fig. 6.16.

Example 6.6. Refer to Fig. 6.17. Obtain the

Thévenin equivalent for the circuit at the term-

inals a–b.

Solution: We use Kirchhoff’s current law to

obtain an expression for the open-circuit

voltage:

� i1 � bi1 þ voc
R2

¼ 0 ) voc ¼ bþ 1ð ÞR2i1:

But

i1 ¼ vS � voc
R1

:

It follows that

voc ¼ bþ 1ð ÞR2i1 ¼ bþ 1ð ÞR2

vS � voc
R1

� �
:

Thus the Thévenin-equivalent voltage is

given by

vT ¼ voc ¼ bþ 1ð ÞR2vS
R1 þ bþ 1ð ÞR2

:

The short-circuit current is given by

� i1 � bi1 þ isc ¼ 0 ) isc ¼ bþ 1ð Þi1
¼ bþ 1ð Þ vS

R1

:

Thus the Thévenin-equivalent resistance is

given by

RT ¼ voc
isc

¼ bþ 1ð ÞR2vS
R1 þ bþ 1ð ÞR2

bþ 1ð Þ vS
R1

� ��1

¼ R1R2

R1 þ bþ 1ð ÞR2

:

bi1vS

i1 R1

R2

a

b

+
–

Fig. 6.17 See Example 6.6

R1

i1

bi1

R2a

bFig. 6.16 See Exercise 6.4

vin

iin

biin

+

–

R1

R2KVL

a

b

Fig. 6.15 See Example 6.5
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Exercise 6.5. Refer to Fig. 6.14 (Exercise 6.3).

Obtain the Thévenin equivalent for the circuit

at the terminals a–b.

As examples above illustrate, analysis of a circuit

containing one or more dependent sources is carried

out in the same way as that of a circuit containing

no such sources. But there is one caveat: When apply-

ing superposition to a circuit containing dependent

sources, proceed as follows:

1. Select an independent source. Set all other indepen-
dent sources to zero (replace independent voltage

sources by short circuits and independent current

sources by open circuits).

2. Examine all dependent sources. Set to zero each

dependent source whose terminal current or volt-

age is proportional to the terminal current or volt-

age of an independent source that was set to zero in

step (1) above, but leave all other dependent

sources in place. In other words, do not zero

a dependent source whose terminal current or

voltage depends upon a current or voltage pro-

duced by the non-zero independent source under

consideration.

3. Repeat steps (1) and (2) until all independent

sources have been accounted for, then add the

individual responses obtained, as usual.

The next example is contrived to illustrate the pro-

cedure described above with as little distracting math-

ematics as possible.

Example 6.7. Use superposition to obtain an

expression for the voltage vx in the circuit

shown in Fig. 6.18(a).

Solution: Figure 6.18(b)–(d) illustrate the

procedure.

Response to v1: We set the other two inde-

pendent sources (v2 and i1) to zero (replace v2
by a short circuit and i1 by an open circuit).

Because v2 ¼ 0, then gv2 ¼ 0 as well, and we

replace the dependent current source with an

open circuit. The control current ic1 for the

dependent voltage source is not necessarily

ric

ic

ic1

ic2

ic3

vx1ric1

ric2

ric3

vx10R

10R

10R

10R

5R

5R

5R

5R

R

v1

v1

(b) i1, v2 set to zero. vx1 = component of vx due to v1

(c) v1, v2 set to zero. vx2 = component of vx due to i1

(d) v1, i1 set to zero. vx3 = component of vx due to v2

i1

v2

gv2

(a) original circuit

R

R

i1

gv2

R
v2

+
–

+
–

+
–

+
–

+ –

+
–

+ –

+
+

–

+

–

vx3

+

–

vx2

+

–

–

Fig. 6.18 See Example 6.7
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zero, so we do not set the dependent voltage

source to zero. Figure 6.18(b) shows the result-

ing circuit. By inspection,

vx3 ¼ ric3

and

ic1 ¼ v1 � ric1
R

� �
) ic1 ¼ v1

Rþ r
:

Thus

vx1 ¼ rv1
Rþ r

: (6.16)

Response to i1: Beginning again with the

circuit in Fig. 6.18(a), we set v1 and v2 to

zero, which makes gv2 zero as well. Thus we

replace the independent voltage sources with

short circuits and the dependent current source

with an open circuit. Here again, the control

current ic2 for the dependent voltage source is

not necessarily zero, so we do not set the

dependent voltage source to zero. Figure 6.18(c)

shows the resulting circuit. By inspection,

vx2 ¼ ric2:

Kirchhoff’s current law gives

ic2 þ ric2
R

� i1 ¼ 0 ) ic2 ¼ Ri1
Rþ r

:

Thus

vx2 ¼ rRi1
Rþ r

: (6.17)

Response to v2: Beginning again with the

circuit in Fig. 6.18(a), we set v1 and i1 to zero.

In this case, gv2 6¼ 0, so we do not set the

dependent current source to zero. Figure 6.18(d)

shows the resulting circuit. By inspection,

vx1 ¼ ric1

and

ic3 ¼ � v2 þ vx3
R

Thus

vx3 ¼ � r v2 þ vx3ð Þ
R

) vx3 ¼ � rv2
Rþ r

All independent sources have been

accounted for, and the complete response is

given by

vx ¼ vx1 þ vx2 þ vx3 ¼ r v1 þ Ri1 � v2ð Þ
Rþ r

:

Exercise 6.6. Use superposition to obtain an

expression for the voltage vout in the circuit

shown in Fig. 6.19.

We present the procedure and example above for

completeness, but such problems rarely arise in prac-

tice. In analysis of electronic systems, superposition is

useful mainly where an input (the current or voltage at

a single input port) can be modeled using a number of

v1

R

v2

R R
i1 2R 2R

4R

vout

vx

mvx

bi1

+

+
–

+

+

––

+
–

–

Fig. 6.19 See Exercise 6.6
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independent voltage sources in series or a number of

independent current sources in parallel. In most realis-

tic circuit models, internal sources are dependent

sources, all of which are controlled by currents or

voltages produced by the input. Circuits having inde-

pendent sources scattered about internally or in which

different controlled sources depend upon different

independent sources are found mainly in textbooks.

6.3 Linear Two-Port Models

Review the introductory discussion at the beginning of

this chapter.

Because the currents entering and exiting the input

port of a two-port circuit are equal and the currents

entering and exiting the output port of a two-port

circuit are equal, a two-port circuit can be modeled

as if it were two separate circuits, called the input

subcircuit and the output subcircuit, as shown in

Fig. 6.20.5

A two-port model is bilateral if a current or voltage

in either subcircuit can give rise to a current or voltage

in the other subcircuit. A two-port model is unilateral

if currents and voltages in the output subcircuit cannot

produce currents or voltages in the input subcircuit.

Think of unilateral as meaning one-way, from input to

output, but not vice-versa. In a unilateral two-port

model, the controlling current or voltage is a current

or voltage in the input subcircuit and the controlled

current or voltage is a dependent source in the output

subcircuit.

Exercise 6.7. Under what condition(s) is the

circuit shown in Fig. 6.21 unilateral?

For present purposes and for many important appli-

cations, unilateral models are sufficient, and we limit

our development in this chapter to unilateral models. In

addition, we assume that a model contains only depen-

dent sources and resistors (no independent sources).6

Consequently, the model is linear, and every current

and voltage in the model is proportional to a current
or voltage applied at the input port.

From the viewpoint of a source connected to the

input port, the input subcircuit in Fig. 6.20 is a load.

Because the model is resistive, the load is resistive,

and is the equivalent resistance seen at the input port

of the model. This resistance is the input resistance of

the unilateral two-port model.

From the viewpoint of a load attached to the output

port, the output subcircuit in Fig. 6.20 is a source.

Because the circuit is linear (contains no independent

sources), the output (current i2 or voltage v2) is pro-

portional to the input (current i1 or voltage v1). It
follows that the output subcircuit is a Thévenin or

Norton model in which the source is dependent upon

the input current or voltage. The Thévenin or Norton

equivalent resistance at the output port is the output

resistance of the unilateral two-port circuit.

The input resistance of a unilateral two-port is
independent of the load attached to the output term-

inals, because currents and voltages in the output sub-

circuit do not give rise to currents or voltages in the

input subcircuit. Likewise, because a source attached

v1

i1

i1

i2

i2

input port output port
output 
subcircuit

input 
subcircuit

+

–

v2

+

–

Fig. 6.20 Two-port model

R1 R2

v1 m1v2 m2v1

+
+
–

+
–

–

v2

+

–

Fig. 6.21 See Exercise 6.7

5Remember that Fig. 6.20 is the structure of a two-port model,
not of the associated physical circuit.

6Two-port models can be extended to cases where a circuit in

question contains independent sources, but we have no need of

that generalization in this book.
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to the output cannot produce a current or voltage in the

input subcircuit, the output resistance of a unilateral

two-port is independent of what is attached to the input

terminals. In other words, the output resistance of a

unilateral two-port is independent of the source, and
the input resistance of a unilateral two-port is inde-

pendent of the load.

The form of a unilateral two-port model is deter-

mined by which of input current or voltage is the

controlling quantity and by which of a Thévenin or

Norton model is used to represent the output subcircuit.

Figure 6.22 shows four possible unilateral linear two-

port models. Any one of the four models can be made

equivalent at its terminals to any resistive unilateral

linear two-port circuit. Furthermore, any one of the

four models in Fig. 6.22 can be transformed to any

other using a source transformation and the relation

vT ¼ RT iN provided both the input resistance Ri and

the output resistance Ro are non-zero and finite (as they

are for any physical circuit). The fourmodels in Fig. 6.22

are equivalent, so choice of a particular model in any

application may be based entirely upon ease and objec-

tives of subsequent analysis and interpretation.

Example 6.8. Refer to Fig. 6.22. Use source

transformation to obtain a CCCS two-port

model from the equivalent CCVS model.

Solution: The input resistance is unchanged.

The output resistance is also unchanged,

because the Thévenin and Norton equivalent

resistances are the same for equivalent circuits.

By the usual rules for source transformation, and

with reference to Fig. 6.22(b) and (c), we have

bi1 ¼ ri1
Ro

) b ¼ r

Ro
:

Exercise 6.8. Refer to Fig. 6.22. Use source

transformation to obtain a VCVS two-port

model from the equivalent VCCS model.

The components of a two-port model are non-

physical. Neither the input resistance nor the output

resistance is necessarily that of a single resistor or

even a combination of resistors. Both the input

resistance and the output resistance of an electronic

circuit, for example, might be determined primarily by

properties of a transistor or integrated circuit. Simi-

larly, the dependent source in the output subcircuit is

not necessarily associated with any particular physical

component.

Exercise 6.9. Obtain expressions for the input

resistance and the output resistance of the cir-

cuit shown in Fig. 6.23. Use two different

methods (or test sources) for each.

Ri Ri

Ri

Ro

Ro

i1 i1i2 i2

v1

Riv1

Ro

i1 i1i2 i2Ro

ri1 gv1

(a) VCVS model (b) CCCS model

(c) CCVS model (d) VCCS model

+
+
–

+
–

–

+

–

v2mv1 bi1

+

–

v2

+

–

v2

+

–

v2

+

–

v1

+

–

v1

+

–
Fig. 6.22 Linear models for a

unilateral two-port circuit

+
–

Ri

Rf

Ro
v1

mv1

+

–

input output

Fig. 6.23 See Exercise 6.9
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6.4 Two-Ports in Cascade

As noted above, many complex circuits can be designed

and analyzed as interconnections of two-ports.Cascade

connections, where one two-port drives or is driven by

another, are common in electronic systems. Figure 6.24

shows a cascade connection of two two-ports. Analysis

of a cascade connection of unilateral two-ports is

straightforward, as illustrated by the following example.

Example 6.9. Refer to Fig. 6.24. (a) Express

the output voltage vL in terms of the source

voltage vS and circuit parameters. (b) Reduce

the cascade connection to a single equivalent

VCVS two-port.

Solution: (a) Using voltage division and work-

ing from right to left gives

vL¼ RL

RLþRo2
m2v2¼

RL

RLþRo2
m2

Ri2

Ri2þRo1
m1v1

¼ RL

RLþRo2
m2

Ri2

Ri2þRo1
m1

Ri1

Ri1þRS
vS

¼ RL

RLþRo2

� �
Ri2

Ri2þRo1

� �
Ri1

Ri1þRS

� �
m2m1vS:

(6.18)

(b) By inspection, the input resistance and

the output resistance of the cascade connection

are Ri1 and Ro2, respectively. The open-circuit

output voltage is given by (6.18) for RL !1:

voc ¼ lim
RL!1

RL

RL þ Ro2

� �
Ri2

Ri2 þ Ro1

� �

� Ri1

Ri1 þ RS

� �
m2m1vS

¼ Ri2

Ri2 þ Ro1

� �
Ri1

Ri1 þ RS

� �
m2m1vS

¼ Ri2

Ri2 þ Ro1

� �
m2m1 v1:

Thus the circuit in Fig. 6.24 can be reduced to

the circuit shown in Fig. 6.25, where

m ¼ Ri2

Ri2 þ Ro1

� �
m2m1;

Ro ¼ Ro2; Ri ¼ Ri1:

Exercise 6.10. (a) Obtain a single VCVS two-

port that is equivalent to the cascade connec-

tion of two-ports in Fig. 6.26. (b) From the

single VCVS model, obtain equivalent VCCS,

CCVS, and CCCS models.

6.5 Voltage, Current, and Power
Transfer

This section describes conditions for optimum transfer

of voltage, current, and power from a linear source to a

linear load. The source and load can be circuits, in

which case the source resistance is the output resis-

tance of the first circuit and the load resistance is the

input resistance of the second circuit.

We approach our study first from the perspective of

one designing a load; e.g., a circuit that is to be driven

by another circuit. The source is considered to be

fixed, and can be represented by its Thévenin or

+
–

+
–

Ri1

Ro1 Ro2

Ri2

RS

RL VL
vS v1 m1v1 m2v2

+

–

v2

+

–

+

–

circuit 1 circuit 2

++
––

Fig. 6.24 Two-ports in

cascade

Riv1

+

–

+
–

Ro

mv1

Fig. 6.25 A single VCVS two-port that is equivalent to the

cascade connection of two-ports in Fig. 6.24. See Example 6.9
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Norton equivalent, as shown in Fig. 6.27, where the

voltage and current transferred from the source to the

load are v and i, respectively. We presume the source

models represent the same physical source, and
therefore are equivalent at their terminals, with vS
¼ RSiS. The resistance RS is the output resistance of

the source and is called the source resistance. The

resistance RL is the input resistance of the load and is

called the load resistance. Although Fig. 6.27 shows

the sources as independent sources, they could be

dependent.

Keep in mind that the elements of the Thévenin and

Norton equivalent circuits and the input resistance of a

load are in general non-physical. We cannot in general

change those elements directly. We can only change

certain physical parameters upon which the Thévenin

(or Norton) equivalent for the source and the input

resistance of the load depend.

The open-circuit source voltage vS is called the

available voltage for that source. The short-circuit

source current iS is called the available current for

the source. This terminology reflects the fact that at
any particular time, the available voltage (available

current) is the largest (in magnitude) voltage (current)

that can be transferred by the source to a resistive load.

Exercise 6.11. The current and voltage avail-

able from a certain source are I ¼ 2A and

V ¼15V, respectively. Draw circuit diagrams

for the Thévenin and Norton models for the

source.

The available power PA is the maximum average

power that can be transferred from the source to a load.

From Chapter 5, we know that the available power

from a source is the power delivered by the source to a

load whose input resistance equals the output resis-

tance of the source.

Exercise 6.12. The power available from a

certain source having internal (source) resis-

tance RS ¼ 10 O is P ¼ 500 mW. Can you

determine both the magnitudes and signs of the

available voltage and current?

Exercise 6.13. The current and voltage avail-

able from a certain source are I ¼ 2A and

V ¼ 15V, respectively. Find the power avail-

able from the source.

Exercise 6.14. If the source resistance is

halved and the available voltage is unchanged,

bywhat factor is the available powermultiplied?

v1

i2
+

–
vL

+

–
vS

RS

Ri1 Ri2Ro1 Ro2
g1v1

RL

circuit 1 circuit 2

b2i2

+
–

Fig. 6.26 See Exercise 6.10

RLv
+

–
v
+

–

i

vS

RS
RS RL

iS

i

(a) Thevenin source model (b) Norton source model

source sourceload load

+
–

Fig. 6.27 Circuit models for

analysis of voltage, current,

and power transfer
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We examine voltage, current, and power transfer

from a fixed source to a load in terms of the available

voltage vS, the available current iS, and the available

power PA. As we show below, efficacy of voltage,

current, and power transfer is determined by the rela-

tion of the load resistance to the source resistance.

The source-load model in Fig. 6.27(a) is a voltage

divider. The voltage transferred to the load is given by

v ¼ RLvS
RL þ RS

¼ RL

RL þ RS
� available voltageð Þ: (6.19)

The voltage transferred to the load is less than the

source voltage by the voltage loading factor

RL

RL þ RS
� 1:

If the load resistance RL approaches infinity, the

voltage loading factor approaches unity, and the volt-

age transferred to the load equals the available voltage.

As a practical matter, almost all of the available volt-

age is transferred to the load if RL � RS.

To maximize voltage transfer, make the load resis-
tance as large as possible. Note that if the voltage

transferred to the load equals the available (open-circuit)

voltage, both the current and the power transferred to the

load equal zero.

Exercise 6.15. If it is required that at least

95% of the voltage available from a source be

transferred to a load RL, what are the permissi-

ble values of RL=RS; where RS is the source

resistance?

The source-load model in Fig. 6.27(b) is a current

divider. The current transferred to the load is given by

i ¼ vS
RS þ RL

¼ RSiS
RS þ RL

¼ RS

RS þ RL
� available currentð Þ: (6.20)

The current transferred to the load by the source is

less than the available current by the current loading

factor

RS

RS þ RL
� 1:

If the load resistance RL approaches zero, the cur-

rent loading factor approaches unity, and the current

transferred to the load equals the available current. As

a practical matter, almost all of the available current is

transferred to the load if RL � RS:

To maximize current transfer, make the load resis-

tance as small as possible. But keep in mind that all

sources are current limited. For each source, there is a

maximum load (minimum load resistance) the source

can support. If a load demands more current than a

source can supply, the source might be damaged or

destroyed. For example, if you accidentally lay a

wrench across the terminals of an automotive battery,

the battery might explode. Note also that if the current

transferred to the load equals the available (short-

circuit) current, both the voltage and the power

transferred to the load equal zero.

Exercise 6.16. If it is required that at least

95% of the current available from a source be

transferred to a load RL, what are the permissi-

ble values of RL=RS; where RS is the source

resistance?

The power available from a source depends upon

the source resistance. If the source resistance equals

zero, then the available power is unlimited (mathe-

matically). For example, imagine an independent

source vS (having zero source resistance) driving a

resistive load RL. The average power dissipated by

the load, given by P ¼ VSrms
2=RL; is unbounded for

RL!0.

No physical source can provide unlimited power.

Moreover, every physical source exhibits internal

losses, so the source resistance of any realistic model

for a physical source is non-zero. A realistic model for

a physical source must contain non-zero source resis-

tance and cannot deliver unlimited power to a load. In

the discussion that follows, we assume the source
resistance is non-zero. Because no power can be trans-

ferred to a load having zero or infinite resistance, we

also assume the load resistance is non-zero and finite.
With reference to Fig. 6.27, the power transferred

to the load is given by
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PL ¼ VrmsIrms ¼ RLVS rms

RL þ RS

� �
VS rms

RL þ RS

� �

¼ RLVS rms
2

RL þ RSð Þ2 : (6.21)

From Chapter 5, maximum power is transferred

from a fixed source to a load if the load resistance RL

equals the source resistance RS. Therefore the available

power from a source is given by (6.21) with RL ¼ RS:

available power ¼ PA ¼ RSVS rms
2

2RSð Þ2 ¼ VS rms
2

4RS
: (6.22)

The available power given by (6.22) is the maxi-

mum average power that can be drawn from a source

by a load. Again, the available power is unbounded if

RS ¼ 0, but that condition is not achieved by any

physical source. From (6.22),

VS rms
2 ¼ 4RSPA: (6.23)

Using this relation in (6.21) gives

PL ¼ 4RLRSPA

RL þ RSð Þ2

¼ 4RLRS

RL þ RSð Þ2 � available powerð Þ: (6.24)

If the load resistance is not equal to the source

resistance, the power transferred to the load is less

than the available power by the factor

4RLRS

RL þ RSð Þ2 � 1; RS fixed: (6.25)

To maximize power transfer, make the load resis-

tance equal to the source resistance. As a practical

matter (for a resistive source and load), the power

transferred to a load has a broad maximum, so this

requirement is not very strict. For example, if

RL ¼ 2RS (twice the optimum value), then from (6.24)

PL ¼ 8RS
2

3RSð Þ2 � available powerð Þ

ffi 0:889� available powerð Þ:

If RL ¼ 2RS; approximately 89% of the available

power is transferred to the load.

Exercise 6.17. What fraction of the power

available from a source is transferred to a load

whose resistance is half the source resistance?

Exercise 6.18. If it is required that at least

95% of the power available from a source be

transferred to a load RL, what are the permissi-

ble values of RL=RS; where RS is the source

resistance?

Equations (6.19), (6.20), and (6.24) quantify penal-

ties for non-optimum transfer of voltage, current, and

power from a source to a load. These equations also

imply desirable values for or relations between the

input resistance of a load and the output resistance of

a source, depending upon which of voltage transfer,

current transfer, or power transfer is most important.

Although the input resistance and the output resistance

of a circuit are generally non-physical,7 they are func-

tions of circuit parameters or device parameters that

are to some extent dependent upon design and device

selection. Knowing desirable values for input resis-

tance and output resistance helps a designer specify

components and the configuration of a circuit.

The development above assumes a fixed source and

variable load. Study of voltage, current, and power

transfer from a variable source to a fixed load is

more difficult, because such study cannot be based

upon only the parameters of the Thévenin equivalent

for the source. It might appear from (6.19), for exam-

ple, that voltage transfer is maximized by minimizing

the Thévenin-equivalent source resistance RS, but

that is not necessarily the case because a particular

physical parameter (e.g., a physical resistance) might

affect both the Thévenin-equivalent resistance and

the Thévenin-equivalent source voltage. For example,

consider the circuit shown in Fig. 6.28(a) and

the associated Thévenin equivalent shown in

7That is, neither is necessarily associated with any particular

physical resistor.
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Fig. 6.28(b). The output (Thévenin-equivalent) resis-

tance of the circuit is given by

RS ¼ R1 R2k : (6.26)

We presume the elements of the circuit in Fig. 6.28(a)

are physical. Suppose that R1 is fixed but that R2 is

somewhat under our control. We can decrease the

output resistance by decreasing R2. However, because

the Thévenin-equivalent source voltage is given by

vS ¼ R2v0
R1 þ R2

; (6.27)

decreasing R2 actually decreases the available voltage,

in spite of the fact that decreasing R2 decreases the

output (Thévenin-equivalent) resistance of the source.

If R1 is fixed and we wish to maximize any or all of

current, voltage, or power transfer, we would make

R2 as large as possible even though doing so maxi-
mizes the source resistance.

To maximize voltage, current, or power transfer

from a variable source to a load, we must express the

quantity of interest (e.g., load voltage) in terms of

actual (physical) circuit parameters and find the values

of those parameters for which the quantity is maxi-

mized. This is in general a difficult problem, because

such expressions can be complicated and there are

always constraints on the values of the variable para-

meters. However (and fortunately), it often is possible

to minimize the output resistance of an electronic

circuit without reducing the available voltage. In

such cases, one almost always attempts to minimize

the output (source) resistance, because so doing max-

imizes all three of voltage transfer, current transfer,

and power transfer to a fixed load.

The factors that multiply available voltage in

(6.19) and available current in (6.20) often are called

loading factors or coupling factors. For example, in

an electronics textbook, factors appearing in (6.18)

(Example 6.9) might be identified as follows:

vL ¼ Ri1

Ri1 þ Rs

� �
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
input loading

Ri2

Ri2 þ Ro1

� �
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
interstage loading

RL

RL þ R02

� �
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
output loading

m1m2vs:

(6.28)

There are three generally undesirable consequences

of loading:

• The most obvious consequence is attenuation; e.g.,

as introduced by each loading factor in (6.28).

Attenuation is often the least troublesome conse-

quence of loading because attenuation can be made

up by amplification.

• A more serious consequence of loading is that

loading makes the overall relation between the

source voltage and the load voltage dependent

upon properties of the source and load. If the

relation between an input and output depends

strongly upon properties of the source or load, a

nonlinear source or load can wreak havoc with the

intended function of the circuit.

• Finally, loading increases the number of parameters

that affect the relation between input and output

and therefore increases the number of parameters

that must be considered by a designer. As a rule, it

is desirable to make performance dependent upon

as few parameters as possible, and to then specify

those parameters as tightly as possible.

For these reasons, circuit designers often strive to

eliminate loading. We discuss this point further below.

6.6 Transfer Characteristics, Transfer
Ratios, and Gain

The primary purpose of any particular two-port circuit

is to establish a specified relation between the current

or voltage available to the circuit from a source and

the associated current or voltage transferred from the

circuit to a load. For a resistive circuit, the relation is a

proportional one. With reference to Fig. 6.29, where

the Thévenin and Norton source models are equiva-
lent, we may write

R1
R2v0 vS

RS
+
–

+
–

(a) (b)

Fig. 6.28 A case where minimizing the Thévenin-equivalent

resistance of a source also minimizes the voltage transferred to a

load. See (6.26), (6.27), and related discussion
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vL ¼ HvvS; (6.29)

vL ¼ HriS; (6.30)

iL ¼ HiiS; (6.31)

and

iL ¼ HgvS: (6.32)

The relations (6.29–6.32) are called transfer char-

acteristics. The parameters Hv;Hr;Hi;Hg are called

transfer ratios. For example (6.29) is a voltage

transfer characteristic and H4 is the associated transfer

ratio. Conversely,

Hv ¼ vL
vS

; Hg ¼ iL
vS

; vS 6¼ 0;

Hi ¼ iL
iS
; Hz ¼ vL

iS
; iS 6¼ 0:

(6.33)

In general, the source current iS and source voltage

vS in (6.33) are functions of time, and can equal zero at

times. The quantities vL=vS; vL=iS; iL=vS; and vL=iS
are undefined at those times. But currents and voltages

in resistive circuits are proportional, so whenever any

one of vL, vS, iL, and iS is non-zero, all are. Thus the

definitions (6.33), where vS and iS must be non-zero,

are acceptable.

For a resistive two-port model, the transfer ratios

Hv, Hr, Hi, Hg are functions of only the model para-

meters (Ri, Ro and one of m, b, r, and g), the source

resistance RS, and the load resistance RL. In a

subsequent chapter, we generalize these definitions to

circuits containing other elements (e.g., capacitance

and inductance).

The transfer characteristics and the transfer ratios

for a circuit are always specified or determined with a

source and load attached to the circuit. To repeat, a

transfer ratio is in general a function not only of the

circuit parameters but also of the load resistance RS

and the source resistance RS.

Example 6.10. Refer to Fig. 6.30. Find each

of the transfer characteristics and transfer

ratios defined above.

Solution: For the output subcircuit, we have

vL ¼ b i1 Ro RLkð Þ (6.34)

and

iL ¼ vL
iL

¼ Rob i1
Ro þ RL

: (6.35)

For the input subcircuit,

i1 ¼ vS
Ri þ RS

(6.36)

From the equivalence of Thévenin and

Norton source models,

vS ¼ RSiS: (6.37)

resistive 
two-port
circuit

resistive 
two-port
circuit

RS iL iL

RL RLvLvS

(a) vS = RSiS (b) iS = vS /RS

iS RS

+

+
–

–Fig. 6.29 Pertaining to the

definitions of transfer

characteristics for equivalent

sources

RS

iL

RLRoRivS vL

+

–

+

–

i1

bi1

v1
+
–

Fig. 6.30 See Example 6.10
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From (6.34) and (6.36),

vL ¼ b Ro RLkð Þ
Ri þ RS

vS

) Hv ¼ b Ro RLkð Þ
Ri þ RS

:

(6.38)

From (6.37) and the left half of (6.38),

vL ¼ b Ro RLkð Þ
Ri þ RS

RSiS

) Hr ¼ b Ro RLkð ÞRS

Ri þ RS
:

(6.39)

From (6.35) and (6.36),

iL ¼ Rob vS
Ro þ RLð Þ Ri þ RSð Þ

) Hg ¼ Rob
Ro þ RLð Þ Ri þ RSð Þ :

(6.40)

Finally, from (6.37) and the left half of

(6.40)

iL ¼ RobRSiS
Ro þ RLð Þ Ri þ RSð Þ

) Hi ¼ RobRS

Ro þ RLð Þ Ri þ RSð Þ :
(6.41)

Exercise 6.19. Refer to Fig. 6.31. Find each

of the transfer characteristics and transfer

ratios defined above.

One or more gains are of interest in various appli-

cations. These are voltage gain, current gain, transre-

sistance, and transconductance, defined with reference

to Fig. 6.29 as follows:

Voltage Gain:

Av ¼ Hvj j ¼ VL rms

VS rms
; (6.42)

Current Gain:

Ai ¼ Hij j ¼ IL rms
IS rms

; (6.43)

Transresistance:

Ar ¼ Hrj j ¼ VL rms

IS rms
; (6.44)

Transconductance:

Ag ¼ Hg

�� �� ¼ IL rms
VS rms

: (6.45)

Transconductance has the dimension of conduc-

tance (S) and transresistance has the dimension of

resistance (O). Voltage gain and current gain are

dimensionless. Although (for convenience), we refer

to all of the quantities Av, Ai, Ar, Ag as gains, transre-

sistance and transconductance are not gains in the

usual sense because current and voltage have different

dimensions. It makes no sense to say a current is larger

or smaller than some voltage, just as it makes no sense

to say a dollar is larger or smaller than a kilogram.

Defining the gains in terms of rms amplitudes

avoids the minor difficulty that arises when the instan-

taneous source current or voltage passes through zero,

discussed in relation to (6.33). Also, in circuits con-

taining capacitance or inductance,8 the currents and

voltages appearing in each definition are not necessar-

ily instantaneously proportional, nor do they necessar-

ily even have the same waveform. Thus gain must be

defined (in general) in terms of rms amplitudes.9 To

save writing, some omit the rms subscripts when

obtaining or presenting expressions for gain, but the

rms subscript is implied in such expressions. In

the context of this chapter, we could as well use the

definitions

iS RS Ri RL

Ro iL

vLv1
mv1

i1
+

+
–

–

+

–

Fig. 6.31 See Exercise 6.19

8These elements are treated in subsequent chapters.
9Peak amplitudes can be (and often are) used if the voltages or

currents involved have the same waveform.
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Av ¼ vL
vS

����
����; Ag ¼ iL

vS

����
����; vS 6¼ 0;

Ai ¼ iL
iS

����
����; Az ¼ vL

iS

����
����; iS 6¼ 0;

(6.46)

which are equivalent to (6.42–6.45) for resistive

circuits.

Example 6.11. Obtain expressions for (a) the

voltage gain, (b) the current gain, (c) the trans-

resistance, and (d) the transconductance of the

two-port circuit in Fig. 6.32(a).

Solution: We attach a source and a load to the

circuit, as shown in Fig. 6.32(b), before seek-

ing the transfer characteristics.

(a) By inspection,

i1 ¼ vLs

RS þ Ri
(6.47)

and

vL ¼ �bi1 Ro RLkð Þ: (6.48)

Thus

vL ¼ �b
vS

RS þ Ri

� �
Ro RLkð Þ

¼ �b
Ro RLk
RS þ Ri

� �
vS (6.49)

and the voltage gain of the circuit is given by

Av ¼ �b
Ro RLkð Þ
RS þ Ri

����
���� ¼ b

Ro RLkð Þ
RS þ Ri

: (6.50)

(b) By current division,

iL ¼ �bi1
Ro

Ro þ RL

¼ �b
vS

RS þ Ri

� �
Ro

Ro þ RL

¼ �bRoRSiS
RS þ Rið Þ Ro þ RLð Þ ;

(6.51)

where we have made use of vs ¼ RSiS. The

current gain is given by

Av ¼ �bRoRS

RS þ Rið Þ Ro þ RLð Þ
����

����
¼ bRoRS

RS þ Rið Þ Ro þ RLð Þ : (6.52)

(c) From (6.49)

vL ¼ �b
Ro RLk
RS þ Ri

� �
vS

¼ �b
Ro RLk
RS þ Ri

� �
RSiS;

(6.53)

and the transresistance is given by

Av ¼ �b
Ro RLk
RS þ Ri

� �
RS

����
����

¼ b
Ro RLk
RS þ Ri

� �
RS:

(6.54)

Ro

i1

i1

b i1

b i1

vS

Ri

RoRi RL

RS

iL

vL

+

+
–

–

(a)

(b)

Fig. 6.32 See Example 6.11
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(d) From (6.51)

iL ¼ �b
vS

RS þ Ri

� �
Ro

Ro þ RL
; (6.55)

and the transconductance is given by

Ag ¼ �b
1

RS þ Ri

� �
Ro

Ro þ RL

����
����

¼ bRo

Ro þ RLð Þ RS þ Rið Þ : (6.56)

Where necessary to avoid confusion, we refer to the

gains Av, Ai, Ag, Ar defined by (6.46) as overall gains to
distinguish them from the intrinsic gains defined in

Section 6.2. For example, when we refer to the current

gain of a two-port or circuit, we mean the overall

current gain. Thus, the circuit considered in Example

6.11 has intrinsic current gain b and overall current

gain Ai given by (6.52).

Exercise 6.20. Obtain expressions for the

voltage gain, current gain, transconductance,

and transresistance of the two-port in Fig. 6.33.

Exercise 6.21. Obtain expressions for the

voltage gain, current gain, transconductance,

and transresistance of the circuit shown in

Fig. 6.34.

In Fig. 6.29, because the source models are equiva-

lent, we have vS ¼ RSiS. Also, by Ohm’s law,

vL ¼ RLiL. These relations allow us to express any

gain in terms of any other gain.

Example 6.12. Express the current gain,

transconductance, and transresistance of a cir-

cuit in terms of the voltage gain.

Solution: From (6.43) and (6.42)

Ai ¼ IL rms
IS rms

¼ VLrms=RL

VSrms=RS
¼ RS

RL
Av: (6.57)

From (6.44)

Ar ¼ VL rms

IS rms
¼ VL rms

VSrms=RS
¼ RSAv: (6.58)

From (6.45)

Ag ¼ IL rms
VS rms

¼ VLrms=RL

VS rms
¼ 1

RL
Av: (6.59)

Exercise 6.22. Express the voltage gain,

transconductance, and transresistance of a cir-

cuit in terms of the current gain.

Exercise 6.23. In each of the following,

express the parameter a in terms of the source

resistance and load resistance. (a) Ai ¼ aAr, (b)
Ag ¼ aAi, (c) Av ¼ aAr, (d) AiAv ¼ aArAg.

Equations (6.57)–(6.59) show that at most one of the
four gains Av, Ai, Ag, Ar can be independent of the

source and load resistances. For example, if the volt-

age gain of a circuit is independent of the source and

Ro1

Ri1 Ri2 Ro2
ri1

i1 i2

bi2
+
–

Fig. 6.34 See Exercise 6.21

+
–Ri

Ro

ri1

i1

Fig. 6.33 See Exercise 6.20
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load resistances, then (6.57)–(6.59) show that Ai, Ag,

and Ar depend upon the source and load resistances. To

pursue this further, we consider the circuit treated in

Example 6.11, for which the voltage gain is given by

Av ¼ b
Ro RLkð Þ
RS þ Ri

: (6.60)

If the input resistance is much larger than the source

resistance (if Ri � RS) and the output resistance is

much smaller than the load resistance (if Ro � Rr),

then RS þ Ri ffi Ri;Ro RL ffi Rok ; and the voltage gain

is given to a good approximation by

Av ffi b
Ro

Ri
; (6.61)

which is independent of the source and load resis-

tances. But under those same conditions, the current

gain, given by (6.52), becomes

Ai ffi bRoRS

RiRL
;

and is strongly dependent upon both the source resis-

tance and the load resistance.

The point of the discussion above is the following:

The purpose of a two-port circuit is to establish some

specified relation between an available current or

voltage and the associated load current or voltage.

For reasons given at the end of Section 6.5, it usually

is desirable that the relation be independent of proper-

ties of the source and load. The development leading

to (6.61) shows that the voltage gain of the circuit in

Fig. 6.32 is independent of the source and load if the

input resistance is much larger than the source resis-

tance and the output resistance is much smaller than

the load resistance. Although this conclusion is drawn

for a specific two-port circuit, it is true in general. The

implication for design is that if the voltage gain of a
circuit is to be independent of source and load, then

make the input resistance of the circuit as large as

possible and the output resistance as small as possible.

Example 6.13. A certain two-port circuit has

input resistance Ri ¼ 100 kO and output resis-

tance Ro¼ 1 kO. For what values of source and
load resistance is the voltage gain of the circuit

approximately independent of the source and

load resistances?

Solution: Of course the answer depends upon

the quantitative meaning of approximately. If
we want the effect of source and load resis-

tances on voltage gain to be about 1% or smal-

ler, we might require

RS < 0:01Ri ) RS < 1 kO;

RL > 100Ro ) RL > 100 kO:

At first glance, it might seem odd that the gains of a

two-port circuit are defined such that they are depen-

dent upon properties of the source and load. After all,

the source and load are not parts of the circuit under

consideration. But a gain of a circuit is essentially a

performance measure, and it does make sense for

a gain to depend upon how well the circuit makes

use of available current, voltage, or power, which

depends upon the input resistance relative to the
source resistance, and upon how effectively the circuit

transfers current, voltage, or power to a load, which

depends upon the output resistance relative to the load
resistance.

6.7 Power Gain

Refer to Fig. 6.29. The power gain of a two-port

circuit is defined by

Ap ¼ power delivered to the load

available power

¼ VLrms
2=RL

VSrms
2= 4RSð Þ ¼

4RS

RL
Av

2: (6.62)

From the definition (6.62), it is clear that the power

gain of a circuit must be calculated (or measured) with

a load attached to the output terminals.

Other, equivalent expressions can be obtained from

(6.62) and relations among the various gains, such as

(6.57–6.59). For example, from (6.57),

Av ¼ RL

RS
Ai: (6.63)
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Using this expression for Av in (6.62) gives

AP ¼ 4RL

RS
Ai

2: (6.64)

Exercise 6.24. Show that the power gain of a

two-port circuit can be expressed in each of the

following ways:

Ap ¼ 4

RLRS
Ar

2 ¼ 4RLRSAg
2 ¼ 4AvAi

¼ 4ArAg: (6.65)

Exercise 6.25. From (6.62), it appears that

increasing the output resistance of a source

driving a circuit increases the power gain of

the circuit. Discuss whether this is a sensible

way to increase power gain.

Exercise 6.26. From (6.64), increasing the

output resistance of the source driving a circuit

appears to decrease the power gain of the

circuit. Are (6.64) and (6.62) contradictory in

this regard? Discuss.

6.8 Gains and Relative Values
in Decibels (dB)

Virtually all early electronic systems (telephone,

radio, television) were intended to produce outputs

(sound and pictures) directly perceptible to humans.

Human sensory perception is approximately logarith-

mic. For example, doubling the apparent loudness of

an audio system requires squaring the power delivered

to the loudspeaker. An analogous statement holds for

light incident on the retina.

Human sensory perception also has an enormous

dynamic range. For example, the dynamic range of

human hearing spans about twelve orders of magni-

tude, corresponding to acoustic power incident on the

eardrum ranging from about 10�12 W m�2(the thresh-

old of hearing) to about 1 W m�2 (the threshold of

pain). This means, loosely, that the powers of interest

at the output of an audio system span 12 orders of

magnitude and that the associated currents or voltages

of interest span about six orders of magnitude (because

power is proportional to the squares of current and

voltage). It is impossible to display (graphically) such

ranges of power, current, or voltage on a linear scale.

Because human hearing, in particular, is approxi-

mately logarithmic and has such a large dynamic

range, the Bell Telephone Company many years ago

adopted a logarithmic measure of relative power

called the decibel (dB) defined by

PdB ¼ 10 log
P

P0

� �
; (6.66)

where the logarithm is base ten, P is a power of

interest, and P0 is a reference power. The inverse

relation is

P ¼ P0 10
PdB=10: (6.67)

For example, the standard reference for sound

intensity is a power density of P0 ¼ 1 pWm�2. Thus,

if the sound intensity on stage with a rock band is 120

dB, the power density incident on a band member’s

eardrum is

P ¼ P0 10
PdB=10 ¼ P0 � 1012 ¼ 1Wm�2:

Sustained intensity levels above about 90 dB can

cause permanent hearing loss. Intensities above about

120 dB can rupture an eardrum instantly.

If the power of interest and the reference power

P0 are dissipated in the same or equivalent loads, then

(6.66) gives

PdB ¼ 10 log
Vrms

2=R

V0rms
2=R

� �

¼ 20 log
Vrms

V0 rms

� �
(6.68)

or

PdB ¼ 10 log
Irms

2R

I0 rms
2R

� �
¼ 20 log

Irms
I0 rms

� �
: (6.69)
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In general, it is incorrect to express the logarithm of

a quotient of dimensioned quantities as the difference

of logarithms; for example, it is incorrect to write

PdB ¼ 20 log
Irms
I0 rms

� �

¼? 20 log Irmsð Þ � 20 log I0 rmsð Þ;

because the argument of the logarithm function must

be dimensionless. It is true that if both currents are

expressed in the same unit (e.g., mA), the result will be
correct. Nonetheless, such practice is discouraged

because it is prone to error. It also is unnecessary in

this age of pocket computers.

Since its creation and adoption by the Bell Tele-

phone Company, the decibel has become a standard

dimensionless unit for relative power in virtually all

electronic systems. In particular, the power gain of a

circuit in decibels (dB) is defined by

APdB ¼ 10 log APð Þ dB: (6.70)

In this case, the reference power is the available

power.

Example 6.14. The power gain of a certain

two-port circuit is 85 dB. What is the actual

power gain (not dB)?

Solution: From (6.70),

10 log APð Þ ¼ 85 dB ) Ap ¼ 1085=10

¼ 100:5 � 108 ¼ 3:16� 108:

Exercise 6.27. The power gain of a certain

two-port circuit is 108 dB. What is the actual

power gain (not dB)?

Exercise 6.28. The power gain of a certain

two-port circuit is 70 dB. If the power deliv-

ered to the load is 5 W, what is the available

power (from the source)?

Power gain in dB can be expressed in terms of

voltage gain and current gain. From (6.62) and

(6.64), we have

APdB ¼ 10 log
4RS

RL
Av

2

� �

¼ 10 log
4RS

RL

� �
þ 10 log Av

2
� 	

(6.71)

and

APdB ¼ 10 log
4RL

RS
Ai

2

� �

¼ 10 log
4RL

RS

� �
þ 10 log Ai

2
� 	

: (6.72)

Exercise 6.29. Show that power gain in dB

can be expressed as

APdB ¼ 6:02þ 10 log ArAg

� 	
¼ 6:02þ 10 log AvAið Þ: (6.73)

Equations (6.71) and (6.72) inspire the following

definitions of voltage gain in dB and current gain in

dB:

AvdB ¼ 10 log Av
2

� 	 ¼ 20 log Avð Þ (6.74)

and

Ai dB ¼ 10 log Ai
2

� 	 ¼ 20 log Aið Þ: (6.75)

Exercise 6.30. Obtain expressions for the

voltage gain, current gain, and power gain, all

in dB, for the circuit shown in Fig. 6.35.

iS RS RL vLRoRi v1

i1

gv1

iL

+

–

+

–

Fig. 6.35 See Exercise 6.30
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Exercise 6.31. The power gain and voltage

gain of a certain two-port are ApdB ¼ 105dB;

AvdB ¼ 84dB: Find the current gain (dB).

Example 6.15. The power gain of a certain

two-port circuit equals 50 dB. The source resis-

tance and the load resistance are 15 and 25 O,
respectively. Find the voltage gain and the cur-

rent gain, both in dB and actual value.

Solution: From (6.71) and (6.74)

AvdB ¼ APdB � 10 log
4RS

RL

� �

¼ 50� 10 log
4� 15

25

� �
¼ 46:2dB:

From (6.72) and (6.75),

Ai dB ¼ APdB � 10 log
4RL

RS

� �

¼ 50� 10 log
4� 25

15

� �
¼ 41:8dB:

It follows that the voltage and current gains

(not dB) are

Av ¼ 102:31 ¼ 204; Ai ¼ 102:09 ¼ 122:

Transresistance and transconductance are dimen-

sioned and cannot be expressed in dB, because we

cannot take the logarithm of a dimensioned quantity.

However, transresistance and transconductance can be

normalized to dimensionless quantities, using some

appropriate resistance or conductance as the normal-

izing factor, and the normalized quantities can then be

expressed in dB.

In practice, current gain, voltage gain, and power
gain are almost always expressed in dB (as are other

ratios, such as an important power ratio called signal-

to-noise ratio). You should commit the definitions

(6.70), (6.74), and (6.75) to memory.

6.9 Design Considerations

The primary purpose of a circuit is to establish a

specified relation between input current or voltage

and output current or voltage. The circuit design

is guided by the nature of the source, the nature

of the load, and what the circuit is intended to achieve.

Developments above suggest the following guidelines:

• It is almost always desirable to minimize output
resistance. Minimizing output resistance maxi-

mizes all four of voltage transfer, current transfer,

power transfer, and power transfer efficiency to any

load having a finite non-zero resistance. Do not

exceed current- and power-delivery capabilities of

the circuit.

• To maximize voltage transfer from a source to a

circuit input, maximize the input resistance of the

circuit.

• To maximize current transfer from a source to a

circuit input, minimize the input resistance of the

circuit, but do not allow the source current to exceed

the maximum current the source can provide.

• To maximize power transfer from a source to a

circuit input, make the circuit input resistance

equal to the source output resistance, but do not

exceed the maximum power the source can provide.

• To maximize power transfer efficiency from a

source to a circuit input, maximize the input resis-

tance of the circuit.

Specifying the input resistance of a circuit hinges

on which of voltage transfer, current transfer, or power

transfer is most important, and that often is determined

by properties of the source. Although current and

voltage are the primary quantities of interest in circuit

analysis and design, they are ultimately only interme-

diaries that convey other quantities, such as audio,

video, and data. Where electric circuits are used to

process or transmit such signals, it is often the case

that one or the other of current and voltage best repre-

sents the quantity of ultimate interest. For example, a

mechanical tachometer produces a terminal voltage
proportional to the angular velocity of the armature.

Consequently, if we are designing an amplifier to scale

the output of a tachometer, we might specify a large

input resistance to maximize voltage transfer. Here

again, large and small are relative terms that must be

quantified to be of use in design.
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6.10 Problems

In the problems that follow, two-port circuits are

drawn with inputs on the left and outputs on the

right, unless otherwise labeled.

Section 6.1 is prerequisite for the following

problems.

P 6.1 Refer to Fig. P 6.1, where R ¼ 1kO, the
source resistance RS ¼ 10O, and the load resistance

RL ¼ 5kO. Find the input resistance and the output

resistance of each two-port shown.

P 6.2 In Fig. P 6.2, the source has open-circuit

voltage Voc and short-circuit current Isc. Express the

input resistance of the two-port in terms of Voc, Isc, I.

P 6.3 In Fig. P 6.3, the source has open-circuit

voltage Voc and short-circuit current Isc. Express the

input resistance of the two-port in terms of Voc, Isc, V.

P 6.4 In Fig. P 6.4, the source has open-

circuit voltage Voc and short-circuit current Isc.

For R ¼ R1, I ¼ I1. For R ¼ R2 6¼ R1, I ¼ I2 6¼ I1.

Obtain an expression for the input resistance of the

two-port.

P 6.5 In Fig. P 6.5, the source has open-circuit

voltage Voc and short-circuit current Isc. For R ¼ R1,

V ¼ V1. For R ¼ R2 6¼ R1, V ¼ V2 6¼ V1. Obtain an

expression for the input resistance of the two-port.

R

R

R
R

R R
4R 4R

R R

RR

R

R

R

R
2R 2R

R R
2R 2R R

RR
2R

2R

2R

2R

2R

2R

2R

2R
R

R

(a)

(c)

(e)

(f)

(g)

(d)

(b)

Fig. P 6.1 See Problem P 6.1
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Section 6.2 is prerequisite for the following

problems.

P 6.6 Show that a resistor can be represented as a

dependent voltage source.

P 6.7 Show that a resistor can be represented as a

dependent current source.

P 6.8: See Fig. P 6.6. (a) Obtain an expression for

the voltage Va. (b) Let Vs ¼ 10V, R ¼ 1kO and use a

simulation to check your expression (numerically).

P 6.9 : Refer to Fig. P 6.7. (a) Express the load

voltage vL in terms of the input voltage VS and the

circuit parameters. (b) Perform a simulation using

Re ¼ 100 O, Rb ¼ 1kO, Rc ¼ 5kO, RL ¼ 2 kO, and
r¼ 2kO. Show that the voltage vL thus obtained agrees

with that computed using the relation found in part (a).

P 6.10 Refer to Fig. P 6.8. Express the load voltage

vL and the load current iL in terms of the available

source voltage vS and the circuit parameters RS, m, RL.

P 6.11 Refer to Fig. P 6.9. Obtain the Thévenin

equivalent circuit at the terminals a–b. Express the

Thévenin source voltage in terms of the independent

source voltage vS.

P 6.12 Refer to Fig. P 6.10. Express the voltage vL
in terms of the voltage vS and the circuit parameters.

No other currents or voltages may appear in the

expression.

Section 6.3 is prerequisite for the following

problems.

In problems below, the four models referred to

are those defined in Fig. 6.22 in the text.

P 6.13 Obtain all four two-port models for the

circuit shown in Fig. P 6.11. Express all model para-

meters in terms of the original circuit parameters. Is

the circuit unilateral or bilateral?

P 6.14 Figure P 6.12(a) shows the circuit diagram

symbol for an npn bipolar junction transistor (BJT).

source
two-port
circuit

I

RL

Fig. P 6.2 See Problem P 6.2

source
two-port
circuit RL

+

–
V

Fig. P 6.3 See Problem P 6.3

two-port
circuit

RLsource

R

I

Fig. P 6.4 See Problem P 6.4

RL
source

two-port

circuitRV

+

-

Fig. P 6.5 See Problem P 6.5

++
– –

ref

aR R

R 5RIVS

I

Fig. P 6.6 See Problem P 6.8

vS

Rb Re
vL

RLRc

rie

ie

+
–

+
–

Fig. P 6.7 See Problem P 6.9

RS

vS

iL

vin RL vLmvin

+
+
–

+
–

–

+

–

Fig. P 6.8 See Problem P 6.10
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The terminals are designated b (for base), c (for col-
lector), and e (for emitter). Figure P 6.12(b) shows a

simplified linear ac model for an npn BJT. Such tran-

sistors are used as linear amplifiers in three basic

configurations, as shown by the circuit diagrams in

Fig. P 6.12(c), (d), and (e). For each of the three

configurations, replace the transistor with the linear

ac model in Fig. P 6.12(b) and express the output in

terms of the voltage Vs and the circuit parameters.

P 6.15 Refer to Problem P 6.14. Figure P 6.13

shows an alternative equivalent model to that in

Fig. P 6.12(a) for a BJT. Repeat problem P 6.14

using the model in Fig. P 6.13.

P 6.16 Figure P 6.14 shows a transistor circuit

called an emitter-coupled pair. The inputs are the

voltages vb1,vb and the output is the voltage vc1 � vc2 :
Replace each transistor with the CCCS model in Fig.

P 6.12(b). The voltage VCC is the supply voltage for

the circuit and the terminal labeled VCC is connected to

ground (ref) in the small-signal linear model. (The

dc supply voltage appears as a short circuit for other

currents and voltages.) (a) Obtain an expression for the

output in terms of the two input voltages.

P 6.17 Repeat Problem P 6.16 using the VCCS

model in Fig. P 6.13.

P 6.18 Find a single equivalent VCVS two-port

model for the circuit shown in Fig. P 6.15. Express

the parameters of the resultant two-port in terms of the

original circuit parameters.

P 6.19 Find a single equivalent VCVS two-port

model for the circuit shown in Fig. P 6.16. Express

the parameters of the resultant two-port in terms of the

original circuit parameters.

P 6.20 Known independent sources are attached to

the terminals of a two-port, as shown in Fig. P 6.17. It

is found that i1 ¼ 1mA when v1 ¼5V, that v2 ¼ 100 V

when i2 ¼ 0, and that v2 ¼ 125V when i2 ¼ 100 mA.

It is known that the two-port is unilateral. Find the

parameters of each of the four models for the two-port.

Section 6.4 is prerequisite for the following

problems.

P 6.21 For each circuit in Fig. P 6.18, obtain expres-

sions for the input resistance and the output resistance.

Express the load voltage vL in terms of the voltage vS
and the circuit parameters.

P 6.22 For each circuit in Fig. P 6.19, obtain expres-

sions for the input resistance and the output resistance.

Express the load voltage vL in terms of the voltage vS
and the circuit parameters.

Section 6.5 is prerequisite for the following

problems.

In each problem below, all sources are linear

and all two-ports are unilateral, unless the problem

implies otherwise.

+
–

RS Rout

voc iscvS R1

i1

v1

b i1
mv1

+

+
–

–

+

–

c
a

b
Fig. P 6.9 See Problem

P 6.11

++
– –

RS
RL vLvS

+

–

R2

i1

v1

m v1 b i1

R1

+

–

Fig. P 6.10 See Problem P 6.12

R1 R2

R3

b i1i1

Fig. P 6.11 See Problem P 6.13
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P 6.23 The output resistance of certain source is 1.2O.
The current available from the source is 1 A. Draw

circuit diagrams for Thévenin and Norton models for

the source and give the values of the model parameters.

P 6.24 If the current available from a source is

doubled, with all other parameters unchanged, by

what factors are the available voltage and power

multiplied?

P 6.25 If the voltage available from a source is

doubled, with all other parameters unchanged, by

what factors are the available current and power

multiplied?

P 6.26 If the output resistance of a source is

halved, with all other parameters unchanged, by what

Rb

RS

RS
RS

vS

vSvS

RB RC

RC RB

Re

b ib

b c

e

ib

e

b

c

(c) common emitter: output = vce

e

b

c

vout

+

–

vout

+

–
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+

–

e c

b

(d) common base: output = vcb

e

c

b

(e) common collector: output = vec

+
–

+
–

+
–

(a) (b)
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factors are the available voltage, current, and power

multiplied?

P 6.27 A resistive load RL ¼ 100 O is attached to

the terminals of a source whose available current and

available power are 5 A and 100 W, respectively.

What is the power delivered to the load? What resis-

tive load would draw the available power from the

source?

P 6.28 The open-circuit voltage and short-circuit

current for a certain source are 15 V and 15 mA,

respectively. Obtain a graph of the power delivered

by the source to a load RL versus the resistance of the

load, for 100 O� RL � 10 kO. Use a logarithmic scale

for the load resistance.

Section 6.6 is prerequisite for the following

problems.

P 6.29 Construct a table that gives the voltage gain

for each of the four unilateral two-port models (VCVS,

VCCS, CCVS, CCCS).

P 6.30 Find the input resistance and voltage transfer

ratio of the circuit shown in Fig. P 6.20. Is the two-port

circuit unilateral? Justify your answer.

P 6.31 Assume the four two-port models in Fig.

P 6.21 are equivalent. Complete the table below,

which shows how to convert any model to any other.

P 6.32 The input resistance and output resistance

of a certain unilateral two-port circuit are 10 kO and

100 O, respectively. When driven by a source having

source resistance Rs ¼ 200 O and driving a resistive

load RL ¼ 2 kO, the voltage transfer ratio is Hv ¼
�400. Obtain all four unilateral two-port models for

the circuit.

P 6.33 Figure P 6.22 illustrates measurements made

on a certain two-port circuit. With both switches open,

Convert To ! VCVS CCVS VCCS CCCS

From #
VCVS m ¼ m g ¼ m=Ro b ¼ mRi=Ro

CCVS r ¼ r

VCCS m ¼ g Ro g ¼ g b ¼ g Ri

CCCS r ¼ bRo b ¼ b

gv1
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vS

vS
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+

–
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r i1
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–
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+

–
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–
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–
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–
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(d)
Fig. P 6.18 See Problem

P 6.21
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the voltage V1 is set to 10 mV. When switch S1 is

closed, the voltage V1 drops to 9.5 mV, the current I1
becomes 1 mA, and the voltage V2 becomes 1.5 V.

When switch S2 is closed, the voltage V2 drops to

1.3 V. Find the output resistance of the source and

the three parameters of a VCVS model for the circuit.

P 6.34 In a certain application, a two-port circuit

will be driven by a source from which the available

current and voltage are IA ¼ 25 mA and VA ¼ 500 mV,

respectively. The circuit must provide a voltage trans-

fer ratio of at least Hv while driving a resistive load

RL ¼ 4 kO. Specify the two-port parameters to the

extent possible.

P 6.35 Obtain expressions for the input resistance,

output resistance, voltage gain, current gain, transre-

sistance, and transadmittance for each of the three

transistor amplifier circuits in Fig. P 6.12 (Problem

P 6.14).

Section 6.8 is prerequisite for the following

problems.

In problems below, circuitmeans two-port circuit

or a cascade of two or more two-port circuits.

P 6.36 Obtain expressions for the power gains of

VCVS and CCVS two-port models. Then show that if

the models are equivalent, the expressions for power

gain are identical.

P 6.37 Obtain expressions for the power gains of

VCVS and VCCS two-port models. Then show that if

the models are equivalent, the expressions for power

gain are identical.

P 6.38 Obtain expressions for the power gains of

VCVS and CCCS two-port models. Then show that if

the models are equivalent, the expressions for power

gain are identical.
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P 6.22
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P 6.39 (a) Obtain an expression for the power gain of

the circuit in Fig. P 6.23. (b) Let RS ¼ 50O;
R1 ¼ R2 ¼ R3 ¼ 10 kO; R4 ¼ 100O; RL ¼ 5 kO; g ¼
10mS; r ¼ 8 kO and express the power gain in dB.

P 6.40 (a) Obtain an expression for the power gain

of the circuit in Fig. P 6.24. (b) Let RS ¼ 50O;
R1 ¼ R2 ¼ R3 ¼ 10 kO; R4 ¼ 100O; RL ¼ 5 kO; b ¼
100; m ¼ 50 and express the power gain in dB.

P 6.41 (a) Obtain an expression for the power gain

of the circuit in Fig. P 6.25. (b) Let RS ¼ 50O;
R1 ¼ R2 ¼ R3 ¼ 10kO; R4 ¼ 100O; RL ¼ 5kO; m1 ¼
50; m2 ¼ 25 and express the power gain in dB.

P 6.42 (a) Obtain an expression for the power gain

of the circuit in Fig. P 6.26. (b) Let RS ¼ 50O;
R1¼R2¼R3¼ 10kO; R4¼ 100O; RL ¼ 5kO; m¼ 75;

r¼ 20kO and express the power gain in dB.

P 6.43 A certain circuit has input resistance Rin ¼
20 kO; output resistance Rout ¼ 100O; and no-load

voltage gain m¼ 200. The circuit is driven by a source

having output resistance RS ¼ 50 O and available

power P ¼ 15 W. The circuit is to drive a resistive

load RL. (a) Obtain symbolic expressions for the cur-

rent gain, voltage gain, transresistance, transadmit-

tance, and power gain of the circuit. (b) Find the

V
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Fig. P 6.22 See Problem

P 6.33

Ro

Ro

Ri

gv1

Ri v1

+

+

mv1

RoRi

i1

b i1

+
–

Ro
Ri

i1

r i1

+
–

v1

+

+

(a) (b)

(c) (d)
Fig. P 6.21 See Problem

P 6.31

m1 v1

vS

RS

RL vL

+

–

R1

R2
R3

R4

+
–v1

+
+
–

–

+
–

m2 v2

v2

+

–
Fig. P 6.25 See Problem

P 6.41

bi1

+
–

vS

RS

RL vL

+

–

R1 R2 R3

R4i1

mv1
v1

+
+
–

–
Fig. P 6.24 See Problem

P 6.40

+
–

vS g v1
v1

+

–

RS

RL vL

+

–

i2

r i2
R1 R2 R3

R4

+
–

Fig. P 6.23 See Problem

P 6.39

6.10 Problems 193



value of the load resistance RL that maximizes the

current gain and express the current gain in dB for

that load. (c) Find the value of the load resistance RL

that maximizes the voltage gain and express the voltage

gain in dB for that load. (d) Find the value of the load

resistance RL that maximizes the normalized transresis-

tance Ar/RL and express the normalized transresistance

in dB for that load. (e) Find the value of the load

resistance RL that maximizes the normalized transcon-

ductance AgRL and express the normalized transconduc-

tance in dB for that load. (f) Find the value of the load

resistance RL that maximizes the power gain and

express the power gain in dB for that load.

P 6.44 Repeat Problem P 6.43 for a circuit having

input resistance Rin ¼ 1 kO; output resistance Rout ¼
50O; and no-load voltage gain m ¼ 1; 000: The circuit

is driven by a source having output resistance

RS ¼ 20 kO and available current IS ¼ 100mA: The

circuit is to drive a resistive load RL.

P 6.45 Repeat Problem P 6.43 for a circuit having

input resistance Rin ¼ 1MO; output resistance Rout ¼
30O; and no-load voltage gain m ¼ 500: The circuit is

driven by a source having output resistance RS ¼ 1 kO
and available voltage VS ¼ 25mV: The circuit is to

drive a resistive load RL.

P 6.46 A certain circuit has input resistance

Rin ¼ 20 kO; output resistance Rout ¼ 100O; and no-

load voltage gain m ¼ 200. The circuit is driven by a

source having output resistanceRS ¼ 50O and available

power p ¼ 15W: The circuit is to drive a load having

unspecified resistanceRL. Construct a graph of the power

gain of the circuit in dB versus load resistance, for

1O � RL � 10 kO: Use a logarithmic scale for RL.

P 6.47The voltage gain of a certain circuit is given by

Av ¼ Rin

Rin þ RS

� �
RL

RL þ Rout

� �
m;

where RS is the output resistance of a source, RL is the

resistance of a load, Rin is the input resistance of the

circuit, Rout is the output resistance of the circuit, and m
is the no-load voltage gain of the circuit. (1) Draw a

circuit diagram for a VCVS two-port model for the

circuit. (2) Assuming all other parameters are fixed,

specify the values of Rin and Rout that maximize (a)

current gain, (b) voltage gain, and (c) power gain.

P 6.48 The power gain of a certain circuit is 75 dB.

The power delivered to the load is 5 W. What is the

power available from the source?

P 6.49 The power gain of a certain circuit is 20 dB.

The power available from the source is 10 mW. What

is the power delivered to the load?

P 6.50 The voltage gain of a certain circuit is 55 dB.

The voltage available from the source is 5 mV.What is

the voltage transferred to the load?

P 6.51 The current gain of a certain circuit is 75 dB.

The output resistance of the source is RS ¼ 10 kO and

the load resistance is RL ¼ 5 kO: (a) What is the volt-

age gain in dB? (b) If the voltage across the load is 50

V, what is the current available from the source? (c) If

the input resistance is 100 kO and the output resistance

of the circuit is 100O, what is the no-load voltage gain
of the circuit?

P 6.52 For a particular source and load, the voltage

gain and power gain of a certain circuit are 120 and

150 dB, respectively. What is the current gain in dB?

P 6.53 For a particular source and load, the voltage

gain and current gain of a certain circuit are Av ¼ 125

dB and Ai ¼ 30 dB, respectively. What is the power

gain in dB?

P 6.54 For a particular source and load, the power

gain and voltage gain of a certain circuit are ApdB ¼
150dB; AvdB ¼ 50 dB:What is the current gain in dB?

P 6.55 For a particular source and load, the power

gain and current gain of a certain circuit are ApdB ¼
150 dB; AvdB ¼ 50 dB:What is the voltage gain in dB?

Section 6.9 is prerequisite for the following

problems.

P 6.56 Refer to Fig. P 6.27, which is proposed as

a temperature-measuring circuit, where V0 ¼ 15V;

mv1
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RL vL
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–
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+
–v1

+

–

+
–+

–
r i2

i2

Fig. P 6.26 See Problem

P 6.42
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RL ¼ 1MO;R ¼ 500 kO; and a ¼ 50O �Cð Þ�1: The

incremental resistance DR is given by DR ¼ a T;
where T�C is temperature in �C, and the temperature

range of interest is 0�C � T � 100�C:

(a) Express the voltage v as a function of vR. Assume

that DR � R and simplify the expression. Under

what condition is the voltage v proportional to the

incremental resistance DR (and thus to tempera-

ture)? Specify a reasonable value for the amplifier

input resistance Ri.

(b) Express the voltage vL as a function of temperature

(in �C). Specify a reasonable value for the ampli-

fier output resistance Ro.

(c) The voltage vL must change by 100 mV for each

1�C change in temperature T. Specify the amplifier

no-load voltage gain m.
(d) If the amplifier no-load voltage gain is 100 and

cannot be changed, what other parameter would

you adjust to achieve the specified 100 mV �C–1,

and what value would you specify for that

parameter?

P 6.57 Refer to Fig. P 6.28. It is required that v1 ¼
v0/2, and the power drawn from the source must be as

small as possible. (a) It is known that Ri 	 5MO:
What values would you choose for R1, R2, and why?

(b) It is known that RL ¼ 5 kO and Ro < 10 O: It is
required that vL ¼ 25v0: What value would you spec-

ify for m?
P 6.58 You are asked to design a circuit that will

accept as input a voltage from a photocell and produce

as output a voltage related in some known way to

the intensity of light incident on the photocell. Based

upon your current knowledge, write down each

question you must address before you begin designing

the circuit.

P 6.59 Strain is elongation of a body per unit length,

denoted by DL=L; which results from application of

force to the body. For example, when a beam is sub-

jected to a downward load in the center, the top of the

beam is compressed ðDL< 0Þ and the bottom of the

beam is stretched ðDL> 0Þ: For most structural mate-

rials, strain (below the fracture point) is on the order of

1 mm/m. Strain is measured using devices called

strain gages. The simplest and most commonly used

strain gage consists of a foil resistor attached to a

flexible substrate, as illustrated by Fig. P 6.29. When

the strain gage is stretched or compressed, the resis-

tance of the foil changes in approximate proportion to

strain. The relation is

+

– +
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DL
L

¼ DR
RF

;

where L and R are the nominal length and resistance,

respectively, of the gage, DL and DR are the changes

in length and resistance, respectively, and F is a con-

stant called the gage factor. The nominal resistance of

resistive strain gages is typically about 100 O to 1 kO
and the gage factor is typically on the order of 1.

Strain gages are often used in four-arm bridge con-

figurations, as illustrated by Fig. P 6.30, where

R denotes a fixed resistor and RþDR denotes a strain

gage. Let V0 ¼ 1V.

(a) Obtain the Thévenin equivalent at the output term-

inals of the circuit in Fig. P 6.30.

(b) Show that for DR � R; the open-circuit output is

given (approximately) by

vout ffi V0

4

DR
R

� �
:

(c) The gage factor of the strain gage is F ¼ 1.8 and

the nominal resistance of the gage is R ¼ 350 O.
The voltage vout is to be applied to the input of an

amplifier whose output is a voltage proportional to

strain; that is,

v ¼ k
DL
L

� �
;

with k ¼ 1 V. The output of the amplifier is to be

sensed by a voltmeter having input resistance

RVM ¼ 10MO: Specify the parameters of a unilateral

two-port model for the amplifier. Which of the three

parameters has the greatest effect on the overall accu-

racy of a strain measurement? Obtain an expression

for the amplifier output voltage without making any

approximations. Construct a plot of the percent error

in the approximate relation for 10�6 � DL=L � 10�3:

Explore effects of varying the amplifier input and

output resistances.

(d) Why might one expect the gage factor F for a

resistive strain gage to be on the order of 1?

P 6.60 Strain gages (see Problem P 6.59) are used in

devices called load cells that are used to measure

weight (or force). There are various kinds of load

cells having different configurations and purposes.

Figure P 6.31 shows a sketch of a button load cell.

The four wires connect internally to a bridge circuit,

such as the one shown in Fig. P 6.30 – two for the

power supply and two for the output. When the button

is depressed by a force, one or more strain gages inside

the device are deformed, and an output voltage pro-

portional to the force is produced. Small button gages

are used in small scales (such as postal scales), and can

sense weights ranging from zero to a few hundred

pounds with accuracies of about 1%. Much larger

load cells are used in the scales at truck weigh stations

along the interstates.

Do a little research on the web and write a one-page

paper (not counting figures) on the structure and oper-

ation (circuit model) for any particular kind of load

cell. Include a web-address list of your sources.

P 6.61 Refer to Fig. P 6.32. The audio source has

output resistance RS ¼ 250O and open-circuit voltage

VS rms ¼ 25mV: The loudspeaker has input resistance

RL ¼ 8O: Specify the parameters of a unilateral

VCVS two-port model for the amplifier, such that the

power delivered to the loudspeaker is 100 W. You are

free to make each parameter as large or small as you

wish, but justify each specification.

R

R R

R + ΔR

V0 vout+ –+
–

Fig. P 6.30 See Problem P 6.59, 60

Fig. P 6.31 See Problem P 6.60

loudspeakeraudio source amplifier

Fig. P 6.32 See Problem P 6.61
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Chapter 7

Operational Amplifiers I

Essentially, an amplifier is a circuit that for some

inputs delivers more power to a load than is received

from an input. Amplification is achieved by using a

small current or voltage (an input) to control a larger

current or voltage provided by a power supply and

delivered to a load, as illustrated by Fig. 7.1. For

example, in a home audio amplifier, the voltage from

a CD player (the source) controls the power delivered

to the loudspeaker (the load). Nearly all of the power

delivered to the speaker terminals is provided by the

amplifier’s power supply, which draws its power from

a wall outlet. In almost all applications of amplifiers,

the power provided by an input is negligible in com-

parison to that provided by the power supply.

Amplifiers are core components of a great many

circuits and systems, such as active filters, oscillators,

radio transmitters, control systems, and laboratory instru-

ments. Amplifiers can be constructed using discrete com-

ponents (transistors), or can be purchased (as integrated

or modular circuits). It is not a stretch to claim that

amplifiers are the most important linear circuits in exis-

tence, largely because of what can be achieved using

amplifiers in conjunction with feedback.

An amplifier is a two-port circuit and, as such, can

be partly described by one or more of voltage gain,

current gain, transconductance, and transresistance.

Most amplifiers are designed such that one of the

four gains is approximately independent of source

and load resistance. The desired independence is

achieved in part by specifying the input resistance

and output resistance relative to the source resistance

and the load resistance, respectively. Amplifiers also

are classified according to which of the gains is

approximately independent of source and load resis-

tance. For example, an amplifier whose current gain is

approximately independent of source and load resis-

tances is called a current amplifier.

Exercise 7.1. In the table below, Ri, Ro are the

input resistance and output resistance, respec-

tively, of an amplifier. The amplifier is driven

by a source having output resistance RS and

drives a load having input resistance RL. Match

each amplifier type on the left with one of the

constraints on the right.

An amplifier can be represented by any of the two-

port circuit models presented in Chapter 6. The kind of

amplifier being represented often suggests which

of the four two-port models is most appropriate. For

example, a transconductance amplifier (voltage in,

current out) is most naturally represented by a VCCS

model.

Exercise 7.2. Match each amplifier type on

the left with the most natural model on the

right.

Amplifier type Constraint

(a) Current amplifier (i) Ri � RS, RO � RL

(b) Transresistance amplifier (ii) Ri � RS, RO � RL

(c) Voltage amplifier (iii) Ri � RS, RO � RL

(d) Transconductance amplifier (iv) Ri � RS, RO � RL

Amplifier type Two-port model

(a) Current amplifier (i) VCVS

(b) Transresistance amplifier (ii) VCCS

(c) Voltage amplifier (iii) CCCS

(d) Transconductance amplifier (iv) CCVS

T.H. Glisson, Introduction to Circuit Analysis and Design,
DOI 10.1007/978-90-481-9443-8_7, # Springer ScienceþBusiness Media B.V. 2011
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Amplifiers are used throughout many electronic

systems. Amplifiers often appear as the first (input)

stage, which receives an input (e.g., a current or volt-

age from a sensor), as the last (output) stage, which

delivers a current or voltage to a load, and as interior

circuits, where they help perform a variety of signal-

processing functions. Amplifiers used as the first or

last stages can be any one of the four kinds named

above, depending upon the nature of the source and

load. Amplifiers used as interior stages for filtering and

other signal-processing operations are almost invari-

ably voltage amplifiers. This is because a voltage

amplifier typically wastes less power internally (in

the output resistance) than does a current or transcon-

ductance amplifier and demands less power from a

source (input or previous stage) than does a current

or transresistance amplifier. Consequently, voltage

amplifiers generally require less power from a power

supply and generate less heat than do other kinds of

amplifiers performing basically the same task.

An operational amplifier or op amp is essentially

a voltage amplifier having a very large intrinsic

dc voltage gain. Hundreds of different op amps are

available in integrated-circuit (IC) form. Low-power

integrated op amps dissipate a half watt or so, are

smaller than a dime, and range in cost from less than

50¢ to a few dollars. High-power op amps dissipate

from tens of watts up to a few hundred watts and can

cost several hundred dollars. Figure 7.2 shows three

integrated op amps. The single 741 and the quad 324

can dissipate about 500 mW and deliver up to approx-

imately 25 mA to a load. The PA03# can dissipate

500 W and deliver up to approximately 30 A to a load.

Modern op amps have intrinsic dc voltage gains

ranging from about 105 to about 107, input resistances

ranging from about 1 MO to about 1 TO 1012 O
� �

;

output resistances ranging from about 1 O to about

100 O, and power-dissipation ratings from a few milli-

watts to a few hundred watts. Most manufacturers’

web sites provide extensive data on their various offer-

ings. Integrated op amps contain 15 or more transis-

tors, about the same number of resistors, and a few

diodes.1 Most also contain one (intentional) capacitor,

in addition to the junction capacitances inherent in the

transistors themselves.2

Op amps are used in countless applications, including

amplifiers, active filters, other linear signal-processing

circuits (e.g., integrators and differentiators), and in a

host of nonlinear applications, such as oscillators and

detectors. This chapter describes operational amplifiers

and treats selected circuits using operational amplifiers

in feedback configurations. We describe op amps pri-

marily in terms of their terminal characteristics. You

will learn more about the internal structure and opera-

tion of op amps in a subsequent course on electronic

devices and circuits.

iin iout

vout

+

–

vin

+

–

source amplifier load

power
supplyFig. 7.1 An amplifier driven

by a source and driving a load

Fig. 7.2 From left to right: A single 741 op amp, a quad 324 op

amp (four op amps in one IC package), and a high-power

PA03# op amp (Photograph of the PA03# courtesy of Apex

Precision Power Division of Cirrus Logic, Inc)

1In integrated op amps, transistors with the base connected to the

collector often serve as diodes.
2We treat capacitance in Chapter 8.
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7.1 Operational Amplifier Terminals and
Voltage Reference

Figure 7.3 shows a circuit-diagram symbol for an op

amp. The symbol in Fig. 7.3 has five terminals:3 The

positive input terminal or p terminal, the negative

input terminal or n terminal, the output terminal or o
terminal, and the power supply terminals, labeled V2

and V1.
4 There is no common or ground terminal on an

op amp. The reference point for terminal voltages is

established by the manner in which a power supply and

load are connected to an op amp, as explained below.

As does any amplifier, an op amp requires an exter-

nal source of power to achieve amplification. Power is

provided to an op amp by dc sources (supply voltages)

connected to the terminals labeled V2 and V1 in

Fig. 7.3. For proper operation of an op amp, the volt-

age V2 must exceed the voltage V1 by at least an

amount VB, but must not exceed V1 by more than an

amount VA, where VA and VB depend upon the internal

structure of the op amp and vary from one op amp to

another. Formally, the supply voltages must satisfy an

inequality of the form

VA � V2 � V1 � VB: (7.1)

For integrated general-purpose op amps, VB is typi-

cally about 2–10 V and VA is typically about 10–50 V.

For example, for National Semiconductor’s LF147 op

amp, VA ¼ 44 V and VB ¼ 5 V, which means V2 must

be at least V1 þ 5 V, but cannot exceed V1 þ 44 V.

In linear circuits, op amps are often powered by

symmetric bipolar supplies that provide equal-magni-

tude positive and negative dc voltages, as shown in

Fig. 7.4a. Usually, the supply sources are not shown

explicitly. Rather, the supply voltages are simply

written next to the supply terminals, as shown in

Fig. 7.4b. Typical values for VCC are on the order of

2–15 V for small, low-power op amps, ranging up to

about 200 V for high-power op amps.

As noted above, the reference point for the terminal

voltages of an op amp is established by the manner in

which the supply and the load are connected to the op

amp and to each other. Figure 7.5 shows an op amp

driving a load RL. In Fig. 7.5, the power supplies are

shown explicitly and the load is connected between the

op-amp o (signal-output) terminal and the neutral ter-

minal of the supply, which establishes the neutral

terminal of the supply as the reference for all op-amp

terminal voltages, as indicated by the ground symbol.

Thus, vn means the voltage from the n terminal to the

reference and vpmeans the voltage from the p terminal

to the reference.

Often, the supply voltage sources and the supply

terminals themselves are omitted from circuit diagrams.

In such cases, it usually is implied that the power supply

is bipolar and symmetric and that the load is connected

from the op-amp o terminal to the neutral terminal of

the supply. The neutral terminal of the supply is then

+

–

o

V2

V1

p

n
Fig. 7.3 Circuit-diagram

symbol for an operational

amplifier

+ –

+–

VCC

VCC

o

p

n V2

V1

o

p

n

VCC

+

–

−VCC

+

–

(a) (b)

Fig. 7.4 Circuit-diagram symbol for an op amp, showing how

the external supply is connected. The meaning of the ground

symbol is explained below

+

–

+ –

+–

n

p
o

VCC

VCC

RL reference

Fig. 7.5 Establishing the reference for op-amp terminal

voltages

3Real op amps have additional terminals whose functions you

will learn when you study electronics.
4Because of the manner in which the internal circuitry is

connected to the supplies, the supplies or supply terminals

often are called rails.
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the reference for all terminal voltages, and is denoted by

the ground symbol in a circuit diagram, as in Fig. 7.5.

In practice, the labels n, p, and o shown in Fig. 7.5

also are usually omitted in circuit diagrams. It is under-

stood that the terminal labeled “�” is the negative input

(n) terminal, the terminal labeled “þ” is the positive

input (p) terminal, and the unlabeled terminal at the

opposite vertex of the triangular symbol is the output

(o) terminal. Nonetheless, for sake of clarity, we often

include the labels n, p, and o on circuit diagrams. You

might find it helpful to do this also, especially when

preparing to replace the op-amp symbol by an equiva-

lent circuit, as we do in the next section.

7.2 DC Circuit Model for an Op Amp

In this chapter, we consider the dc behavior of op amps

in order to present some basic ideas in an uncluttered

setting. The model and analyses presented in this

chapter are strictly applicable only for dc or slowly

varying excitation. In Chapter 17, we introduce fre-

quency response and other refinements.

The no-load dc transfer characteristic for the dc

(or low-frequency) model for an op amp has the form

vo ¼
Vmin; m0 vpn � Vmin;

m0 vpn; Vmin < m0 vpn <Vmax;

Vmax; m0 vpn � Vmax;

8><
>: (7.2)

where the parameter m0 is the intrinsic dc voltage

gain. The minimum and maximum output voltages

Vmin, Vmax are determined by the internal structure of

the op amp and the supply voltages V1, V2. The output

vo cannot be less than Vmin and cannot exceed Vmax.

Whenever the output of an op amp equals either Vmin

or Vmax, i.e., whenever vpn � Vmin=m0 or vpn �
Vmax=m0; the op amp is said to be saturated. Figure

7.6 shows a graphical representation of the transfer

characteristic (7.2), where V2 > Vmax> Vmin > V1: The

voltage vpn equals zero where the graph crosses the

horizontal axis, but the voltage vo at that point is not

necessarily zero because the voltages V2; Vmax;

Vmin; V1 might all have the same sign.5

With reference to Fig. 7.6, it is necessary that

V2 >V1; but it is not necessary that the supply voltages

have opposite signs. This fact is sometimes useful; e.g.,

we might wish to amplify an input voltage that has a

dc offset (a non-zero average value), such that the

input is always positive. But in many linear applica-

tions, signal voltages have no dc components and op

amps are powered by symmetric bipolar supplies,

meaning that V1 ¼ �VCC; V2 ¼ VCC:

For some op amps, Vmin is about 1 V larger than

V1 and Vmax is about 1 V smaller than V2. The output

of such an op amp powered by a symmetric bipolar

supply �V1 ¼ V2 ¼ 15V ðor � VCC ¼ �15VÞ is

confined (approximately) to the range� 14V:However,

there are so-called rail-to-rail op amps for which

Vmin ¼ V1 and Vmax ¼ V2:

To avoid cluttering our treatment with too many

details, we assume rail-to-rail operation and a sym-

metric bipolar supply, which means that the no-load

dc transfer characteristic is of the form

vo ¼
�VCC; m0vpn � �VCC;
m0 vpn; � VCC < m0vpn < VCC;
VCC; m0vpn � VCC;

8<
: (7.3)

as shown in Fig. 7.7. The range of values� VCC <

m0vpn <VCC is called the range of linear operation,

whether one is referring to the input or output; that

is, the range of linear operation can mean either the

+

–

V2

V1

vovpn

(a) op amp

(b) dc transfer characteristic

vo

V1

V2

vpn

Vmax

Vmin

Vmin / m0

+

–

Vmax / m0

Fig. 7.6 DC transfer characteristic for an op amp (typical)

5Also, a small dc offset voltage afflicts virtually all op amps, as

described in Section 7.8.
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values of an input vpn that satisfy � VCC=m0 < vpn <
VCC=m0 or (equivalently) the values of an output vo
that satisfy � VCC< vo <VCC:

It is questionable whether any real op amp is truly

linear over the so-called range of linear operation. In

fact, the voltage gain of an op amp is so large that it is

difficult to even measure the voltage transfer charac-

teristic. Nonetheless, the transfer characteristic (7.3) is

helpful to explaining and understanding op amp

behavior and circuit design, so we shall assume it is

approximately true. There is no harm in this assump-

tion because, as we show later, it does not matter in

most applications whether the transfer characteristic of

an op amp is actually linear over the so-called range of

linear operation, so long as voj j is a great deal larger

than vpn
�� �� for all values of vpn in that range.

Figure 7.8 shows a linear model for an op amp at dc

that is consistent with the linear portion of the no-load

dc transfer characteristic (7.3). The parameters Ri, Ro

are the input resistance and output resistance,

respectively, and the parameter m0 is the intrinsic dc

voltage gain. An op amp is approximately unilateral,

so the input resistance is independent of a load

attached to the output terminals and the output resis-

tance is independent of a source attached to the input

terminals. Typical values for these parameters are as

follows:

• Input resistance Ri: from about 1MO to more than

1 TO
• Output resistance Ro: from about 1O to about 1 kO,

but typically <100O
• Intrinsic dc voltage gain mo: from about 105 to

about 107

The model in Fig. 7.8 does not include effects such

as saturation, limits on output current, and frequency

dependence, all of which are important in all applica-

tions. In a subsequent chapter, we treat some of

these other effects and refine the model in Fig. 7.8

to account for the fact that the intrinsic voltage gain

of an op amp decreases as the frequency of an

input increases. Relations obtained in this chapter

are applicable only for low-frequency inputs. We

cannot quantify low-frequency at this point, because

its meaning depends upon the structure of a circuit at

hand.

Example 7.1. In Fig. 7.9, VCC ¼ 10V;

R1 ¼ 10 kO; R2 ¼ 50 kO; RL ¼ 5 kO; and

the source voltage vS is independent of

time. The model parameters for the op amp

(see Fig. 7.8) are Ri ¼ 1MO; Ro ¼ 50O;
m0 ¼ 106: Using the linear model in Fig. 7.8

for the op amp, obtain an expression for the

voltage transfer characteristic for the circuit.

Solution: We replace the op-amp symbol with

the linear model shown in Fig. 7.8 to obtain the

circuit diagram shown in Fig. 7.10. We have

used the fact that vp ¼ 0 and thus m0vpn ¼
m0 vp � vn
� � ¼ �m0vn:

vpn

vo

VCC

−VCC

−VCC / m0/ VCC / m0/

Fig. 7.7 Idealized DC Transfer characteristic for a rail-to-rail

op amp having a symmetric bipolar supply

+
–

ref
n

p o

m0vpn

Ro

Ri

Fig. 7.8 Linear model for an op amp at dc (for f ¼ 0)

+

–
n

p

R1

vS

R2

VCC

–VCC

o

RL vL

+

–

+
–

Fig. 7.9 See Example 7.1
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For the circuit in Fig. 7.10, Kirchhoff’s current law

gives

Node n: G1 vn � vSð Þ þ Givn þ G2 vn � vLð Þ ¼ 0;

(7.4)

Node o: Go vL þ m0 vnð Þ þ G2 vL � vnð Þ þ GLvL ¼ 0:

(7.5)

where we use conductances to simplify the notation;

e.g., G1 ¼ R1
�1: From (7.4),

vL � G1 þ Gi þ G2ð Þ
G2

vn ¼ �G1vS
G2

: (7.6)

From (7.5),

vn ¼ Go þ G2 þ GLð Þ
G2 � Gom0ð Þ vL: (7.7)

Note that for m0 ! 1; (7.7) gives vn ! 0; in

which case (7.6) reduces to

vL ffi �G1vS
G2

¼ �R2

R1

vS ¼ �5 vS: (7.8)

To obtain an exact solution, we use (7.7) to elimi-

nate vn in (7.6). This gives

G1 þ Gi þ G2ð Þ Go þ G2 þ GLð Þ
G2 � Gom0ð Þ vL � G2vL ¼ G1vS;

(7.9)

which yields

vL
vs

¼ G1 G2�m0Goð Þ
G1þGiþG2ð Þ GoþG2þGLð Þ�G2 G2�m0Goð Þ

ffi�4:99997 ¼Hv:

(7.10)

Here again, if we let m0 ! 1; (7.10) reduces

to (7.8).

The difference (0.0006%) between the exact solu-

tion (7.10) and the approximate solution (7.8) is insig-

nificant because the difference is much smaller than

typical uncertainties in parameter values; for example,

even in the best of circumstances, the resistances R1,

R2 would probably be known only to within �0.05%.

Uncertainties in values of the op-amp model para-

meters might be larger, perhaps as large as �20%.

The accuracy of the approximation (7.8) is deter-

mined primarily by the magnitude of the intrinsic gain

m0 and to a lesser degree by the values of the external

resistances R1, R2, RL relative to the internal (model)

resistances Ri, R0.

Equations (7.8) and (7.10) hold for �10V< vL
<10V or �2V< vS < 2V: For inputs outside that

range, the op amp is saturated. Thus a more complete

statement of the transfer characteristic is

vL ffi
10V; vS � �2V;
�5 vS; �2V< vS< 2V;
�10V; vS> 2V:

8<
: (7.11)

Figure 7.11 shows a graph of the transfer character-

istic (7.11)

7.3 The Ideal Op Amp and Some Basic
Op-Amp Circuits at DC

For most op amps and virtually all linear applications,

the approximation m0 ! 1 is so good that it is usually

incorporated in the op-amp model itself, at least for

first-pass design and analysis of linear op-amp circuits.

The approximation m0 ! 1 has two important

vS

+
–

+
–

n

p

R1

Ri

Ro

R2

vL= voRL−m0vn

+

–

Fig. 7.10 See Example 7.1

vS (V)

vL (V)

10

−10

2−2

Fig. 7.11 See Example 7.1
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consequences: First, because the output vo ¼ m0
vp � vn
� �

must be finite, the voltage vpn ¼ vp � vn
must be exceedingly small.6 Second, because the volt-

age vpn ¼ vp � vn is exceedingly small and the op-amp

input resistance is large, the current entering either

input terminal must also be exceedingly small.

Thus the ideal op amp is defined by the following

properties:

m0 ! 1; (7.12)

vp � vn ! 0 ) vp ffi vn; (7.13)

ip ffi 0; in ffi 0: (7.14)

Equations (7.12), (7.13) and (7.14) are the funda-

mental relations for preliminary analysis and design

of linear op-amp circuits.

In a physical circuit, the voltage difference vp – vn
and the currents ip ¼ � in are not zero, because if

either the current ip or the voltage vpn were zero, no

power (no energy) would be delivered to the op amp

input, and no physical system can respond to an exci-

tation that conveys no energy to the system. But the

output voltage vout (limited by the supply) is typically

on the order of a few volts and the intrinsic gain m0 is
typically on the order of 105–106, so the voltage

vpn ¼ vout=m0 is typically on the order of (at most)

about 100 mV. Because the voltage vpn is at most

about 100 mV and the input resistance Ri is at least

about 1 MO and can exceed 1012 O, the currents ip, in
are no larger than a few picoamperes 100 mV=ð
1MO ¼ 100 pAÞ and usually are much smaller than

that. In linear applications, the voltage vpn and the
currents ip, in are so small relative to other voltages

and currents in the external circuit that they are prac-

tically zero. Thus (7.14) and (7.13) are true for all

practical purposes, provided the op amp is not

saturated; i.e., provided voutj j<VCC: For an op amp

in saturation, the approximation vp ¼ vn (vpn ¼ 0)

might not hold, but the approximation ip ¼ in ¼ 0

usually remains good, because even in saturation the

voltage vpn usually is no more than a few volts and the

op-amp input resistance is quite large.

Because the intrinsic dc gain of an ideal op amp is

infinite and the input voltage vpn is zero, we cannot

construct a dependent-source circuit model for an

ideal op amp. The output would be indeterminate, of

the form 1 	 0. An ideal op amp is simply denoted by

the symbol shown in Fig. 7.12. The power-supply

terminals often are omitted, the implication being

that the supply is adequate for the anticipated ranges

of input and output amplitudes.

Example 7.2. (Compare with Example 7.1.)

Obtain an expression for the voltage transfer

characteristic for the circuit shown in Fig. 7.13.

Assume the op amp is ideal.

Solution: Kirchhoff’s current law at node n

gives

vn � vS
R1

þ vn � vL
R2

þ in ¼ 0:

The positive input terminal is connected to

ground (to the reference node), so vp¼ 0. From

the property (7.13) of an ideal op amp, vn ¼ vp,

so vn ¼ 0. Thus the equation above reduces to

� vS
R1

� vL
R2

þ in ¼ 0:

From (7.14), in ¼ 0. It follows that the

transfer characteristic is

+

–

p

o

n

Fig. 7.12 Circuit-diagram

symbol for an ideal op amp.

See (7.13) and (7.14)

invS R1

R2

RL

vL = von

p

o

+

– + –

Fig. 7.13 See Example 7.2

6Although vpm is small, the individual voltages vp, vn are not

necessarily small.
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vL ¼ �R2

R1

vS

and the gain is given by

Avdc ¼ VL

VS

����
���� ¼ R2

R1

:

The circuit in Fig. 7.13 is called an invert-

ing amplifier or an inverter because the input

vS and the output vL have opposite signs. Note

that the voltage gain is independent of the load
resistance RL but depends upon the resistance

R1. In many applications, the resistance R1

equals the resistance of an external resistor in

series with the source resistance. Usually, the

resistance of the external resistance R1 is much

larger than the source resistance, in which case

the voltage gain is essentially independent of

both the source resistance and the load resis-

tance. In such cases, the inverting amplifier is a

good voltage amplifier.

Example 7.3. Obtain an expression for the volt-

age transfer characteristic for the circuit shown

in Fig. 7.14. The op amp is ideal.

Solution: By Kirchhoff’s current law,

vn
R1

þ vn � vL
R2

þ in ¼ 0:

From (7.13), vn ¼ vp ¼ vS: From (7.14),

In ¼ 0. It follows that

vS
R1

þ vS � vL
R2

¼ 0 ) vL ¼ 1þ R2

R1

� �
vS: (7.15)

The circuit in Fig. 7.14 is called a non-

inverting amplifier because the input and the

output have the same sign (the transfer charac-

teristic is positive). Note that the voltage transfer

characteristic is independent of the load resis-
tance RL. No source resistance is shown in the

circuit diagram, but including same would not

matter, because no current enters the positive

terminal of the op amp; i.e., there would be no

drop across the source resistance and the relation

vp ¼ vS would remain true.

Because the voltage transfer characteristic for an

inverting or non-inverting amplifier is independent of

the load on the amplifier, the overall voltage transfer

characteristic of two or more such amplifiers in cas-

cade equals the product of the transfer characteristics

of the individual amplifiers.

Exercise 7.3. Obtain an expression for the

voltage transfer characteristic for the circuit

shown in Fig. 7.15.

Example 7.4. Obtain an expression for the

voltage transfer characteristic for the circuit

shown in Fig. 7.16. The op amp is ideal.

Solution: By inspection, vL ¼ vn. From

(7.13), vn ¼ vp. Again by inspection, vp ¼ vS.
Thus

vL ¼ vS:

+

–
inR1 R2

RL

vL = vo+ –o

n

pvS

Fig. 7.14 See Example 7.3

+

–

R1 R2

vS

vL

+

–
R3

R4

RL
v1

Fig. 7.15 See Exercise 7.3
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The circuit in Fig. 7.16 is called a voltage

follower because the output voltage equals

(follows) the input voltage. Here again, the

voltage transfer characteristic is independent

of the load RL. Would including a source resis-

tance affect the result above?

A follower usually is used to provide a large input

resistance and a small output resistance. For example,

suppose a fixed load is to be driven by a fixed source,

as illustrated by Fig. 7.17. If we drive the load directly

with the source, as in Fig. 7.17(a), then the load volt-

age is given by

vL ¼ RL

RL þ RS
vS:

The voltage transferred to the load depends upon

the load and is less than that available from the source.

The reduction in available voltage can be significant if

the source output resistance RS and load input resis-

tance RL are comparable. But if we insert a follower

between the source and the load, as in Fig. 7.17(b), the

load voltage equals the source (available) voltage. A

follower used as described above and illustrated by

Fig. 7.17(b) often is called a buffer.

Example 7.5. Refer to Fig. 7.18. Assume the

op amp is ideal and express the load voltage vL
in terms of the inputs v1, v2, v3 and the resis-

tance R.

Solution: Because vn ¼ vp ¼ 0 and in ¼ 0; we

have from Kirchhoff’s current law that

i ¼ v1
R
þ v2

R
þ v3

R
:

It follows that

vL ¼ �R i ¼ � v1 þ v2 þ v3ð Þ:

The circuit is an inverting adder. The out-

put is independent of the load. If the resistance

R is much larger than the largest of the source

resistance, the output also is independent of the

source resistances.

Exercise 7.4. Refer to Fig. 7.19. Express the

load voltage vL in terms of the inputs v1, v2 and

the resistance R.

+
–+

–RL RL
vS

vS
RS

RS
+

–

vL

+

–

vL

RLvL = vS
RS  + RL

vL = vS

+
–

(a) (b)

Fig. 7.17 Using a follower to buffer a load
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vL

+
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i
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Fig. 7.18 See Example 7.5
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–
v1

v2

2RR

R

R RL

+

–

vL
R

Fig. 7.19 See Exercise 7.4
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–

vS

vL

o

p

n

RL

Fig. 7.16 See Example 7.4
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Example 7.6. Refer to Fig. 7.20. Assume the op

amp is ideal and express the output vo as a func-

tion of the inputs v1, v2 and the resistance R.
Solution: By Kirchhoff’s current law,

vn � v1
R

þ vn � vo
R

¼ 0 ) vo ¼ 2vn � v1: (7.16)

By voltage division,

vp ¼ v2
2
:

The op amp is ideal, so vn ¼ vp and (7.16)

gives

vo ¼ v2 � v1:

The circuit in Fig. 7.20 is an example of a

difference amplifier. The output is independent

of the load. If the resistance R is much larger than

the largest of the source resistance, the output

also is independent of the source resistances.

Example 7.7. Refer to Fig. 7.21. Assume the

op amp is ideal. Express the load voltage vL

and the load current in terms of the source

current iS and the resistances RF and RL.

Solution: Because the op amp is ideal

vn ¼ vp ¼ 0; and the current entering the neg-

ative input terminal equals zero. Thus iF ¼ iS
and

vL ¼ vo ¼ �RFiS:

The circuit is a current-to-voltage con-

verter; that is, the output voltage is propor-

tional to the input current. The circuit also

could be called a transresistance amplifier,

because the transfer characteristic relating

output voltage to input current is real and inde-

pendent of the load resistance (so long as

RL > 0).

By Ohm’s law,

iL ¼ vL
RL

¼ �RF

RL
iS:

The current-to-current transfer characteris-

tic is not independent of the load, so the circuit

is not a good current amplifier. Can we obtain

expressions for the transconductance and volt-

age gain of this circuit? Show how or explain

why not.

Example 7.8. Refer to Fig. 7.22, where the op

amp is ideal. Obtain an expression for the load

current iL in terms of the input voltage vin
and the circuit parameters. Thus show that

the load current is independent of the load

resistance RL.

+

–v1

v2

R vn

vp

vo

R R

R

Fig. 7.20 See Example 7.6
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Fig. 7.21 See Example 7.7
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n
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Fig. 7.22 See Example 7.8
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Solution: The op amp is ideal, so vn ¼ vp ¼ vin:
It follows that the voltage across the resis-

tance R also equals the input voltage vin.

By Kirchhoff’s current law,

iL � in ¼ vin
R
:

The op amp is ideal, so in ¼ 0, and

iL ¼ vin
R
:

The load current is independent of the

load resistance RL. The circuit is a voltage-

to-current converter or transconductance

amplifier. A disadvantage of this particular

circuit is the fact that the load floats; i.e.,

neither end of the load shares a ground with

the input. This can be a fatal disadvantage if

the load is another circuit sharing the same

power supply. It might not be a problem if

the load is a passive terminal load, such as a

loudspeaker.

The ideal model for an op amp can be used to

analyze and design a number of important circuits.

Moreover, it is difficult to use other than the ideal

model for initial design because more refined models

(and the resulting equations) contain many para-

meters. In most cases, initial (pencil-and paper)

design of a linear circuit using op amps essentially

requires use of the ideal model. Subsequently, the

design can be refined, if necessary, using one of sev-

eral circuit simulation programs and more complete

models.

7.4 Feedback and Stability of Op-Amp
Circuits

Because the intrinsic dc gain m0 of an op amp is so

large, the slightest electrical disturbance at the input

terminals is sufficient to drive the output to saturation

(to � VCC). Consequently, op amps are almost always

used in feedback configurations, where one or more

current paths are provided from the output terminal to

one or both input terminals. Feedback from the output

to the positive ( p) terminal is called positive feedback

and feedback from the output to the negative (n)

terminal is called negative feedback. Positive feed-

back drives the input voltage vpn in the same direction

as that taken by the output, and can cause the op amp

to saturate. Negative feedback drives the input voltage

Vpn in the opposite direction of that taken by the

output; i.e., if the output increases, Vpn decreases,

and vice versa. Negative feedback reduces the gain

of an op amp to usable values by continuously forcing

the input of the op amp toward zero. The intrinsic dc

voltage gain of an op amp also is called the open-loop

dc voltage gain because it is the voltage gain of the op

amp in the absence of feedback; i.e., in the absence of

a closed loop connecting the input to the output.

The feedback is negative in all of the examples in

Section 7.3, which illustrate three important virtues of

feedback:

• Within the accuracy of the approximations emp-

loyed, and as a result of negative feedback, the

overall voltage gain is determined by parameters
(resistances) external to the op amp. Because the

external resistances can be specified precisely,

the transfer characteristic of the feedback amplifier

can be specified precisely, even if the values of

the op amp intrinsic dc gain m0, input resistance
Ri, and output resistance Ro are not known pre-

cisely, so long as the intrinsic gain m0 is large

enough.

• The circuit transfer characteristic is linear, even if

the op amp itself is nonlinear in the range

voutj j<VCC (again, provided the intrinsic gain m0 is
sufficiently large throughout the range of possible

input amplitudes).

• Without feedback, an op amp is almost useless.

Feedback makes an op amp a useful and widely

used circuit element.

Some circuits use a combination of negative and

positive feedback. Such feedback wields a two-edged

sword, because positive feedback can make an op amp

circuit unstable, in which case the output either oscil-

lates uncontrollably or locks up (saturates) at one or

the other of the supply voltages. A familiar example of

unstable (oscillatory) operation of an amplifier is the

loud squeal issued by a public-address system if the

microphone gets too close to the loudspeaker, in which

case the acoustic power delivered by the loudspeaker
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to the microphone is sufficient to initiate the oscilla-

tion. The frequency of the oscillation is determined

in part by the distance (delay time) between the loud-

speaker and microphone.

A purely resistive circuit cannot oscillate, so the

output of an unstable resistive op-amp circuit will

be either þVCC or �VCC, depending upon the sign of

the voltage Vpn. Below, we give a condition for stable

operation of a resistive op amp circuit that incorpo-

rates some positive feedback.

To prevent saturation, feedback in an op amp cir-

cuit must continuously drive the voltage vpn ¼ vp � vn
toward zero.7 Loosely, this means that the voltage fed

back from the output terminal to the negative input

terminal must exceed that fed back to the positive

input terminal. For linear operation, the net feedback
must be negative. Otherwise, the effect of feedback

is to drive the voltage vpn away from zero, and the

amplifier will simply saturate (or lock up) at one or the
other of the supply voltages. Such saturation in an

unstable circuit is inevitable, even if no input is

applied to the circuit, because of inherent imbalance

between the input terminals of an op amp and also

because of ever-present electrical noise.

In examples in Section 7.3 above, resistive feed-

back is presented only to the negative input terminal

of the op amp, which ensures stable operation. If

feedback also is presented to the positive input termi-

nal, we must ensure that the net feedback is negative.

If the feedback is negative and the circuit operates

linearly, we say the circuit is stable. If the feedback is

positive, then the output is not linearly dependent

upon the input and the circuit is unstable. To illus-

trate conditions for stable operation, we consider the

circuit shown in Fig. 7.23, which incorporates both

negative and positive feedback. The output voltage is

given by

vout ¼ m0 vp � vn
� � ¼ m0 vpn: (7.17)

According to (7.17), the output voltage responds

instantly (in zero time) to the change in the voltage

vpn. In a physical circuit, there is some time delay Dt,

albeit small, between a change in the input vpn and the

resulting change in the output vout. A more realistic

input-output relation is

voutðtþ DtÞ ¼ m0 vpnðtÞ: (7.18)

In words, a change in the input vpn at time t produces
a change in the output vout at a slightly later time tþDt.
To examine the stability of the circuit, we imagine that

some small disturbance, such as electrical noise, gives

rise to a momentary, non-zero value for the input vpn.

No current enters the op-amp input terminals, so we

may use voltage division to obtain

vp ¼ R3

R3 þ R4

vout ¼ ap vout;

vn ¼ R1

R1 þ R2

vout ¼ an vout;

(7.19)

where the definitions of ap, an are evident. Thus

vpn ¼ ap � an
� �

vout and (7.18) becomes

voutðtþ DtÞ ¼ m0 ap � an
� �

voutðtÞ: (7.20)

Retaining only the first two terms of Taylor’s

expansion for the left side of (7.20) yields

vout þ dvout
dt

Dt ¼ m0 ap � an
� �

vout;

which simplifies to

dvout
dt

¼ a vout; a ¼ m0 ap � an
� �� 1

Dt
: (7.21)

The solution of the differential equation (7.21) is

vout ¼ C ea t; (7.22)

+

–

vp

vnR1

R2

R3

R4

vout

Fig. 7.23 Circuit referred to in obtaining the condition for

stable operation

7Again, the gain of an op amp is so large that if the voltage

vp � vn is greater than m0/VCC, the amplifier will saturate.
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as can be verified by substituting the right side of

(7.22) for vout in (7.21). The value of the constant C
depends upon the initial state of the op amp; i.e., from

(7.22), C ¼ vout 0ð Þ; which is non-zero if for no other

reason than ever-present electrical noise. The actual

value of C is irrelevant. It is sufficient to note that

if a> 0; the magnitude of the output increases expo-

nentially with time until the output reaches one of the

saturation limits �Vmax: In other words, the circuit is

unstable for a > 0. But if a < 0, the output goes

exponentially toward zero, and the circuit is stable.

Because m0 and Dt are both positive, the circuit in

Fig. 7.23 is stable if

a<0) m0 ap�an
� ��1

Dt
<0) ap<anþ 1

m0
: (7.23)

It follows from (7.23) and the definitions of ap, an in
(7.19) that the requirement for stable operation of the

circuit in Fig. 7.23 is

R3

R3 þ R4

<
R1

R1 þ R2

þ 1

m0
: (7.24)

The number 1/m0 is in the neighborhood of 10�5–

10�7. As a practical matter, we may say that for stable,

linear operation of an op-amp circuit, the voltage fed
back to the negative input terminal must exceed the

voltage fed back to the positive input terminal.
Although demonstrated above for a specific circuit,

this condition holds for linear resistive op-amp circuits

in general.

It might appear that we could have based the devel-

opment above on (7.17) and avoided using a differen-

tial equation to obtain the condition (7.24). Such an

argument would be flawed because (7.17) is an instan-

taneous relation in which vpm and vout have always the

same sign (because m0 is positive).

Example 7.9. Obtain the voltage transfer

characteristic for the circuit shown in

Fig. 7.24. The op amp is ideal.

Solution: Assuming vp ¼ vn ¼ 0 and proceed-

ing exactly as in Example 7.2, we obtain

vS
R1

þ vL
R2

¼ 0 ) vL
vS

¼ �R2

R1

??

However, this result is meaningless (and

incorrect) because the net feedback is to the

positive input terminal of the op amp and the

circuit is unstable. The output would immedi-

ately saturate at one or the other of the supply

voltages.

Example 7.10. Refer to Fig. 7.25, where the

op amp is ideal. (a) Obtain an expression for

the load current iL in terms of the input voltage

vin and circuit parameters. Thus show that

the load current is independent of the load

resistance. (b) Show that the circuit is stable.

Solution: (a) Because the op amp is ideal,

in ¼ ip ¼ 0 and vn ¼ vp: Let vn ¼ vp ¼ v. By

Kirchhoff’s current law,

v� vin
R

þ v� vo
R

¼ 0 ) vo ¼ 2v� vin;

v

R
þ v

RL
þ v� vo

R
¼ 0 ) vo ¼ 2þ R

RL

� �
v:

+

–

R1

RL

R2

vS

n

p
o + vL = vo –

Fig. 7.24 See Example 7.9

+

–

R

R

R

R

RL

vin

p

n

o

+

–

iL

in

ip

Fig. 7.25 See Example 7.10
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Equate the expressions on the right above

(eliminate v0) to obtain

2þ R

RL

� �
v ¼ 2v� vin ) v ¼ �RL

R
vin

) iL ¼ v

RL
¼ � vin

R
:

So the load current is independent of the

load resistance. The circuit is a voltage-

to-current converter or transconductance

amplifier. Unlike the circuit in Example 7.8,

the load does not float. But the relation

iL ¼ �vin=R depends upon the four resistors

being identical, which can be difficult to

achieve in practice.

(b) Based on (7.23), we wish to show that

ap < an or, equivalently, that ap � an < 0. For

vin ¼ 0, Kirchhoff’s current law gives

vn
R
þ vn � vo

R
¼ 0 ) vn ¼ 1

2
vo;

vp
R
þ vp
RL

þ vp � vo
R

¼ 0 ) vp ¼ RL

2RL þ R
vo;

so

an ¼ 1

2
; ap ¼ RL

2RL þ R

and

ap � an ¼ �R

2 2RL þ Rð Þ<0; RL finite;

and the circuit is stable, provided RL is finite. If

RL ! 1 (open circuit), the circuit is unstable

because lim
RL!1

ap � an
� � ¼ 0:

7.5 Input Resistance and Output
Resistance of Op-Amp Circuits

As discussed in Chapter 6, the input resistance and

output resistance of a two-port circuit can be deter-

mined (mathematically) as shown in Fig. 7.26. Other

approaches are possible; for example, we can use

current sources instead of voltage sources as the test

sources. Also, we can determine the output resistance

by finding the Thévenin equivalent resistance at the

output terminals.

two-port
circuit

two-port
circuit

vin RL

iin

vinRin iin
=

RS vout

iout

voutRout iout
=

+
–

+
–

(a) (b)
Fig. 7.26 Definitions of input

resistance and output

resistance of a two-port circuit

on
p

Ro

Ri
R2

m0vpn

vout

vin

iin

+
–

+
–

+
–

R1

R2

RL

p

n

o
vin

vout
+
–

(a) (b)

Fig. 7.27 See Example 7.11
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Example 7.11. (a) Obtain an expression for the input resistance of the non-inverting amplifier shown in

Fig. 7.27(a). Do not assume the op amp is ideal (use the dc linear model). Show that for

m0 � R2=R1 � 1; the input resistance is given to a good approximation by

Rin ffi m0
Av

Ri;

where Av is the voltage gain of the non-inverting amplifier.

(b) For a typical op amp and non-inverting amplifier circuit, m0 � 1;Ri � R1;RL � Ro; R1 � Ro;

and m0R1 � R2: Assume these inequalities hold and simplify the expression obtained in part (a).

Solution: (a) We replace the op amp with the linear dc model to obtain the circuit diagram shown in

Fig. 7.27(b), where Ri, Ro, m0 are the input resistance, output resistance and intrinsic dc gain, respec-

tively, of the op amp.

Applying Kirchhoff’s current law to the n and o nodes in Fig. 7.27(b) gives

vn � vin
Ri

þ vn
R1

þ vn � vo
R2

¼ 0 ) 1

Ri
þ 1

R1

þ 1

R2

� �
vn � 1

R2

vo ¼ 1

Ri
vin;

vo � vn
R2

þ vo � m0 vin � vnð Þ
Ro

þ vo
RL

¼ 0 ) m0
Ro

� 1

R2

� �
vn þ 1

Ro
þ 1

RL
þ 1

R2

� �
vo ¼ m0

Ro
vin:

Eliminating vo from these equations yields

vn ¼ RL m0Ri þ Roð Þ þ R2 Ro þ RLð Þ½ 
R1vin
m0 þ 1ð ÞRLRiR1 þ R1 þ Rið Þ R2 RL þ Roð Þ þ RoRL½ 
 þ RiR1Ro

:

The input resistance of the non-inverting amplifier is given by

Rin ¼ vin
iin

¼ vin
ðvin � vnÞ=Ri

¼ vinRi

vin � vn
; (7.25)

which, using the expression above for vn, becomes

Rin ¼ m0 þ 1ð ÞRLRiR1 þ R1 þ Rið Þ R2 RL þ Roð Þ þ RoRL½ 
 þ RiR1Ro

R2 Ro þ RLð Þ þ RL Ro þ R1ð Þ þ R1Ro
:

(b) If m0 � 1;Ri � R1;RL � Ro;R1 � Ro and m0R1 � R2; then the expression above for Rin

reduces to

Rin ffi m0RLR1 þ R2RL þ RoRL þ R1Ro

R2RL þ RLR1 þ R1Ro
Ri ffi m0R1 þ R2

R2 þ R1

Ri ffi m0R1

R2 þ R1

Ri¼ m0
Av

Ri; (7.26)

where Av ¼ 1þ R2=R1 is the voltage gain of the non-inverting amplifier. Note that under the con-

ditions imposed in this example, the input resistance of the amplifier is independent of the load

resistance.
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Exercise 7.5. Repeat Example 7.11, but using a current source as the test input.

Example 7.12. Obtain an expression for the output resistance of the non-inverting amplifier considered

in Example 7.11. Do not assume the op amp is ideal (use the dc linear model). Show that under

reasonable assumptions (see Example 7.11) the output resistance of the non-inverting amplifier is

given to a good approximation by

Rout ¼ Av

m0 þ Av
Ro;

where Av ¼ 1þ R2=R1 is the voltage gain of the non-inverting amplifier.

Solution: We attach a source resistance RS to the input and attach a voltage source to the output, as shown

in Fig. 7.28. We seek an expression for Rout ¼ vout=iout:
Applying Kirchhoff’s current law and vpn ¼ vp � vn gives

vout � m0 vp � vn
� �
Ro

� iout þ vout � vn
R2

¼ 0;

vn
Ri
0 þ

vn
R1

þ vn � vout
R2

¼ 0;

where Ri
0 ¼ Ri þ RS: By voltage division,

vp ¼ RS

Ri
0 vn:

Using the latter two equations to eliminate vn and vp from the first equation yields

Rout ¼ vout
iout

¼ R2RoR
2
a

R2 þ Roð ÞR2
a � m0R1R2RS þ R1R0

i m0R2 � Roð Þ;

where R2
a ¼ R1R2 þ R1Ri

0 þ R2Ri
0: For a typical op amp and non-inverting amplifier circuit,

Ri � RS ) Ri
0 ffi Ri; Ri � R1;Ri � R2; and R2 � Ro. If these inequalities hold, then

R2
a ffi Ri R1 þ R2ð Þ and the expression above for Rout reduces to

Routffi R2RoRi R1 þ R2ð Þ
R2Ri R1 þ R2ð Þ þ m0R1R2 Ri � RSð Þffi

Ro R1 þ R2ð Þ
R1 þ R2 þ m0R1

¼ Av

m0 þ Av
Ro:

Exercise 7.6. Repeat Example 7.12, but find

the output resistance by finding the Thévenin

equivalent at the output terminals (load

removed) with an ideal independent voltage

source attached to the input. You may assume

the approximations used in Example 7.12 are

valid.

+
– vout

ioutRo

R2

R1

Ri

RS

p
n

o

m0vpn

+
–

Fig. 7.28 See Example 7.12
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Exercise 7.7. Refer to Fig. 7.27. The para-

meters of a certain non-inverting amplifier are

R1 ¼ 1 kO; R2 ¼ 100 kO; RL ¼ 5 kO;RS ¼
100O: The op amp has input resistance Ri ¼
10MO; output resistance Ro ¼ 80O; and

intrinsic dc voltage gain m0 ¼ 107: Compute

the output resistance and input resistance of

the amplifier using both the exact and approxi-

mate expressions obtained in Example 7.11 and

Example 7.12 above.

7.6 Properties of Common Op-Amp
Circuits

Voltage amplification and buffering are common needs,

so it is useful to tabulate and compare the essential

properties of inverting amplifiers, non-inverting ampli-

fiers, and voltage followers. Equations (7.28–7.36)

below give exact (dc), approximate, and limiting

(m0 ! 1) expressions for the transfer characteristic,

input resistance, and output resistance for each circuit.

We omit the derivations, which are straightforward but

tedious. In the expressions that follow,

R1S ¼ R1 þ RS; RiS ¼ Ri þ RS: (7.27)

7.6.1 Inverting Amplifier

See Fig. 7.29.

7.6.1.1 Voltage Transfer Characteristic

7.6.1.2 Input Resistance

7.6.1.3 Output Resistance

Rout ¼ RiR2 þ R1SR2 þ R1SRið ÞRo

Ro þ R2ð Þ Ri þ R1Sð Þ þ m0 þ 1ð ÞR1SRi

ffi R2 þ R1Sð ÞRo

R2 þ R1S þ m0R1S
¼ 1þ Av

1þ Av þ m0
Ro

:

(7.30)

If m0 ! 1, then

Rout ! 0: (7.31)

If m0 � Av � 1; then

Rout ffi Av

m0
Ro: (7.32)

vout ¼ Ro � m0R2ð ÞRiRLvin
m0 þ 1ð ÞR1SRiRL þ RoRL þ RoR2 þ RLR2ð Þ Ri þ R1Sð Þ þ RoR1SRi

!
m0!1

� R2

R1S
vin: (7.28)

Exercise 7.8. Show that the input resistance of

the current-to-voltage converter treated

in Example 7.7 is given (approximately) by

Rin ffi RF=m0:

Rin ¼ m0 þ 1ð ÞRLRiR1 þ R1 þ Rið Þ RL þ Roð ÞR2 þ R1 þ Rið ÞRL þ RiR1½ 
Ro

m0 þ 1ð ÞRLRi þ RL þ Roð ÞR2 þ RL þ Rið ÞRo
!

m0!1R1: ð7:29Þ
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7.6.2 Non-inverting Amplifier

See Fig. 7.30.

7.6.2.1 Voltage Transfer Characteristic

7.6.2.2 Input Resistance

7.6.2.3 Output Resistance

Rout¼ R1R2þR2RiSþR1RiSð ÞRo

RoþR2ð Þ RiSþR1ð Þþ m0þ1ð ÞR1RiS

ffi Av

m0þAv
RoffiAv

m0
Ro !

m0!10; m0�Av¼1þR2

R1

�1:

(7.35)

7.6.3 Voltage Follower

See Fig. 7.31.

7.6.3.1 Voltage Transfer Characteristic

vout ¼ Ro þ m0RiSð ÞRLvin
m0 þ 1ð ÞRiSRL þ RiSRo þ RLRo

!
m0!1 vin:

(7.36)

7.6.3.2 Input Resistance

Rin ¼ m0 þ 1ð ÞRLRi þ RiRo þ RoRL

RL þ Ro

ffi m0Ri !
m0!11: (7.37)

7.6.3.3 Output Resistance

Rout ¼ RiSRo

m0 þ 1ð ÞRiS þ Ro
ffi Ro

m0
!

m0!1 0: (7.38)

Table 7.1 summarizes properties given above for

circuits in which the op amp is assumed to be ideal.

Exercise 7.9. In Figs. 7.29 and 7.30, let

RS¼100O, R1¼10kO, R2¼1MO, RL¼5kO,
Ri¼10MO, Ro¼100O, and m0¼106 and

calculate the voltage gain, input resistance,

and output resistance of each circuit using (a)

the exact expressions and (b) the approximate

expressions given in Table 7.1.

Rin¼ m0 þ 1ð ÞRLRiR1 þ R1 þ Rið Þ R2 RL þ Roð Þ þ RoRL½ 
 þ RiR1Ro

R2 Ro þ RLð Þ þ RL Ro þ R1ð Þ þ R1Ro
ffi m0

Av
Ri !

m0!11; Av ¼ 1þ R2

R1

: (7.34)

vout ¼ m0RiS R1 þ R2ð Þ þ RoR1½ 
RLvin
m0 þ 1ð ÞR1RiSRL þ RoRL þ RoR2 þ RLR2ð Þ RiS þ R1ð Þ þ RoR1RiS

!
m0!1

1þ R2

R1

� �
vin: (7.33)

Table 7.1 Properties of common op-amp circuits for m0 ! 1: See (7.28–7.38)

Circuit Voltage Transfer Ratio Hv Input Resistance Output Resistance

Inverting amplifier � R2=R1S R1 AvRo=m0 ! 0

Non-inverting amplifier 1þ R2=R1 Rim0=Av ! 1 AvRo=m0 ! 0

Follower 1 m0Ri ! 1 Ro=m0 ! 0
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A few of the differences between inverting and

non-inverting amplifiers are:

• An inverting amplifier introduces a sign inversion.

A non-inverting amplifier does not. This difference

is seldom important.

• The input resistance of an inverting amplifier is

approximately the resistance R1, which is typically

on the order of 10 kO or larger, depending upon the

op amp in use. The input resistance of a non-invert-

ing amplifier is larger than that of the op amp,

which typically exceeds 1 MO and can be as large

as 1 TO. However, in some applications, as dis-

cussed in Chapter 17, it is necessary to add a resis-

tance RX from the p input terminal to ground, in

which case the input resistance is no larger than RX.

• An inverting amplifier can provide a fractional gain

(attenuation), whereas the gain of a non-inverting

amplifier must exceed unity.8

Of these three differences, the difference in input

resistance is most significant. However, even this

advantage of a non-inverting amplifier disappears

in many applications, as we show in a subsequent

chapter. For various reasons, some of which we

treat in subsequent chapters, inverting amplifiers are

used more often than non-inverting amplifiers. If

the relatively low input resistance of an inverting

amplifier is a problem, the amplifier can be preceded

by a voltage follower, which provides a very high

input resistance.

For the same voltage gains (magnitudes), the

inverting and non-inverting amplifiers have approxi-

mately the same output resistance. In a typical appli-

cation, the voltage gain is on the order of 100. For a

typical op amp, m0 ffi 106 and Ro ffi 100, so the output

resistances of typical inverting and non-inverting

amplifiers are on the order of 10 mO. The output

resistance of a voltage follower is on the order of

100 mO. In most applications, the output resistances

of inverting and non-inverting amplifiers are negligi-

ble compared to the load resistance.

+
–

RLvin vout

Ri

+
–

vout

RL

Ro

n
vin

p

m0vpn

(a) (b)
Fig. 7.31 Follower (a) and

dc model (b)

+

–

R2

RLvin
vout

Ri

+
–

vout

RL

R2

R1

Ro

n

(a) (b)

R1

vin p

m0vpn

Fig. 7.30 Non-inverting

amplifier (a) and dc model (b)

+

–
R1

R2

RLvin

vout

R1

+
–

vout

RL

R2

Ri

Ro

p

n
vin

m0vpn

(a) (b)
Fig. 7.29 Inverting amplifier

(a) and dc model (b)

8Achieving gains less than 10 with an inverting amplifier is

attended by several problems, as discussed in Chapter 17.
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The remarks above pertain only to the dc models.

We treat ac models for op amps in Chapter 17, where

we show that voltage gain, input resistance, and output

resistance can all be strong functions of the frequency

of a sinusoidal input. We also show how certain

additional components required in practical op-amp

circuits can alter the conclusions reached above.

7.7 Op Amp Structure and Properties

Op amps can be built using various kinds of transis-

tors, such as bipolar junction transistors (BJT’s), junc-

tion field-effect transistors (JFET’s), and metal-oxide

field-effect transistors (MOSFET’s). The input resis-

tances of op amps range from about 1 MO for BJT-

based op amps to more than 1 TO for MOSFET-based

op amps. Intrinsic gains range from about 105 to 106 for

BJT-based op amps and from about 104 to 105 for

MOSFET-based op amps.9 Op amps using JFET’s in

the input stage have input resistances and intrinsic gains

intermediate to those for BJT-based and MOSFET-

based op amps.

As we show in Chapter 17, the input resistance of

an op amp influences the choice of resistors external to

an op amp in inverting or non-inverting configura-

tions. With reference to Figs. 7.29 and 7.30, a good

rule of thumb is to make R1 as large as possible but no
more than than 1% of the op-amp input resistance.

7.8 Output Current Limit

Almost all op amps incorporate internal circuitry that

limits the output current to protect internal devices from

damage in case the output terminals are shorted (or the

op amp is overloaded). Typical limits range from about

1 mA to about 100 mA for small integrated general

purpose op amps to more than 25 A for high-power

op amps.

Because output current is limited, the voltage an op

amp can impress on a load also is limited; e.g., any

particular rail-to-rail op amp can provide the full sup-

ply voltage to a load only if the resulting load current

does not exceed the limit imposed by the op amp.

For example, National Semiconductor’s LM8272

rail-to-rail op amp allows a maximum supply voltage

of �VCC max ¼ �12V and a maximum output current

of Iout max ¼ 100mA. Consequently, the op amp can-

not drive a resistive load having resistance less

than RL min ¼ VCC max=Iout max ¼ 12=0:1 ¼ 120O and

maintain full �12Vð Þ output swing. If it is necessary

to drive a load having resistance less than 120 O at full

swing (� 12V), we must use a different op amp.

The voltage transfer characteristic shown in Fig. 7.7

assumes that the output current limit is not exceeded.

Example 7.13. Refer to Example 7.1. (a)

What is the minimum acceptable output cur-

rent limit for the op amp? (b) What is the

minimum acceptable load resistance if the op-

amp output current limit is 10 mA?

Solution: (a) Assume full-scale output (� 10V)

is possible. The maximum load current is

approximately

iL ¼ 10V

5 kO
¼ 2mA;

so the op amp need supply no more than

2 mA. Almost any op amp can satisfy this

requirement. (b) If the op amp can provide 10

mA and if the supply voltage is 10 V, then

(assuming rail-to-rail operation) the minimum

load resistance is

10V

10mA
¼ 1 kO:

The solutions above ignore the op amp out-

put resistance, which is a negligible fraction of

the load resistances considered.

7.9 Input Offset Voltage

Because of their internal structures, all op amps

exhibit a slight imbalance such that an input must be

9This parameter is not specified on manufacturers’ data sheets

and is difficult to measure. The values given here are deduced

from other performance data. Related topics are discussed in

more detail in Chapter 17.
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slightly different from zero to produce an output equal

to zero. Thus the output of an op amp is given by

vo ¼ m0 vpn � vpn0
� �

;

where the (small) voltage vpn0 is called the input offset

voltage. Input offset voltages range from about 100 mV
to about 10 mV for general-purpose op amps.

The input offset voltage and the high dc gain of an

op amp will cause a powered, open-loop op amp to

saturate even if the input terminals are shorted (even if

vpn ¼ 0). Most op amps provide terminals for nulling

the input offset voltage; e.g., by connecting a variable

resistor to the terminals with the wiper connected to

one or the other of the supply voltages, as illustrated

by Fig. 7.32. The terminals and recommended nulling

circuitry vary from one op amp to another, and are

given in manufacturers’ data sheets.

High-precision applications may warrant the use of

so-called precision op amps that have small offsets and

low drift and provide for external nulling circuitry.

Unfortunately, the input offset voltage varies with

temperature and also tends to drift with time, even

if the temperature is constant. Consequently, it is

difficult to maintain a perfect null and we must rely

on feedback to keep the offset from driving the output

to saturation, which means that any practical linear
op-amp circuit must provide negative feedback at dc.

For present purposes, this means that there must be

a resistive path from the output (o) terminal to the
negative (n) input terminal. The resistance can be zero,

as in a follower.

Even if the input offset voltage does not cause the

output to saturate, it still causes a corresponding offset

in the output voltage. For example, Fig. 7.33 shows a

circuit model for the effect of the dc offset voltage in

an inverting amplifier. Straightforward application of

Kirchhoff’s current law shows that the output voltage

is given by

vout ¼ �R2

R1

vin � 1þ R2

R1

� �
vpn0;

where the second term on the right is the output offset.

Whether the output offset is troublesome depends

upon the magnitude of the offset relative to that of

the desired output and upon the precision demanded in

an application at hand.

7.10 Input Bias Currents

Input bias currents are small direct (constant) cur-

rents that enter (or exit) the input (p and n) terminals of

a powered op amp. Any circuit in which an op amp is
imbedded must provide dc paths to ground from both

the n and p input terminals. Otherwise, one or both of

the bias currents will be blocked, and the resulting

input voltage will drive the op amp to saturation.

Both input bias currents are the same direction and

have approximately the same magnitude, which

ranges from less than 1 nA to a few micro amperes.

The direction and magnitude of the input bias currents

depend upon the internal structure of the op amp.

Even if there is a dc path to ground from each input

of an op-amp, the input bias currents will cause the

voltage vpn (and thus the output) to assume some non-

zero value (offset) that is difficult to predict (because

of the complexity of the input circuitry in a typical

op amp), but which can be large enough to be trouble-

some, especially in high-precision applications. Below,

+

–

ideal op-amp

op-amp with voltage offset

R2

R1

vout

vpn0

n′

p ′

n

p

vin

–+

Fig. 7.33 Circuit model for input dc offset in an op amp,

connected in an inverting configuration

+

–

−VCC

VCC

Fig. 7.32 Circuit for nulling the dc offset voltage (typical)
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we show how the offset can be reduced by a compen-

sating resistor connected to one of the op-amp input

terminals.

We first consider an inverting amplifier. Figure

7.34 shows an inverting amplifier, where the dc input

bias currents are represented by currents In; Ip. We

seek the output vo due to the bias currents alone, so

we set the dc offset voltage and the input vS to zero

(superposition). The purpose of the resistor RX is to

make vp ¼ vn, such that the voltage vo due to the bias

currents equals zero.

Applying Kirchhoff’s current law to the model

shown in Fig. 7.34 gives

vn
R0
1

þ In þ vn � vo
R2

¼ 0;
vp
RX

þ Ip ¼ 0 ) vp ¼ �IpRX;

(7.39)

where

R0
1 ¼ R1 þ RS: (7.40)

We assume Ip ¼ In and require vp ¼ vn: This gives

�IpRX

R0
1

þ Ip þ�IpRX � vo
R2

¼ 0

) vo ¼ �RXR2 þ RXR
0
1 � R0

1R2

R0
1

Ip:

(7.41)

Requiring vo ¼ 0 yields

RX ¼ R0
1R2

R0
1 þ R2

¼ R1 þ RSð Þ R2k (7.42)

Typically, the source resistance RS is much smaller

than the resistance R1, in which case R0
1 ffi R1 and

RX ffi R1 R2; RS ¼ R1:k (7.43)

Moreover, the dc gain is usually greater than ten, in

which case

RX ffi R1 R2 ffi R1; R2 � R1:k (7.44)

Exercise 7.10. By an analysis like that leading

to (7.41), show that the input bias current com-

pensating resistance RX in a current-to-voltage

converter shown in Fig. 7.35 is given by (7.42)

with R1 ¼ 0 and R2 ¼ RF; provided RS � RF:

In a direct-coupled non-inverting amplifier, the

compensating resistor RX is connected to the op-amp

p terminal in series with the source, as shown in

Fig. 7.36. If the compensating resistor were connected

to ground (to the reference node), the compensating

resistor would be shunted by the source and rendered

ineffective. Here again, we seek an expression for the

compensating resistance such that vS ¼ 0 implies

vn ¼ vp and vo ¼ 0: From Fig. 7.36 and Kirchhoff’s

voltage law, vS ¼ 0 and vo ¼ 0 imply that

vp ¼ �Ip RS þ RXð Þ; vn ¼ �In R1 R2kð Þ:

For Ip ¼ In; it follows that

RS þ RX ¼ R1 R2k ) RX ¼ R1 R2kð Þ � RS: (7.45)

+

– RL

RF

RXRSiS

Fig. 7.35 See Exercise 7.10
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Fig. 7.36 DC bias compensation for a non-inverting amplifier
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–
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RX
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Ip
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Fig. 7.34 Input dc bias currents in an inverting amplifier
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Simple resistive compensation is not possible if

R1 R2kð Þ<RS; but that would be unusual. In most

applications, R1 R2kð Þ � RS; in which case

RX ffi R1 R2kð Þ; R1 R2kð Þ � RS: (7.46)

Here also, the dc gain usually is large enough that

RX ffi R1 R2kð Þ ffi R1; R2 � R1 � RS: (7.47)

To obtain (7.42) and (7.45), we assumed that

Ip ¼ In: In a real op amp, the bias currents entering

the n and p terminals might differ (perhaps by as much

as 20%). Also, the relation RX ffi R1 is inexact, so the

compensation described above is imperfect. In prac-

tice, the compensating resistance often is in part a

variable resistor (trimmer) that allows in-situ adjust-

ment. Even then, the dc bias currents can depend

strongly on operating temperature, and perfect balance

is difficult to achieve and maintain. Nonetheless, an

amplifier is more precise with compensation than

without, and compensation usually is advisable.

We conclude this section by showing that bias-

current compensation is not required for a voltage

follower. Figure 7.37 shows the relevant circuit dia-

gram and corresponding model for analysis, where we

set the source voltage vS to zero because we are inter-

ested in only the output voltage due to the input bias

currents. Kirchhoff’s current law gives

vp
RS

þ Ip ¼ 0; In þ
vn � m0 vp � vn

� �
Ro

þ vn
RL

¼ 0:

(7.48)

To obtain the output voltage vo ¼ vn due to the bias

currents alone, we assume Ip ¼ In and eliminate vp
from (7.48). We obtain

vn ¼ �In
Ro þ m0RSð ÞRL

Ro þ RL þ m0RL
: (7.49)

For m0 ! 1; (7.49) reduces to vn ffi �InRS: From

(7.48), we have vp ¼ �IpRS; which also is apparent

from the circuit diagram. Because Ip ¼ In; as assumed

above, we have vp ¼ vn; m0 vp � vn
� � ¼ 0: It follows

that no compensating resistor is necessary for the

voltage follower shown in Fig. 7.37a.

Although bias-current compensating resistors usu-

ally are included in real circuits, they do not enter into

analyses of resistive op-amp amplifiers at dc and alter ac

analyses in only a few cases. To avoid distracting clutter,

we usually omit showing them in circuit diagrams unless

they must be included to obtain a correct analysis.

7.11 Power Dissipation in Op Amps
and Op-Amp Circuits

Removing heat from a circuit can be expensive, as can

providing the wasted power that produces the heat.

Circuits that operate hot generally produce more

electrical noise than similar circuits that operate at

lower temperatures. Also, parameter values change

with increasing temperature, and component lifetime

generally decreases with increasing operating temper-

ature. For these and other reasons, specifying power-

dissipation ratings for circuit components and planning

for heat dissipation is an essential part of circuit design.

Typical small integrated op amps can dissipate

from about 500 mW to a little more than 1 W. Much

larger power op amps can dissipate 100 W or more.

The power dissipated by an op amp depends upon a

number of things, including the supply voltage, the

input voltage, the load (output) voltage, the load resis-

tance, and properties of other surrounding circuitry

(e.g., the resistors in a feedback network). Thus ex-

pressions for power dissipated can be complicated and

(a) circuit diagram

(b) model for analysis

+

+
–

–

o

vS

RS

RS

RL

RL

Ro

Ip

Ip

In

In

m0vpn

p

n

+
–

p n

o

Fig. 7.37 Voltage follower circuit
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difficult to interpret. A circuit designer needs a simple,

approximate, and conservative relation that allows

initial specification of the power dissipation rating

required of an op amp. If necessary, the specification

can be refined by subsequent more detailed analysis,

by simulation, or by construction and testing. In this

section, we derive a few simple relations that are

useful in design of linear resistive op-amp circuits.

Relations given here are strictly applicable to only

op-amp circuits subjected to dc excitation, but can

provide useful bounds for a circuit subjected to any

excitation. More general relations for circuits sub-

jected to ac excitation are given in Chapter 17.

The total power delivered to an op-amp circuit con-

sists of the power PS delivered by the supply and the

power Pin delivered to the circuit by an input. The total

power dissipated in an op-amp circuit consists of the

power PA dissipated in the op amp and the power PR

dissipated in the load and other circuit components

external to the op amp. Power is conserved, so the

power delivered equals the power dissipated; that is,

PS þ Pin ¼ PA þ PR: (7.50)

In virtually all linear applications, the power deliv-

ered by an input is negligible (Pin � PS). The power

dissipated by an op amp in a linear circuit is given to a

good approximation by

PA ffi PS � PR: (7.51)

In what follows, we obtain an expression for the

power dissipated by an op amp in a resistive circuit,

assuming dc excitation and linear operation.

The power dissipated in circuit components exter-

nal to the op amp is given to a good approximation by

PR ffi VL
2

R0
L
; (7.52)

where VL is the load voltage and R0
L is the effective

load on the op amp, which is the resistance seen

by the current exiting the output (o) terminal of the

op amp. To minimize waste, we would like most of the

power PR to be dissipated in the actual load RL.

Figure 7.38 shows how we obtain an expression for

the power PS delivered by the supply to an op amp

having a dc input. Because of the internal structure of

an op amp, positive output current Io passes into the

positive supply terminal and out of the op-amp output

terminal.10 Negative output current passes into the

negative supply terminal and out through the output

terminal. In either case, the power delivered by the

power supply is given approximately by11

PS ffi VCC jIoj ¼ VCC
jVLj
R0
L

; (7.53)

where Io is the current exiting the output (o) terminal

of the op amp.

The effective load R0
L depends upon the actual load

on the circuit and (in general) components of the feed-

back network. For an inverting amplifier and resistive

load RL, the effective load is R0
L ¼ RL R2k . For a non-

inverting amplifier and resistive load RL, the effective

load is R0
L ¼ RL R1 þ R2ð Þk . Often, the specified gain is

large enough that R2 � R1; in which case the effective

load for a non-inverting amplifier is approximately

R0
L ¼ RL R2k . To minimize the load on the op amp (to

maximize the effective load resistance), the resistance

R2 should be as large as possible, relative to the load RL.

The maximum effective load resistance (the minimum

load) is the actual load RL.

From (7.51), (7.52), and (7.53), the power

dissipated by the op amp is given by

+ –

+–

+

–

Io

Io > 0

Io < 0

p

n

o RL

VCC

VCC

Fig. 7.38 Supply current in a symmetrically powered op amp

operating linearly and having a positive output (vo > 0)

10The output stage of an op amp is typically a so called push-pull
configuration of two transistors, where one transistor amplifies

the positive parts of an applied voltage and the other amplifies

the negative parts.
11This is the power delivered by the supply to the output stage. A

typical op amp is a three-stage amplifier, and even if no input is

applied (even if i0 ¼ 0), some dc power is required to keep the

op amp in an active (ready) state.
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PA ¼ PS � PR ¼ VCC
jVLj
R0
L

� VL
2

R0
L

¼ VCC � jVLjð ÞVL

R0
L

: (7.54)

From (7.54), the power dissipated by the op amp for a

dc input is maximum for VLj j ¼ VCC=2 and is given by

PA max ¼ VCC
2

4R0
L
: (7.55)

We show in Chapter 17 that (7.55) gives the worst-

case value for the power dissipated by an op amp in a

linear resistive circuit. Consequently, (7.55) often is

used for initial screening of op amps suitable for a

particular application (assuming the supply voltage

and the equivalent load resistance are known).

Example 7.14. (Follower) In Fig. 7.39, the

supply voltage is VCC ¼ 25V and the load

resistance is RL ¼ 1 kO: Specify the worst-

case power-dissipation rating for the op amp.

Solution: The current io equals the load current

iL because the current entering the n terminal

of the op amp is negligible. Thus the effective

load is the actual load on the circuit

R0
L ¼ RLð Þ: The maximum power dissipated

by the op amp (the specified power-dissipation

rating) for constant (dc) excitation is

PAmax ¼ VCC
2

4R0
L
ffi 156mW:

Exercise 7.11. The supply voltage to a fol-

lower is �25 V. The circuit is to drive a 2 kO
resistive load. Specify the power-dissipation

rating for the op amp.

Example 7.15. (Inverting amplifier) In

Fig. 7.40, VCC ¼ 25V; RL ¼ 100O; R1 ¼
10 kO; and R2 ¼ 500 kO: Specify the worst-

case power-dissipation rating for the op amp.

Solution: Because vn ¼ 0, the effective resis-

tance seen by the current exiting the op amp

output terminal (the effective load) is

R0
L ¼ RL R2k ffi 500 kOð Þ 1 kOð Þ

510 kO
¼ 998O

and the maximum power dissipated by the op

amp (the specified power-dissipation rating) is

PAmax ¼ VCC
2

4R0
L
¼ 25Vð Þ2

4ð Þ 998Oð Þ ffi 157mW

Exercise 7.12. (Non-inverting amplifier) In

Fig. 7.41, VCC ¼ 25V; RL ¼ 1 kO; R1 ¼
10 kO; and R2 ¼ 500 kO: Specify the worst-

case power-dissipation rating for the op amp.

Equation (7.54) implies that the average power

dissipated by an op amp equals zero if the load voltage

vL ¼ 0. Actually, an idle op amp draws a dc quiescent

current, which usually is given on the manufacturer’s

data sheet. For a PA03# high-power op amp, for

example, the quiescent supply current for a �(75/2)

+

–

vS

RL−VCC

VCC

io iL
vL = vS

Fig. 7.39 See Example 7.14

+

– RL
R1

R2

vS n

p o

io
i2

iL

+ –vL

Fig. 7.40 See Example 7.15

+

–n

p

o

io iL RL

vL

R1 R2

vS

+ –

Fig. 7.41 See Exercise 7.12
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¼ �37.5 V supply is about 300 mA, which means that

the average power dissipated by an idling PA03# can

be as much as (2)(75/2)(0.3)¼ 22.5 W. In many cases,

the idle power is a negligible fraction of the active

power, but not always.

7.12 Design Considerations

Initial (conceptual) design of linear resistive op amp

circuits is based upon the ideal model for an op

amp:

• The voltage vpn is zero (or the intrinsic dc voltage

gain m0 is infinite).
• The currents entering the n and p terminals are zero.

In addition, three fundamental rules govern

design of linear op amp circuits:

• The net voltage feedback must be negative, which

means that the voltage fed back to the n terminal

must exceed that fed back to the p terminal (if any).

• There must be negative voltage feedback at dc,

which requires a dc path from the o terminal to

the n terminal.

• There must be a dc path to ground from each of

the n and p terminals (for each of the input bias

currents).

All standard linear op-amp circuits obey these rules.

Once a conceptual design is complete, we must

select physical components as follows:

• The power-dissipation rating of each component

must exceed the expected power dissipation.

• The precision of each component must be such that

any specification on overall precision (e.g., of gain)

is met (but see As an aside, below).
• The output current required of each op amp must not

exceed the maximum current the op amp can supply.

• Each op amp must be able to accept power supply

voltages that can accommodate the required output

swing.

• The effective load on each op amp should be mini-

mized, which means the effective load resistance on

each should be as large as is practical. This means

that the feedback resistor R2 should be as large as

possible, which for any particular gain also makes

R1 as large as possible and maximizes the input

resistance. A rule of thumb for amplifiers using

general-purpose, integrated BJT-input op amps is

that the resistor R1 should be no larger than about

1% of the op amp input resistance.12

Other guidelines based upon frequency response and

output slew rate are treated in Chapter 17.

As an aside, the precision of component parameters

in an integrated circuit is limited; for example, the

resistance of a resistor might differ by 10% from the

design value. However, such errors are correlated,

which means that if a resistor is 10% over- or under-

valued, then another resistor in the same area of the

circuit will probably be off by about the same amount

and in the same direction. Thus, although it might be

difficult to achieve a specific resistance with high

precision, it is possible to achieve fairly precise resis-

tance ratios, which means, for example, that the gains

of integrated inverting and non-inverting amplifiers

can be precisely established. For example, if both R1

and R2 in an inverting or non-inverting amplifier differ

from their design values by the same fraction a, the
voltage gain is nonetheless precise, because

1þ að ÞR2

1þ að ÞR1

¼ R2

R1

:

Thus, in such a case, the main consequence of

imprecise resistance values is an imprecise input resis-

tance, which usually is inconsequential.

Example 7.16. A certain photodiode produces

a current given by

iS ¼ kil; (7.56)

where l is the intensity of the incident light in

watts per square meter and ki ¼ 1mAW�1m2:

The output resistance of the photodiode is

approximately 10 kO. We wish to produce a

voltage whose magnitude is given by

voj j ¼ kvl; (7.57)

where kv ¼ 5VW�1m2: The sign of the volt-

age is immaterial. The maximum intensity

12We justify this rule in Chapter 17.
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of the incident light is 3.4 Wm�2. The output

voltage will be applied to another circuit hav-

ing input resistance RL ¼ 100 kO:
Solution: We would use a current-to-voltage

converter (see Example 7.7), as shown in

Fig. 7.42, where

vo ¼ �RFiS ¼ �RFkil: (7.58)

Equations (7.57) and (7.58) imply

RF ¼ kv
ki

¼ 5 kO: (7.59)

Compensating for input bias current com-

pletes the conceptual design. From (7.42), we

have for an inverting configuration that

RX ¼ R1 þ RSð Þ R2:k

In this example, R1 ¼ 0, RS ¼ 10 kO; and

R2 ¼ RF ¼ 5 kO:
Thus

RX ¼ 5 kOð Þ 10 kOð Þ
5 kOþ 10 kO

¼ 3:33 kO:

The feedback is entirely negative (there

is no feedback to the p terminal), the feedback

path is resistive, so there is feedback at dc, and

there are dc paths from both inputs to ground.

From (7.57),

voj jmax ¼ kvlmax ¼ 5VW�1m2
� �

� 3:4Wm�2
� � ¼ 17V:

(7.60)

The op amp must be able to accommodate a

�17 V output swing. The effective load on the

op amp is

R0
L ¼ RF RLk ffi RF; (7.61)

so the op amp must be able to provide an output

current of

ioj jmax ¼
voj jmax

R0
L

¼ 17V

5 kO
¼ 3:4mA: (7.62)

Virtually any op amp can meet this require-

ment. Assuming rail-to-rail operation, the

required power-supply voltage is VCC ¼ 17V:

From (7.55), the power-dissipation rating for

the op amp should be

PA ¼ VCC
2

4R0
L

¼ 17Vð Þ2
4ð Þ 5 kOð Þ ¼ 14:5mW: (7.63)

Virtually any op amp can meet this require-

ment. The current through the resistor Rx is

negligible. From (7.56), the maximum current

through the feedback resistor is

iSj jmax ¼ kilmax

¼ 1mAW�1m2
� �

3:4Wm�2
� �

¼ 3:4mA;

(7.64)

and the required power-dissipation rating for

the resistor RF is

PF ¼ 3:4mAð Þ2 5 kOð Þ ¼ 57:8mW (7.65)

so a 1/8 W (125 mW) resistor is more than

adequate. The total power requirement for

the circuit is the total power dissipated by the

circuit (all components). In this circuit, the total

power dissipated is approximately that dissipated

by the op amp (14.5 mW) plus that dissipated by

the feedback resistor (57.8 mW). The powers

dissipated by the compensating resistor Rx, the

op-amp input resistance, the source resistance,

and the load resistance are negligible by compar-

ison. Thus the circuit will demand approximately

Ptotal ffi 14:5mWþ 57:8mW ¼ 72:3mW

+

– o
p

n

RX

iS RS

RF

RL

vo

Fig. 7.42 See Example 7.16
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from the power supply. We might add 10% or

20% (to provide a safety margin) and specify

80 or 90 mW. This figure can be checked in the

simulation phase of the design.

The overall accuracy of the system is

approximately the tolerance of the resistor RF;

e.g., for an overall accuracy of�1%, we would

specify that tolerance for RF.

7.13 Problems

All op amps are ideal unless the problem statement

indicates otherwise. In problems calling for simula-

tion, use an op-amp model having the parameters

given in Table P 7.1.

Section 7.2 is prerequisite for the following

problems.

P 7.1 Re-draw the circuits in Fig. P 7.1, replacing the

op amp with a linear model. Label the n, p, and o nodes.
P 7.2 Refer to Fig. P 7.2. For a certain op amp to

operate linearly, the voltage V2 must exceed V1 by at

least 5 V, but by no more than 30 V. If a symmetric

bipolar supply � VCC is to be used, what are the

minimum and maximum permissible values of VCC?

P 7.3 In Fig. P 7.3, VCC ¼ 15V; R1 ¼ 10 kO;
R2 ¼ 500 kO;RL ¼ 5 kO; RS ¼ 50O: The op amp has

input resistance Ri ¼ 2MO; output resistance

Ro ¼ 30O; and intrinsic (no-load) dc voltage gain

m0 ¼ 105: (a) Replace the op amp by a linear model

and obtain an expression for the voltage transfer charac-

teristic for the circuit. (b) If the op amp is rail-to-rail, for

what input amplitudes is the circuit linear? Use a graph of

the voltage transfer characteristic to illustrate your

answer. (c) Give the voltage gain, current gain, power

gain, transresistance, and transconductance of the circuit

within the range of linear operation. Express the current,

voltage, and power gains in dB. (d) Obtain a simpler

expression for the voltage gain by assuming m0 ! 1 in

the expression you obtained in part (a). Then repeat

part (c).

P 7.4 Repeat Problem P 7.3 for the circuit shown in

Fig. P 7.4, where RS ¼ 75O; RL ¼ 1kO;VCC ¼ 12V;

Ri ¼ 1MO;Ro ¼ 50O; m0 ¼ 2� 105:

P 7.5 Figure P 7.5 shows (in part) the pin-out dia-

gram for a particular integrated op amp, where V� and

Vþ are the lower (smaller) and upper supply voltages.

Ignore the pins that are not labeled. Re-draw Fig. P 7.3,

using the diagram in Fig. P 7.5 for the op amp. Use

battery symbols to show how the supply voltages are

supplied. Make the diagram as neat and clear as possi-

ble, and try to minimize the number of points at which

conductors cross but are not connected.

P 7.6 Repeat Problem P 7.5 for the circuit in

Fig. P 7.4.

Table P 7.1 Op-amp simulation parameters

Parameter Value

Open-loop gain (intrinsic dc voltage gain) 400 MV V–1

Input resistance 10 GO
Output resistance 5 O
Output swing �25 V

Input bias current 0

Input offset currenta 0

Input offset voltage 0

Unity-gain bandwidth (gain-bandwidth product)a 1.5 GHz

Slew Ratea 500 kVs–1

Compensation capacitancea 10 pF
aThese parameters are treated in Chapter 17
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Section 7.3 is prerequisite for the following

problems.

P 7.7 Refer to Fig. P 7.6. (a) Express the voltage vout
in terms of the voltages v1; v2; 	 	 	 ; vN: (b): Let N ¼
5, v1 ¼ v2 ¼ 	 	 	 ¼ v5 ¼ 1V; R1 ¼ R2 ¼ 	 	 	 ¼ R3 ¼
R ¼ 10 kO; and simulate the circuit. If the simulated

result does not agree with the relation obtained in part

(a), explain why.

P 7.8 Refer to Fig. P 7.7. (a) Express the voltage vout
in terms of the voltages v1 and v2. (b) : Let

v1 ¼ 1V; v2 ¼ 2V; R ¼ 10 kO; and simulate the cir-

cuit. If the simulated result does not agree with the

relation obtained in part (a), explain why.

P 7.9 Refer to Fig. P 7.8. (a) Obtain an expression

for the voltage gain. (b) : Let vin ¼ 1V;

R1 ¼ 20 kO; R2 ¼ R4 ¼ 10 kO; R3 ¼ 15 kO; and

RL ¼ 5 kO: Simulate the circuit and show that the

simulated output agrees with the analysis in part (a).

P 7.10 (a) Obtain an expression for the voltage gain

Av for each circuit in Fig. P 7.9. (b): Let R ¼ 10 kO;
a ¼ 0.8, vS ¼ 1V, RS ¼ 20O; RL ¼ 5 kO; and use

simulations to check your answers.

P 7.11 Obtain an expression for the dc voltage gain

of each circuit shown in Fig. P 7.10.

P 7.12 Refer to Fig. P 7.11. (a) Obtain an expression

for the current iL. What kind of circuit is this?
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(b) : Let vi ¼ 100mV; v2 ¼ 200mV; R ¼ 10 kO;
DR ¼ 100O; RL ¼ 5 kO and simulate the circuit to

check your answer.

P 7.13 Refer to Fig. P 7.12. (a) Express the load

current iL in terms of the source voltage vS. (b) Draw a

circuit diagram showing how a power supply would be

connected to the op amps consistent with your answer

to part (a).

P 7.14 Refer to Fig. P 7.13, where R2=R1 ¼ R4=R3:

Obtain an expression for the load current iL in terms of the

input voltage vS and thus show that the circuit is a voltage-

to-current converter (a transconductance amplifier).Hint:

LetR2 ¼ aR1; R4 ¼ aR3: (b) It is given thatRL ¼ 1 kO;
vS ¼ VCC ¼ 20V and it is required that ILj j ¼ 10mA:

Specify the circuit parameters, making sure that the cir-

cuit operates linearly (that the op amp does not saturate).

(c) : Simulate the circuit to verify your design. (d)

Suppose the resistance ratios are not exactly matched,

such that R2 ¼ aR1; R4 ¼ aþ eð ÞR3; where e ¼ a:
Under what condition does the circuit remain a good

transconductance amplifier? (e) Assume a> 0 and show

that the circuit is stable (let vS¼ 0 and show that vn> vp).
P 7.15 Can you find the Thévenin equivalent at the

terminals a–b for the circuit shown in Fig. P 7.14,

where the op amp is ideal? Do so or explain why not.

P 7.16 Can you find the Norton equivalent at the

terminals a–b for the circuit shown in Fig. P 7.14,

where the op amp is ideal? Do so or explain why not.

P 7.17 Refer to Fig. P 7.15(a). What is the voltage

vnp? Does this mean that the circuit in Fig. P 7.15(a)

is equivalent to the circuit in Fig. P 7.15(b)? Justify

your answer.

Section 7.4 is prerequisite for the following

problems.

P 7.18: Refer to Fig. P 7.16. (a) Obtain an expres-

sion for the transconductance. (b) Show that the circuit

is stable. (c) Let vS ¼ 1V; R ¼ 100 kO; RL ¼ 10 kO
and perform a simulation to check the relation

obtained in part (a).
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P 7.19 (a) Obtain an expression for the current trans-

fer ratioHi of the circuit in Fig. P 7.17. (b) Show that the

circuit is stable. (c) Let iS ¼ 1mA; R1 ¼ 20 kO; and

R2 ¼ 2 kO: If the load is resistive, and the supply volt-

age is 25 V, what is the maximum load resistance for

which the circuit is linear? (d) : Use RL ¼ 200O and

the parameters given in part (c) and simulate the circuit

to check the relation obtained in part (a).

P 7.20 (a) Obtain an expression for the transresis-

tance Hr of the circuit in Fig. P 7.18. (b) Is the circuit

stable? (c) : Let iS ¼ 50 mA; R1¼2kO; R2¼10kO;
R3¼20kO; RL¼100kO; and simulate the circuit as a

check on your answers to parts (a) and (b).

P 7.21 Refer to Fig. P 7.19, where all resistors have

the same value R. Obtain an expression for the output

voltage vout. Is the circuit stable?
P 7.22 Refer to Fig. P 7.20, where RS < R and the

op amps are rail-to-rail. (a) Obtain an expression for

the load current iL. (b) Is the circuit stable? (c) Assume

a symmetric supply � VCC: As the load voltage vL is

increased (by increasing the input vS), which op amp

saturates first, and why? Obtain an expression for the

load voltage corresponding to saturation of the left op

amp. (d) Assume the load is resistive and obtain

an expression for the maximum allowable load resis-

tance. (e) Assume the load is resistive and obtain an

expression for the maximum allowable input vS.
P 7.23 Refer to Fig. P 7.21. (a) Obtain an expression

for the output vo in terms of the current iS and

vS
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the circuit parameters. (b) Is the circuit stable? (c)

If the circuit is stable, obtain an expression for

the voltage across the current source. (d) : Let

R1 ¼ 20 kO; R2 ¼ 50 kO; RL ¼ 5 kO; iS ¼ 100 mA:
Simulate the circuit as a check on the answer you

obtained in part (a).

Section 7.5 is prerequisite for the following

problems.

P 7.24 Refer to Fig. P 7.22. (a) Obtain expressions

for the input resistances seen at each input, assuming

the other input is connected to an ideal voltage source.

(b) : Let R ¼ 22 kO and use a simulation to check

your answers.

P 7.25 : Refer to Fig. P 7.23. Replace the op amp

by a dc model with Ri ¼ 5MO; Ro ¼ 75O; and

m0 ¼ 2� 105; let R ¼ 1 kO; and obtain an expression
for the output resistance. Use a simulation to check

your answer.

P 7.26 Refer to Fig. P 7.23. (a) Obtain an expression

for the input resistance of the circuit. How do you

interpret the result? (b) : Let R ¼ 1 kO and simulate

the circuit to check your answer.

P 7.27 Refer to Fig. P 7.24. Obtain an expression

for the input resistance. (b) Obtain an expression for

the output resistance. (c) : Let RS¼50O; R¼10kO;

DR¼100O; RL¼3:4kO; vS¼10mA; and use a sim-

ulation to check the expression obtained in part (a).

P 7.28 Refer to Fig. P 7.25. Obtain an expression

for the input resistance. Hint: Rin ¼ �vS=iS � Rs:

P 7.29 Refer to the current-to-voltage converter

circuit in Fig. P 7.26. Assume that the input is an

ideal current source, that the input resistance of the

op amp is much larger than the feedback resistance Rf,

and that the feedback resistance is much larger than

the output resistance of the op amp. Show that for

m0 ! 1; the output resistance of the circuit

approaches Ro=m0; where Ro and m0 are the output

+
+
–

–

+

–

100R

vS

RS

100R

100R 100R

R

load

iL

iS

Fig. P 7.25 See Problem P 7.28

+

–

RL

R1 R2

R3

iS

n

p

o

Fig. P 7.21 See Problem P 7.23

+

–

RR

v1

v2

voutR
R vn

vpip

Fig. P 7.22 See Problem P 7.24

R

+

–

R

R

Rin ⇒

Fig. P 7.23 See Problem P 7.25, 26

+

–

+

–

RL

iL

R

R

R

R

ΔRn

p

o a

b

vS

+–

Fig. P 7.24 See Problem P 7.27

7.13 Problems 229



resistance and intrinsic dc gain, respectively, of the op

amp.

P 7.30 Refer to Fig. P 7.27.

(a) Remove the load and obtain expressions for the

voltage v1, the open-circuit voltage, and the short-

circuit current at the terminals a–b.

(b) Using the expressions obtained in part (a), obtain

expressions for the input resistance, the output

resistance, and voltage transfer ratio Hv.

(c) Obtain the limits of the expressions obtained in

parts (a) and (b) as m0 ! 1:

(d) Let RS ¼ 100O; R1 ¼ 2MO; RF ¼ 22 kO;
R2 ¼ 75O; and RL ¼ 5 kO: Plot the output resis-

tance and voltage gain (separate plots) versus

m0 for 10 � m0 � 106:

Use a logarithmic scale for m0.

Section 7.6 is prerequisite for the following

problems.

P 7.31 Figure P 7.28 shows circuit diagrams for a

non-inverting amplifier and a VCVS model for same.

The model parameters are the source resistance RS, the

amplifier (not op-amp) input resistance Rin, the ampli-

fier output resistance Rout, and a no-load voltage-trans-

fer parameter mv: Note: The parameter mv in Fig. P 7.28

is not the op-amp intrinsic voltage transfer ratio m0. (a)
Obtain an expression for the parameter mv in terms of

the amplifier model parameters and the voltage trans-

fer ratio Hv for the amplifier. (b) Show that if Rin � RS

and Rout ¼ RL; then mv ffi Hv:

P 7.32 Figure P 7.29. shows circuit diagrams for an

inverting amplifier and a VCVS model for same. The

model parameters are the source resistance RS, the

amplifier (not op-amp) input resistance Rin, the ampli-

fier output resistance Rout, and a voltage-transfer

parameter mv: Note: The parameter mv in Fig. P 7.29

is not the op-amp intrinsic voltage transfer ratio m0. (a)
Obtain an expression for the parameter mv in terms of

the amplifier model parameters and the voltage trans-

fer ratio Hv for the amplifier. (b) Show that if Ri � RS

and Ro ¼ RL; then mv ffi Hv:

In solving problems P 7.33 through P 7.38, use

the relations given in Section 7.6.

P 7.33 The parameters of a certain inverting ampli-

fier and associated op amp are R1 ¼ 10 kO;
R2 ¼ 500 kO; RS ¼ 50O; Ro ¼ 50O; Ri ¼ 2MO;
RL ¼ 5 kO: Plot the approximate voltage gain R2=R1

and the actual gain given in Section 7.6 in the text

versus the no-load voltage gain m0; for 1 � m0 � 105:

Use a logarithmic scale for m0:
P 7.34 Repeat Problem P 7.33 for a non-inverting

amplifier.

P 7.35 Ignore irrelevant parameter values given in

Problem P 7.33 and repeat that problem for a voltage

follower.

P 7.36 Using the parameter values given in Problem

P 7.33, plot the actual and approximate input
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resistances and the actual and approximate output

resistances for an inverting amplifier versus m0; for

1 � m0 � 105: Use logarithmic scales for both Rin

and m0:
P 7.37 Repeat Problem P 7.36 for a non-inverting

amplifier.

P 7.38 Repeat Problem P 7.36 for a voltage fol-

lower. (Ignore irrelevant parameters.)

Section 7.10 is prerequisite for the following

problems.

P 7.39 Refer to Fig. P 7.30, where each op amp is

powered by a symmetric �15 V supply. (a) Obtain an

expression for the voltage gain Av: (b) Assume the op

amps are rail-to-rail. What is the maximum input

voltage for which the output voltage is given by

voutj j ¼ Av vinj j? (c) If each op amp has an output

current limit imax ¼ 750mA and if voutj j � VCC, what

is the minimum load resistance for which the output

voltage is given by voutj j ¼ Av vinj j?
P 7.40 Refer to Fig. P 7.31, where each op amp is

powered by a symmetric �12 V supply. (a) Obtain an

expression for the voltage gain Av ¼ vout=vin: (b)

Assume the op amps are rail-to-rail. What is the

maximum input voltage for which the output voltage

is given by vout ¼ Avvin? (c) If each op amp has an

output current limit imax ¼ 1A and if voutj j � VCC,

what is the minimum load resistance for which the

output voltage is given by vout ¼ Avvin?

.Note: Most op amps provide a means for nul-

ling the input offset voltage, as described in the

text. Manufacturer’s data sheets specify how

such nulling is achieved, usually via a variable

resistor connected to the power supply and to

additional terminals provided for that purpose.

However, the simplest op amp models in simu-

lators such as Pspice and Electronic Workbench

do not provide special pins for nulling circuitry.

The 1 mV offset is troublesome for inputs less

than about 100 mV, and in such cases can be

cancelled by connecting a dc source in series

with an input, as illustrated for an inverting

amplifier by Fig. P 7.32. (The 9.8 kO resistor

compensates for the input bias currents). As you

can see, the output for Vs ¼ 1 mV is approxi-

mately �R2=R1ð ÞVS ¼ 50mV, as it should be.

That would not be the case if the �1 mV offset

cancellation (at the p input) were not present.

Another way to handle this problem is to

modify the virtual op-amp model by reducing

the input offset voltage to zero, as suggested by

Table P 7.1. Your instructor can specify how

you should handle input offset cancellation in

simulation problems.

Input offset voltage becomes less signifi-

cant as the amplitude of the input increases

(or for ac coupling, as described in Chapter

17). For example, if the input in Fig. P 7.32

were 100 mV instead of 1 mV, the output

would be within about 1% of 5 V.
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P 7.41 Refer to Fig. P 7.33, where RS ¼ 25O and

RL ¼ 5 kO: The overall voltage gain of the circuit is to
be approximately 4000 and the input resistance is to be

at least 20 kO. (a) Assume the op amps are ideal and

specify reasonable values for all resistors shown. Jus-

tify each choice. (b) : Use simulation to verify your

design.

P 7.42 Refer to Fig. P 7.34, where RS ¼ 100O and

RL ¼ 15 kO: The overall voltage gain of the circuit is

to be approximately 104 and the input resistance is to

be at least 10 kO. (a) Assume the op amps are ideal

and specify reasonable values for all resistors shown.

Justify each choice. (b) : Use simulation to verify

your design.

P 7.43 Show how to compensate for input bias

currents in the circuit in (a) Fig. P 7.6. (b) Fig. P 7.7.

(c) Fig. P 7.8. Assume the source resistance(s) are

negligible.

Fig. P 7.32 See note

following Problem P 7.40
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Section 7.11 is prerequisite for the following

problems.

P 7.44 Re-draw the circuit shown in Fig. P 7.3

to show how the reference point for pin voltages is

established by the manner in which the supply and

load are connected to the op amp. Use battery symbols

to represent the positive and negative supplies. Show

the effective load and the paths taken by the current

exiting the op-amp output terminal for both positive

and negative output voltages. Keep in mind that no (or

negligible) current enters the op-amp input terminals.

P 7.45 Repeat Problem P 7.44 for the circuit in

Fig. P 7.4.

P 7.46 Repeat Problem P 7.44 for an inverting

amplifier.

P 7.47 What is the effective load on the op amp in

the circuit of Fig. P 7.8?

P 7.48 Refer to the two-stage amplifier shown in

Fig. P 7.33. (a) Obtain expressions for the power deli-

vered by the supply to each stage, the power dissipated

by the resistive components of each stage, and the

power dissipated by each op amp. (b) Let VCC ¼
15V; vS ¼ 100mV; RS ¼ 75O; R1 ¼ R3 ¼ 10 kO;
R2 ¼ R4 ¼ 100 kO; RL ¼ 5 kO and calculate the total

power required of the supply. Assume ideal op amps,

a symmetric supply, and rail-to-rail operation.

P 7.49 Repeat Problem P 7.48 for the circuit in

Fig. P 7.34.

P 7.50 Refer to Fig. P 7.35, which shows (a) an invert-

ing amplifier and (b) a non-inverting amplifier. The op

amps are ideal and the source resistance is negligible.

1. Show that the amplifiers in Fig. P 7.35 have equal

voltage gains.

2. Show that if the inverting and non-inverting ampli-

fiers have equal dc inputs VS, equal symmetric

supplies � VCC; and equal resistive loads RL,

then (i) both amplifiers draw the same power from

their respective power supplies and (ii) the powers

dissipated by the op amps in the two amplifiers are

equal.

3. Let I denote an inverting amplifier and N denote

a non-inverting amplifier. A two-stage amplifier

is to be built as one of the cascades II, IN, NI, or

NN. The two-stage amplifier is to be powered by

a symmetric supply � VCC and must drive a resis-

tive load RL. Which of the four two-stage cascades

requires the least power from the supply?

4. Let R1 ¼ 10 kO; R2 ¼ 100 kO; RL ¼ 5 kO; VCC ¼
15V; and VS ¼ 100mV: Calculate the total power

required by each of the two-stage cascades.

P 7.51 Obtain an expression for the power required

by the circuit in Fig. P 7.6, with N ¼ 3:Assume source

resistances are negligible, that the op amps are ideal

and rail-to-rail, that the supply is symmetric (denoted

by � VCC), and that the load is resistive (denoted

by RL).

P 7.52 Obtain an expression for the power required

by the circuit in Fig. P 7.8. Assume source resistances

are negligible, that the op amps are ideal and rail-

to-rail, that the supply is symmetric (denoted by

� VCC), and that the load is resistive (denoted by RL).

P 7.53 Repeat Problem P 7.51 for the circuit in

Fig. P 7.36.

P 7.54 Obtain an expression for the power

dissipated by the op amp in the circuit in Fig. P 7.7.

Assume source resistances are negligible, that the op

amps are ideal and rail-to-rail, that the supply is

symmetric (denoted by � VCC), and that the load is

resistive (denoted by RL).

P 7.55 Repeat Problem P 7.54 for the circuit in

Fig. P 7.8.

P 7.56 Repeat Problem for the circuit in

Fig. P 7.36.
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P 7.57 The power supply for a circuit must be able

to provide the total power dissipated by the circuit.

Usually, a power supply will be specified with a mar-

gin of 20% or more; for example, if the circuit to be

powered dissipates 100 W, the designer might specify

a 120 W supply. Use a 25% margin and specify the

capacity of a power supply for the circuit in P 7.8,

where vin ¼ 700mV; VCC ¼ 20V; R1 ¼ 10 kO;
R2 ¼ R4 ¼ 50 kO; R3 ¼ 22 kO; and RL ¼ 5 kO:

Section 7.12 is prerequisite for the following

problems. Note: Material presented in this

chapter permits conceptual design of certain

op amp circuits, based upon the ideal dc

model for an op amp. Resulting circuits

would work as specified if the op amps were

ideal and if the currents and voltages involved

are constant or slowly varying, but might not

work with real op amps or for rapidly varying

inputs. More realistic circuits typically require

additional components whose roles we are at

this point unprepared to discuss. Chapter 17

offers a more complete treatment of op amps

and op amp circuits, where design can be

discussed in more depth. The problems that

follow are to be interpreted as conceptual

design problems, with additional constraints

imposed by supply voltage and maximum out-

put current. In all cases, you should verify (and

perhaps fine-tune) your design using simula-

tion software.

P 7.58:Design an amplifier whose transresistance

equals 1 kO and is independent of the load resistance.

The source resistance is 500 kO. If the maximum

output current (magnitude) is 35 mA, and the load

resistance ranges from 2 to 4 kO, what is the maximum

permissible supply voltage? Use a simulation to verify

your design.

P 7.59 (a) Show that the circuit in Fig. P 7.37 is a

transconductance amplifier. (b) If the supply voltage,

the load resistance, and DR are fixed, what is the

maximum permissible magnitude of the excitation vS
(for linear operation)? (c) Design an amplifier whose

transconductance equals 2 mS and is independent of

the load resistance. (d) : Use a simulation to verify

your design.

R

R

R R

RL

vL

v1 v2

Fig. P 7.36 See Problem

P 7.53, 56

vS R

RΔ

RL

R

R

R

n

p

o vS

VL

IL

Fig. P 7.37 See Problem

P 7.59
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P 7.60 A certain tachometer produces a voltage

given by v ¼ kTn; where n is the angular velocity of

the rotor in rpm and kT ¼ 100mV rpmð Þ�1: (a) Design

a circuit that will convert the voltage v produced by the

tachometer to a current i ¼ kAv that will drive a 50 O
load. As the speed of the tachometer ranges from zero

to 200 rpm, the magnitude of the current provided to

the load must range from zero to 40 mA. (b) Will the

circuit operate linearly over the specified range of the

tachometer output? (c) : Use a simulation to verify

your design. Hint: See Problem P 7.59.

P 7.61 A small, low-power portable appliance

requires a 9 V battery or supply and draws no more

than 20 mA. (a) Design an op amp circuit that effi-

ciently converts the 12 V available from an automo-

bile battery to the 9 V required by the appliance. Show

how to power the op amp from the automobile battery,

given that the input is positive and that the output is

positive and less than 12 V. (b) What dissipation rating

is required for the op amp? Why would you use such a

circuit instead of a simple resistive voltage divider? (c)

How efficient is the circuit? (d) : Use a simulation to

verify your design.

P 7.62 : The voltage produced by a certain source

ranges from zero to 2 V. Design a circuit that effec-

tively converts the voltage to a current that ranges

from zero to �20mA. Use a simulation to verify

your design. Hint: See Problem P 7.59.

P 7.63 A photodiode produces a current that is

approximately proportional to the intensity of incident

light. The angular velocity of a small permanent-mag-

net dc motor is proportional to the voltage impressed

on the motor armature. Design a circuit that makes the

speed of the motor proportional to the light incident on

the photodiode.

P 7.64 The resistance of a certain pressure sensor is

given by

Rð pÞ ¼ R0 þ a p� p0ð Þ;

where p is atmospheric pressure, p0 ¼ 101 kPa is a

reference pressure (approximately equal to average

sea-level atmospheric pressure), a ¼ 1 O kPa�1; and

R0 ¼ 100 O is the resistance for p ¼ p0: Design a

circuit which, when driven by the pressure sensor,

produces a voltage given by

v ¼ k p� p0ð Þ; 0:8 p0 � p � 1:2 p0;

where k ¼ 100 mVkPa�1: Use a Norton source model

incorporating the pressure sensor, assuming you have

available a good current source whose output resis-

tance is much, much larger than R ð pÞ for any pressure
of interest.

P 7.65 A certain photocell produces a current given

by i ¼ k0l; where l is the intensity of the incident

light in Wm�2 and k0 ¼ 1 mAW�1m2: The internal

resistance of the photocell exceeds 50 kO. In a certain

application, an array of four such photocells is to be

used to measure the average intensity of light incident

on a surface. Design a circuit whose inputs are the

currents from the photocells and whose output is a

voltage having magnitude vLj j ¼ kVL; where L is the

average of the intensities incident on the four photocells

and kV ¼ 10 VW�1m2: The maximum intensity of the

incident light is lmax ¼ 1:7 Wm�2 and the load resis-

tance exceeds 10 kO.
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Chapter 8

Capacitance

An ideal resistor is a purely dissipative element. A

resistor does not generate electrical energy, nor does

it store electrical energy for release at a later time. The

terminal voltage v at any time is given by v ¼ i R,

where i is the current at the same time. Consequently,

the response of a resistor to current through or voltage

across its terminals is instantaneous, depending only

on the present value of the voltage or current. Simply

put, a resistor has no electrical memory.1 Conse-

quently, a resistive circuit as a whole has no electrical

memory. The output voltage or current at any instant

depends only upon the input voltage or current at the

same instant. Some useful circuits are, for all practical

purposes, resistive. But most useful signal-processing

operations, such as integration and filtering, require

memory and cannot be performed by a purely resistive

circuit.

At any time t, the output of a circuit or circuit

element having memory depends upon values of the

input at times earlier than t.2 There are two passive

elements that exhibit memory: capacitors and induc-
tors. These elements exhibit memory because they can

store energy for later release, which allows the present

output of a circuit containing these elements to depend

upon previous inputs. In a capacitor, energy is stored

in an electric field. In an inductor, energy is stored in a

magnetic field. We treat capacitance in this chapter

and inductance in the next.

8.1 Capacitance

Figure 8.1 shows two parallel conducting plates sepa-

rated by an insulator (e.g., air) and connected by wires

to a battery. When the battery is first connected to the

plates, electrons are drawn away from the upper plate

by the positive charge on the positive terminal of the

battery and forced through the battery to the lower

plate. As electrons migrate away from the positive

plate and toward the negative plate3 current exists in

the circuit in the direction shown. As the current con-

tinues, uncovered positive charges left behind by

departing electrons make it increasingly difficult for

the battery to pull electrons away from the upper plate.

Because charge cannot pass through the insulating

medium, the current decreases with time until the

voltage across the plates is equal in magnitude and

opposite in sign of that across the battery terminals.4

At that point, the battery can no longer draw electrons

away from the upper plate and the current goes to zero.

The time during which all this happens depends upon

the magnitude of the current (the rate at which the

charge is transferred), which in turn depends upon

1Resistors do possess thermal memory because resistance

changes with temperature and the temperature of a resistor

depends upon past current through the resistor. This particular

form of memory has not been found useful in signal-processing

circuits.
2So far as we know, the present output of a circuit (or any other

physical system) cannot depend upon future values of an input.

If it were otherwise, we could predict the future.

3Recall that the positive direction for current is opposite to the

direction of electron flow.
4Electrons migrate until the work the battery can do on a charge

equals the work necessary to move the charge from the positive

(upper) plate through the circuit to the negative (lower) one, or,

until Kirchhoff’s voltage law is satisfied, whichever perspective

you prefer.

T.H. Glisson, Introduction to Circuit Analysis and Design,
DOI 10.1007/978-90-481-9443-8_8, # Springer ScienceþBusiness Media B.V. 2011
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the ability of the battery to supply current, the area and

separation of the plates, the resistance of the wires and

plates, and the internal resistance of the battery itself.

Exercise 8.1. Refer to Fig. 8.1. Draw a quali-

tative graph of the voltage V versus time,

beginning at t ¼ 0 when the battery is first

connected to the plates and assuming the volt-

age equals zero at that time.

If the battery is disconnected from the plates, the

plates remain charged, because there is no path by

which the electrons can return to their original loca-

tions.5 If the battery is reconnected, but with polarity

reversed, a current will again exist until the plates are

fully charged in the opposite manner. This process –

disconnecting and then reconnecting the battery with

opposite polarity – could be repeated indefinitely, in

which case the current might be as shown (qualita-

tively) in Fig. 8.2.

As illustrated by Fig. 8.2, current can exist in the

circuit of Fig. 8.1 even though no charges move

through the insulator separating the plates. This phe-

nomenon puzzled scientists for years because of their

firm (and correct) belief that current is continuous on a

closed path. The puzzle was solved by Maxwell,6 who

showed that there are two kinds of current: Conduction

current, which is motion of charge, and displacement

current, which can exist even where no charges are

present – even in free space – if time-varying electric

fields are present. Total current (conduction þ dis-

placement) is continuous. In the circuit of Fig. 8.1,

the current in the wires is predominantly conduction

current, the current in the insulating medium between

the plates is predominantly displacement current, the

total current everywhere in the circuit is the same,

and the total current is nonzero only while the electric

field between the plates is changing. Once the electric

field is established and unchanging, the displacement

current goes to zero, the space between the plates

is an open circuit, and the total current goes to zero

as well.7

Example 8.1. A 15-V battery is connected

to a pair of plates separated by an insulating

medium, as shown in Fig. 8.1. The initial

charge on each plate equals zero. The battery

is connected to the plates at t ¼ 0, after which

time the current through the battery is given by

iðtÞ ¼ 0; t< 0;
I0 e

�t=t; t � 0;

�
(8.1)

where I0 ¼ 50mA and t ¼ 20 ps. Find the

charge on the positive plate after the battery

has been connected for a very long time (for

t ! 1).

battery

EV
+ –

+
+ + + + + + + + + + + + + +

– – – – – – – – – – – – – ––

I

Fig. 8.1 Charged parallel conducting plates separated by an

insulating medium

I

t
0

T
2T

Fig. 8.2 Qualitative graph of current in the circuit of Fig. 8.1

when the polarity of the battery is periodically reversed (at the

times 0, T, 2T, . . .)

5The charge will gradually leak through the imperfect insulator

separating the plates, but for a good insulator, the leakage will

occur very slowly.
6James Clerk Maxwell (1831–1879).

7Further discussion of displacement current is beyond the scope

of this book. Conduction current is the dominant current in

elements and circuits considered in this book, except in insulat-

ing media inside capacitors, where the current is predominantly

displacement current. Even in that case, we are concerned only

with the conduction current into and out of the terminals of the
capacitor.
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Solution: Charge is the integral of current.

Thus, for t � 0,

qðtÞ ¼
ðt
�1

iðt0Þ dt0 ¼
ðt
0

I0 e
�t0=t dt0

¼ �I0 t e�t0=t
h it

0
¼ I0 t 1� e�t=t� �

: (8.2)

For t ! 1, the exponential vanishes and

q ! 1ð Þ ¼ I0 t ¼ 1 pC: (8.3)

8.2 Capacitors

The parallel-plate arrangement in Fig. 8.1 constitutes

a capacitor. Capacitors for use in circuits are con-

structed of parallel conductors, called plates, sepa-

rated by an insulating medium, such as air, paper,

glass, mica, and various ceramics and plastics. The

insulating material separating the plates is called the

dielectric for the capacitor. Often, the plates are long

strips of metal foil or metalized plastic, separated by

an insulator and wrapped into a tight cylinder, with a

terminal (a wire) connected to each of the foil strips.

It is shown in introductory physics textbooks that

the charge (magnitude) on either of the parallel plates

is given by

q ¼ Cv; (8.4)

where v is the voltage across the plates (from positive

to negative), q is the magnitude of the charge on either

plate, and C is a constant called the capacitance of

the parallel-plate arrangement. The unit of capacitance

is the farad (F),8 where 1 F equals 1 C V�1 or, equiva-

lently, 1 A s V�1. A two-terminal device so con-

structed that its dominant electrical property is

capacitance is called a capacitor.

It is customary to refer to the charge on the positive

plate of a capacitor as the charge on the capacitor,

even though the net charge on the capacitor as a

whole is zero. It also is customary to say the capacitor

is charged to v (volts), even though charge and

voltage are different things. Such language, though

imprecise, is commonly used and understood by elec-

trical engineers.

The capacitance of a parallel-plate capacitor9 is

given approximately by10

C ¼ e0 er A
d

; (8.5)

where e0 ¼ 8:854� 10�12 F m�1 is the permittivity of

a vacuum, er � 1 (dimensionless) is the relative per-

mittivity of the dielectric (er ¼ 1 for a vacuum or air),

A is the area of one plate, and d is the distance between

the plates. The approximation (8.5) is quite good if the

separation d is very much smaller than both the width

and the length of a plate.

Achieving a large capacitance requires a dielectric

having large relative permittivity, a large plate area,

and a small plate separation. However, the dielectric

thickness (plate separation) must be large enough to

withstand normal working voltages without breaking

down (without allowing an arc between the plates).

Example 8.2. The capacitance of a parallel-

plate capacitor having an air (free-space)

dielectric is 1.00 F. The separation of the plates

is 100 mm (about the thickness of a sheet of

notebook paper). Find the area of either plate.

Solution: From (8.5),

A ¼ Cd

e0
¼ 1Fð Þ 100� 10�6m

� �
8:85� 10�12 Fm�1

ffi 11:3� 106 m2: (8.6)

If the plates were square, each would be

about 3.4 km (2 miles) on a side.

As you can see from Example 8.2, a 1 F capacitor is

quite large. Most capacitors used in electronic circuits

have capacitances ranging from about 10 nF to about

8After the English scientist Michael Faraday (1791–1867).

9In a parallel-plate capacitor, the plates are of equal area and

uniformly separated with their edges aligned.
10Eq. (8.5) is derived in virtually all university-level introduc-

tory physics textbooks.
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1 mF. Those used in power supplies, often the largest

capacitors in an electronic system, have capacitances on

the order of 20 – 2000 mF.
Some off-the-shelf capacitors, like resistors, are

commonly available in only certain sizes, again from

E series. Unlike resistors, the E3 and E6 series of values

are widely used for some common types of capacitors

because of the difficulty of manufacturing those types

to higher precision. The E6 and E3 (in bold) series are

(10, 15, 22, 33, 47, 68). The corresponding capacitance

values are the series numbers multiplied by an integer

power of ten; e.g., 4.7 pF, 47 pF, 470 pF, and so on.

Higher series values for certain types of capacitors

can be obtained at higher cost. But also, improved

manufacturing processes and better materials have

made it possible to manufacture some kinds of capaci-

tors to almost any value at relatively high precision. It

is not difficult to obtain (in bulk) capacitors having

capacitances of 1.0, 2.0, 3.0, 4.0, 5.0, . . . pF, although
none but the first of these values is from an E series.

In addition to capacitance and kind of dielectric,

capacitors are characterized by the maximum volt-

age they can endure without breakdown (conduction

through the dielectric). All else equal, a thin dielectric

provides greater capacitance than a thicker one but offers

less resistance to breakdown. Thus a capacitor might be

rated at 120 pF and 50 VDC, meaning that 50 V is the

maximum sustained voltage (magnitude) that should

be applied to the capacitor.

Capacitance, like resistance, can vary with oper-

ating temperature. For example, the dielectric might

expand or shrink with changes in temperature, which

would alter the distance between the plates and thus

the capacitance. Overheating due to careless soldering

could change the capacitance of a capacitor (perma-

nently) by 5% or more. Also, it is difficult in manu-

facture to maintain uniform dielectric thickness and

various electrical properties (such as relative permittiv-

ity) over the required area. Consequently, capacitance

of an off-the-shelf capacitor typically is specified only

to within�20% of the nominal value. Some have large

asymmetric tolerances, such as þ30% to �80%. More

accurate capacitors are obtainable but, of course,

at higher prices. As a rule, capacitors having mica,

glass, or plastic (e.g., polystyrene or polycarbonate)

dielectrics exhibit good accuracy, low leakage current

through the dielectric, and good temperature stabi-

lity, whereas those using an impregnated paper dielec-

tric are poorer on those counts. The dielectric in an

electrolytic capacitor is a very thin oxide layer, created

and maintained by an electrochemical process. Thus

an electrolytic capacitor is polarized, with one termi-

nal marked positive, meaning that that terminal must

always be at a higher potential than the other. Electro-

lytic capacitors are typically used to smooth voltages

that are always positive, but which have ac compo-

nents. Figures 8.3 and 8.4 show assorted fixed and

variable capacitors.

Capacitors are labeled in various ways, as illu-

strated by Fig. 8.5. The capacitance of capacitor (a)

is clearly marked as 470 mF. The marking on capacitor

(b) is a common three-digit code for capacitance in

picofarads. The first two digits are significant figures

and the last is the number of following zeros. The

capacitance is 100 pF. The marking on capacitor (c)

is the numerical value of the capacitance in mF. The
colored-dot code illustrated by capacitor (d) (example

colors) is no longer used, probably because no one

could ever figure it out. Suffice it to say that there are

numerous schemes for indicating the capacitance,

maximum voltage rating, and tolerance of a capacitor.

You will find some that are not marked at all, probably

because the manufacturer could not come up with a

sufficiently obscure code. The best way to decipher a

particular code on a particular capacitor is to visit the

manufacturer’s website.

Some capacitors are constructed by depositing metal

layers on each side of a thin sheet of a plastic film, such

as polyester or polypropylene. The metal layers are the

plates and the film is the dielectric. Capacitors in

integrated circuits are constructed by laying down a

layer of metal, then a layer (a film) of dielectric mate-

rial, then another layer of metal. Discrete and integrated

capacitors fabricated in this manner are called film

capacitors or thin-film capacitors. The thickness of

the film (the distance between the plates) can be as

small as about 1 mm, so sizable capacitances can be

attained within reasonable surface areas.

A film capacitor, like a film resistor, is a planar

device. By analogy with sheet resistance, capacitance

of film capacitors often is described in terms of a

quantity called sheet capacitance, which is the capac-
itance per unit area of the capacitor. Sheet capacitance

is denoted by Csheet. Thus the capacitance of a film

capacitor can be expressed as

C ¼ ere0A
d

¼ ACsheet; (8.7)
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(e)
(f)

(a) (b) (c)

(d)

Fig. 8.4 Variable capacitors

(not to scale). (a–e) small

trimmer capacitors, (f) four-

gang air-dielectric tuning

capacitor (Photographs (a–e)

courtesy of Rapid Electronics,

Ltd. (f) courtesy of West

Florida Components)

(a)

(f)

(i)

(j)

(k) (l)

(g) (h)

(b) (c) (d)

(e)

Fig. 8.3 Fixed capacitors

(not to scale): (a) ceramic,

(b) mica, (c) tantalum, (d), (e)

polypropylene,

(f) polystyrene, (g) ceramic

chip, (h–l) electrolytic

(Photographs courtesy of

Rapid Electronics, Ltd)
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where A is the surface area. It follows that

Csheet ¼ ere0
d

: (8.8)

For example, if an IC manufacturing facility (a

foundry) can deposit layers as thin as 1 mm using

a dielectric material having relative permittivity

er ¼ 7, that foundry can provide a sheet capacitance

of

Csheet ¼ ere0
d

¼ 7ð Þ 8:854� 10�12 Fm�1ð Þ
10�6 m

ffi 62 mFm�2 ¼ 62 pFmm�2:

8.3 Terminal Characteristics of an Ideal
Capacitor

Figure 8.6 shows circuit-diagram symbols for non-

polarized and polarized (electrolytic) capacitors. To

avoid distractions from our main purpose, we use the

symbol for a non-polarized capacitor almost exclu-

sively.

From (8.4),

i tð Þ ¼ dq

dt
¼ C

dv

dt
; (8.9)

which implies

dvðtÞ ¼ 1

C
iðtÞdt:

It follows that

ðt
t0

dv tð Þ ¼ vðtÞ � vðt0Þ ¼ 1

C

ðt
t0

iðt0Þdt0 (8.10)

Eq. (8.10) is usually written

v tð Þ ¼ v t0ð Þ þ 1

C

ðt
t0

iðt0Þdt0 (8.11)

Equation (8.11) shows that a capacitor has mem-

ory: The present terminal voltage depends upon past

values of the terminal current.

470 μF
50 VDC

+
+
+

101

0.1

red

blue

(a)

(c)

(d)

(b)

white

violet

green

yellow

Fig. 8.5 Capacitance

markings. In (d), the colors are

for illustration only (have no

special significance).

Cv

i

C

i

(a) non-polarized
     capacitor

(b) polarized
     capacitor

v

Fig. 8.6 Circuit-diagram symbols for capacitors
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Again, from (8.4), we have

i ¼ dq

dt
¼ C

dv

dt
: (8.12)

Equations (8.11) and (8.12) are the terminal

characteristics for an ideal capacitor. In this chapter

we assume all capacitors are ideal. More realistic

models for capacitors are described in subsequent

chapters.

Equation (8.12) relates the voltage across a capaci-

tor to the current entering the positive terminal of the

capacitor. For economy, we say that (8.12) relates the

voltage across a capacitor to the current through
the capacitor. By implication, the positive direction

of the current is into the positive terminal.

Equation (8.12) has several important implications:

• Current is nonzero whenever the terminal voltage is

changing (when dv/dt is nonzero) and is zero other-
wise. A capacitor appears as an open circuit to a

constant voltage.

• The magnitude of the terminal current is propor-

tional to the rate of change of the terminal voltage.

The more rapid the voltage change, the larger the

required current.

• Changing the terminal voltage instantaneously

would require infinite current. Thus, in physical

circuits, the voltage across a capacitor is a continu-

ous function of time.11 In other words, the voltage

across a capacitor cannot change instantaneously.

• The current through a capacitor is proportional to

the capacitance C. More current (or more time) is

required to charge a larger capacitor to a specified

voltage than is required for a smaller one.

A circuit in which all currents and voltages are

constant is said to be in dc steady state. If the voltage

across a capacitor is constant, the current through the

capacitor is zero. Thus, for any circuit in dc steady

state, all capacitors in the circuit are effectively open
circuits.

Example 8.3. Figure 8.7(a) shows a graph of

voltage across a capacitor as a function of time.

Draw a graph of the current i through the

capacitor versus time.

t

v1

v2

i1

i2

t1

t1

t2

t2

t3

t3

t4

t4

v

v

i

C

+

–

t

0

0

(a)

(b)Fig. 8.7 See Example 8.3

11Continuity of the voltage across a capacitor also follows from

(8.10).
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Solution: Figure 8.7(b) shows the current

through the capacitor, given by (8.12). The

direction of the current is into the terminal

taken as positive in the definition of the voltage

v, where, from (8.12), the currents i1 and i2 in

Fig. 8.7(b) are the slopes of the lines directly

above in Fig. 8.7(a), multiplied by the capaci-

tance C. Thus,

i1 ¼ Cv1
t1

; i2 ¼ Cðv2 � v1Þ
t4 � t2

:

Exercise 8.2. Figure 8.8 shows a graph of the

voltage across a 20 pF capacitor. Draw a graph

of the current through the capacitor.

Example 8.4. The voltage across a 0.1 mF
capacitor is given by

vðtÞ ¼ V cosð2 pf tÞ;
with V ¼ 10V and f ¼ 1 MHz. Obtain an

expression for the current through the capacitor.

Solution: From (8.12),

iðtÞ ¼ C
dv

dt
¼ �2 pf V C sinð2 pf tÞ

¼ �I sinð2 pf tÞ;
with

I ¼ 2 p f V C ¼ 2 p ð1MHzÞð10VÞð1nFÞ
ffi 6:28A:

Exercise 8.3. The voltage across a 0.1 mF
capacitor is given by

vðtÞ ¼ V sinð2 p f tÞ;

with V ¼ 5V and f ¼ 10 MHz. Obtain an

expression for the current through the capacitor.

Find the maximum magnitude of the current.

Example 8.5. The current through a 0.5 mF
capacitor is given by

i tð Þ ¼
�
0; t< 0;
Ie�t=t; t � 0;

where I ¼ 5 mA and t ¼ 10 ms. Obtain an

expression for the current through the capacitor.

Solution: From (8.10),

vðtÞ ¼ 1

C

ðt
�1

iðt0Þdt0 ¼ I

C

ðt
0

e�t0=tdt0

¼ � I t
C
e�t0=t

����
t

0

¼ I t
C

1� e�t=t
h i

¼ V 1� e�t=t
h i

;

with

V ¼ It
C

¼ ð5mAÞð10msÞ
500 nF

¼ 100V:

Exercise 8.4. Figure 8.9 shows a graph of the

current through a 5 nF capacitor. The current

equals zero for times not shown. Draw a graph

of the voltage across the capacitor.

Example 8.6. Refer to Fig. 8.10. What is the

voltage vC across the capacitor a very long

time after the switch is moved from a to b?

v (mV)

t (ms)
0 4 5 7 10

12

5

–5

Fig. 8.8 See Exercise 8.2
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Solution: After a sufficiently long time, the

capacitor appears as an open circuit (the volt-

age source is dc), the current through the resis-

tor equals zero, and, by Kirchhoff’s voltage

law, the voltage across the capacitor equals

the source voltage V0.

Exercise 8.5. Refer to Fig. 8.11, where the

current source is constant. What is the voltage

vC across the capacitor a very long time after

the switch is moved from a to b?

Because the voltage across a capacitor cannot

change instantaneously, circuit models implying such

changes are inconsistent with reality. Figure 8.12

shows two examples of such models, often posed as

trick questions on examinations. In Fig. 8.12(a), a

battery is suddenly connected (at t ¼ 0) to a capacitor

whose terminal voltage equals zero for t < 0. The

model implies that the voltage across the capacitor

changes instantaneously, which would require infinite

current. Omitted from the model is the resistance of

the connecting wires (among other things). Including

those parameters would make the model more realis-

tic. In Fig. 8.12(b), a charged capacitor is suddenly

connected (at t ¼ 0) to an uncharged capacitor. This

model also implies that the voltages across the capa-

citors must change instantaneously, which would

require infinite current. Moreover, comparing the ini-

tial and final voltages across the capacitors shows that

energy somehow disappears from the circuit, in spite

of the fact that there are no energy-loss mechanisms

(e.g., resistors) in the model.12 Again, the resistance of

the connecting wires is omitted from the model.

Including that resistance (no matter how small, so

long as it is non-zero) would make the model realistic

and would account for the lost energy.

Often, it is possible and even helpful to use unreal-

istic models similar to those in Fig. 8.12 for qualitative

analysis (for discerning or describing how a circuit

works) and even for calculations that do not require

exact expressions for terminal current or voltage,13 but

obtaining correct expressions for currents or voltages

V0

a

b

R

C vC

+

–

+

–

Fig. 8.10 See Example 8.6

+

–

t = 0 t = 0

C1 C2V0
C v

+

– –

v1

+

–

v2

+

(a) v(t) = 0, t<0 (b) v1(t) >0, v2(t) = 0, t<0

Fig. 8.12 Unrealistic circuit models implying instantaneous

changes in capacitor terminal voltages

0

i  (2mA/div)

t (1 μs/div)

Fig. 8.9 See Exercise 8.4

a

b
C vCI0 R

+

–

Fig. 8.11 See Exercise 8.5

12Section 8.9 treats energy stored in the electric field in a

capacitor.
13See Section 8.10.8 for an example.
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as functions of time requires using models consistent

with physical reality.

From another point of view, the circuit in Fig.

8.12(a) is unrealistic because the internal resistance

of the source (battery) appears to be zero. All physical

sources possess internal resistance. Whenever you

encounter a voltage source having no series resistance

or a current source having no parallel resistance in a

circuit, be aware that any quantitative analysis of the

circuit might lead to incorrect results.

Exercise 8.6. What is wrong with the circuit

(model) in Fig. 8.13, where i0 > 0 for all time?

Is it possible to find a value for vC at any time?

8.4 Charge-Discharge Time Constant

A circuit composed of only resistors and one capacitor

is called an RC circuit. In this section, we obtain

expressions for currents and voltages in an RC circuit

subjected to an abrupt change in excitation.

The following notation is helpful: Let t0 denote a

particular time. Then t0
� and t0

þ denote times infinitesi-

mally before and after t0. For example, if t ¼ 0 denotes

the time at which switch is closed, then t ¼ 0� is the

time just before closure and t ¼ 0þ is the time just

after closure.

Refer to Fig. 8.14, where a capacitor that has been

previously charged to a voltage V0 is connected at t¼ 0 to

a resistor having resistance R. By Kirchhoff’s current

law, we have for t > 0 that

C
dv

dt
þ v

R
¼ 0 ) dv

dt
¼ � v

RC
: (8.13)

According to (8.13), the voltage v and its derivative

have the same mathematical form (are proportional).

The function having that property is the exponential

function. You can show by substitution that the solu-

tion to (8.13) is

v tð Þ ¼ K exp � t

RC

� �
; t> 0; (8.14)

For t ¼ 0þ, (8.14) gives v(0þ) ¼ K, so we have

v tð Þ ¼ v 0þð Þ exp � t

RC

� �
; t> 0: (8.15)

From the problem statement, we know that

v(0�) ¼ V0. We also know that the voltage across a

capacitor cannot change instantaneously. It follows

that v(0þ) ¼ V0 and thus

v tð Þ ¼ V0 exp � t

RC

� �
; t> 0; (8.16)

as illustrated by Fig. 8.14.

Equation (8.16) usually is written

v tð Þ ¼ V0 exp � t

t

� �
; t> 0; (8.17)

where

t ¼ RC: (8.18)

is called the time constant for the circuit consisting of

the capacitor and resistor. The time constant deter-

mines how fast the capacitor discharges through the
resistor. Because e�1 ffi 0:37, the voltage across the

capacitor drops to 37% of its initial value in a time

equal to one time constant. Similarly, e�3 ffi 0:05, so

the voltage drops to 5% of its initial value in a time

equal to three time constants. You can show that the

voltage is less than 1% of its initial value when t equals
five time constants.

i0

R

C vC

+

–Fig. 8.13 See Exercise 8.6

C v(t)

v(t)

v(0) = V0R

+

–

V0

t

t = 0

0
0

Fig. 8.14 The voltage across a charged capacitor decreases

exponentially with time after the capacitor is connected to a

resistor
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Exercise 8.7. In the circuit shown in

Fig. 8.14, C ¼ 100 nF and the voltage v(t)

has dropped to half of its initial value 7 ms after
the switch is closed. Find the resistance R.

Now refer to Fig. 8.15, where a capacitor that is

initially uncharged is connected through a resistor to a

constant voltage source at t ¼ 0. Because the capa-

citor is initially uncharged, v(0�) ¼ 0. By Kirchhoff’s

voltage law

Riþ v 0�ð Þþ 1

C

ð t
0�
i t0ð Þdt0 ¼ Riþ 1

C

ðt
0�
i t0ð Þdt0 ¼ V0:

(8.19)

Differentiating once with respect to time and rear-

ranging terms gives

di

dt
¼ � i

RC
;

which we now know implies that

i ¼ i 0þð Þ exp � t

RC

� �
; t> 0: (8.20)

From (8.19)

Ri 0þð Þþ 1

C

ð0þ
0�

i t0ð Þdt0 ¼ Ri 0þð Þ ¼ V0 ) i 0þð Þ ¼ V0

R
:

Thus,

i ¼ V0

R
exp � t

t

� �
; t> 0;

where t ¼ RC is the time constant for the circuit. The

voltage v(t) across the capacitor is given by

v tð Þ ¼ v 0ð Þ þ 1

C

ð t
0

i t0ð Þdt0

¼ 0þ V0

t

ðt
0

exp � t0

t

� 	
dt0;

which yields

v tð Þ ¼ V0 1� exp � t

t

� �h i
; t � 0 (8.21)

as illustrated in Fig. 8.15. Again, the time constant

determines how fast the capacitor charges when con-
nected to a constant source through a resistor. Because

1� e�1 ffi 0:63, the voltage equals about 63% of its

final value V0 for t ¼ t ¼ RC. You can show that for

t ¼ 3t and t ¼ 5t the voltage equals about 95% and

99%, respectively, of V0.

In general, the time constant for a circuit consisting
of any number of resistors and one capacitor is the

product of the capacitance of the capacitor and the

Thévenin equivalent resistance seen at the terminals
of the capacitor.

The time constant for charging and discharging a

capacitor and the mathematical forms of the voltages
during charging and discharging are important. You

will encounter these concepts in many guises and

countless times during your college days and most

likely during your career as an electrical engineer.

Study Fig. 8.14 and Equation (8.17) and Fig. 8.15

and Equation (8.21) until they are firmly fixed in

your mind. Commit to memory that the time constant

is a measure of how fast a capacitor can charge and

discharge, and that the time required for a capacitor

having capacitance C to fully discharge or fully charge

through a resistor having resistance R is approximately

5RC, where fully means a discharge to less than 1% of

the initial value or a charge to more than 99% of the

final value.

Exercise 8.8. In the circuit shown in

Fig. 8.15, R¼ 50 kO, V0 ¼ 5 V, and the switch

is closed at t ¼ 0. At t ¼ 1 ms the voltage v(t)
equals 2 V. Find the capacitance C.

+

–

R

C v (t)

v(t)

v(0) = 0
+

–i
V0

t = 0
V0

t

0
0

Fig. 8.15 When an uncharged capacitor is connected through a

resistor to a constant voltage V0, the voltage across the capacitor

increases exponentially toward the voltage V0

8.4 Charge-Discharge Time Constant 247



Exercise 8.9. In Fig. 8.16, the switch is

moved at t ¼ 0 from position 0 to position 1

and left there until the capacitor is fully

charged. The switch is then immediately

moved to position 2 until the capacitor is

fully discharged. (a) How long must the switch

reside in each position? (b) Draw a graph (a

neat, fully labeled sketch) of the voltage v(t)

across the capacitor for t � 0.

Example 8.7. In Fig. 8.17, the capacitor is

initially charged such that v(t) ¼ V0 for t < 0.

The switch is then closed at t¼ 0. (a) Obtain an

expression for the voltage v(t) for t > 0. (b)

Draw graphs (neat, fully labeled sketches) of

the voltage v(t) for t� 0 and for (i) V0< V1 and

(ii) V0 > V1.

Solution: (a) Kirchhoff’s voltage law gives

R iþ v 0ð Þ þ 1

C

ðt
0

i t0ð Þdt0 ¼ V1:

Differentiating once with respect to time

and rearranging terms yields

di

dt
¼ � 1

RC
i;

which implies

i tð Þ ¼ K exp � t

RC

� �
:

The voltage across the capacitor must be

continuous, so the voltage across the resistor

(left to right) at t ¼ 0 must be V1 – V0. It

follows that

i 0þð Þ ¼ V1 � V0

R
¼ K

) i tð Þ ¼ V1 � V0

R

� 	
exp � t

RC

� �
; t> 0:

From (8.11),

v tð Þ ¼ V0 þ V1 � V0

RC

� 	ð t
0

exp � t0

RC

� 	
dt0

¼ V1 � V1 � V0ð Þ exp � t

RC

� �
; t> 0:

ð8:22Þ

(b) Figure 8.18 shows graphs of the voltage v(t)

given by (8.22), where the solid line is for V0 <

V1 and the dashed line is for V0 > V1. In either

case, the transition from V0 to V1 is essentially

complete in about five time constants.

The relation (8.22) obtained in Example 8.7 above

can be written in a more general and useful form as

v tð Þ ¼ v 1ð Þ � v 1ð Þ � v 0þð Þ½ � exp �t=tð Þ; t> 0:

(8.23)

0 1 2 3 4 5
t

RC

V1

V1

V0

V0

v(t)

Fig. 8.18 See Example 8.7

C
i

t = 0
R

+

–
V1

v(t)

+

–

Fig. 8.17 See Example 8.7

R1

+

–
V0 C R2

1 2
0

v (t)

+

–

V0 = 5V, C = 100pF
R1 = 100kΩ, R2 = 500kΩ

Fig. 8.16 See Exercise 8.9
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The time constant t in (8.23) is given by

t ¼ RTC; (8.24)

where RT is the Thévenin equivalent resistance seen

at the terminals of the capacitor. Equation (8.23) can

be applied to any voltage in any circuit consisting of

any number of resistors and one capacitor, where the

initial and final voltages are given or can be deduced.

Equation (8.23) describes the transition of the volt-

age across a capacitor from an initial value v(0þ)
toward a final value v(1).

Example 8.8. Refer to Fig. 8.19. The switch is

open for t < 0 and closed at t ¼ 0. (a) Obtain an

expression for the voltage vC (t). (b) Use (8.23) to

obtain an expression for the voltage v1 (t). (c)

Show that your answers satisfy v1 (t) þ vC (t) ¼
V0 (Kirchhoff’s voltage law) for t > 0.

Solution: (a) Because the switch was open for

t < 0, vC ð0�Þ ¼ 0. Because the voltage across

a capacitor cannot change instantaneously,

vC 0þð Þ ¼ 0. After the switch has been closed

for a long time, the capacitor appears as an open

circuit, and

vC 1ð Þ ¼ R2V0

R1 þ R2

:

The time constant for t > 0 is given by

t ¼ RTC;

where

RT ¼ R1 R2k ¼ R1R2

R1 þ R2

is the Thévenin equivalent resistance at the term-

inals of the capacitor. Thus, from (8.23)

vC tð Þ ¼ vC 1ð Þ � vC 1ð Þ � vC 0þð Þ½ � exp � t

t

� �
¼ R2V0

R1 þ R2

1� exp � t

t

� �h i
; t> 0:

(b) From part (a), vC 0þð Þ ¼ 0. By Kirchhoff’s

voltage law,

v1 0þð Þ ¼ V0 � vC 0þð Þ ¼ V0:

For t ! 1,

v1 1ð Þ ¼ V0 � vC 1ð Þ
¼ V0 � R2V0

R1 þ R2

¼ R1V0

R1 þ R2

Thus

v1 tð Þ ¼ R1V0

R1 þ R2

� R1V0

R1 þ R2

� V0

� 	
exp � t

t

� �

¼ R1V0

R1 þ R2

þ R2V0

R1 þ R2

exp � t

t

� �
; t> 0

Note that v1 0�ð Þ ¼ 0, whereas v1 0þð Þ ¼ V0,

which illustrates the fact that a current or a volt-

age other than the voltage across a capacitor can

change instantaneously.

(c)

v1ðtÞþvCðtÞ¼ R1V0

R1þR2

þ R2V0

R1þR2

exp � t

t

� �
þ R2V0

R1þR2

1�exp � t

t

� �h i
¼ R1V0

R1þR2

þ R2V0

R1þR2

¼V0

Again, (8.23) is applicable not only to the volt-

age across a capacitor, but to any node voltage or
any branch current in any circuit consisting of any

number of resistors and one capacitor, where the

initial and final voltages are given or can be deduced.

If used to express a branch current, (8.23) becomes

i tð Þ ¼ i 1ð Þ � i 1ð Þ � i 0þð Þ½ � exp � t

t

� �
; t> 0:

(8.25)

+

–
CR2

R1

V0
vC

+

v1+ – iC

–

Fig. 8.19 See Example 8.8
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Example 8.9. Refer to Fig. 8.19. Use (8.25) to

obtain an expression for the current iC (t).

Solution: We deduce that iC 0þð Þ ¼ V0=R1 and

iC 1ð Þ ¼ 0. From (8.25),

iC tð Þ ¼ V0

R1

exp � t

t

� �
; t ¼ R1 R2kð ÞC; t > 0:

Exercise 8.10. Which of the currents and vol-

tages labeled in Fig. 8.20 cannot change

instantaneously?

The next example illustrates how (8.23) can be used

to construct a solution to a problem involving multiple

switching times and/or a piecewise-constant source.

Example 8.10. Refer to Fig. 8.21, where the

source voltage vS equals zero for times not

shown. Construct a graph of the voltage vC (t)

across the capacitor for �2 ms � t � 8 ms.

Solution: Let t ¼ RC ¼ 500 ms; V0 ¼ 100mV;

tn ¼ nms. We use (8.23) to piece together the

response vC (t).
The source voltage equals zero for t � 0, so

vC tð Þ ¼ 0; t � 0: (8.26)

The first non-zero segment of vS equals

200mV ¼ 2V0 for 0< t � t2, where t2 ¼ 2ms.

The initial value of the response is v 0þð Þ ¼ 0

and the response approaches v 1ð Þ ¼ 2V0.

Thus, from (8.23)

vC tð Þ ¼ 2V0 � 2V0 � 0ð Þ exp � t

t

� �
¼ 2V0 1� exp � t

t

� �h i
;

0< t � t2: (8.27)

The next segment of vS extends from t ¼ t2
þ

to t ¼ t3. The response in that interval is ini-

tially equal to the final value vC t2ð Þ of the res-

ponse in the previous interval and approaches

�200mV ¼ �2V0. Thus, for t2 < t � t3, we use

(8.23) with vC 0þð Þ ¼ vC t2ð Þ and

vC 1ð Þ ¼ �2V0. We must also shift the

response to the beginning time t2 for the interval

to which it applies. This gives

vC tð Þ ¼ �2V0 � �2V0 � vC t2ð Þ½ �
exp � t� t2

t

� �
; t2 < t � t3; (8.28)

where, from (8.27)

vC t2ð Þ ¼ 2V0 1� exp � t2
t

� �h i
:

The next segment of vS extends from t3 to

t4. The response in that interval is initially

equal to the final value vC t3ð Þ of the response

in the previous interval and approaches

300mV ¼ 3V0. Thus, for t3 < t � t4, we use

(8.23) with vC 0þð Þ ¼ vC t3ð Þ and vC 1ð Þ ¼
3V0. We must also shift the response to the

beginning time t3 for the interval to which it

applies. This gives

vC tð Þ ¼ 3V0 � 3V0 � vC t3ð Þ½ �
exp � t� t3

t

� �
; t3 < t � t4; (8.29)

where, from (8.28)

vC t3ð Þ ¼ �2V0 � �2V0 � vC t2ð Þ½ �
exp � t3 � t2

t

� �
:

Continuing in this way, we obtain

vC tð Þ ¼ �V0 � �V0 � vC t4ð Þ½ �
exp � t� t4

t

� �
; t4 < t � t6; (8.30)

R1

vC

v1

i1

i2 iC

vS
+
–

+
+ –

–

CR2

Fig. 8.20 See Exercise 8.10
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where, from (8.29)

vC t4ð Þ ¼ 3V0 � 3V0 � vC t3ð Þ½ � exp � t4 � t3
t

� �
;

and

vC tð Þ ¼ 0� 0� vC t6ð Þ½ �
exp � t� t6

t

� �
; t6 < t; (8.31)

where, from (8.30)

vC t6ð Þ¼�V0� �V0�vC t4ð Þ½ �
exp � t6� t4

t

� �
:

Figure 8.22 shows a graph of the response.

When using (8.23) or (8.25) to express a voltage or

current for multiple switching times, be sure to use the

correct time constant for each interval.

Example 8.11. In Fig. 8.23, both switches are

open for t < 0, and vC 0�ð Þ ¼ 0. Switch S1 is

closed at t ¼ 0 and switch S2 is closed at t ¼ t1.

Obtain an expression for the voltage vC(t)
across the capacitor.

R

C vCvS

+

–

+
–

t (ms)

vS  (mV)

1 2 3 4

200

300

–200

0
5 6

–100

100

R = 100kΩ, C = 5nF

Fig. 8.21 See Example 8.10
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–100

vS  (mV) vC  (mV)
Fig. 8.22 See Example 8.10
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–

R1 R2

S2

S1

V0 C vC

+

–

Fig. 8.23 See Example 8.11
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Solution: We use (8.23) (twice). We are given

vC 0�ð Þ ¼ 0, which implies vC 0þð Þ ¼ 0,

because the voltage across a capacitor is con-

tinuous. For 0< t � t1, the voltage vC (t) rises

toward V0 with time constant given by

t1 ¼ R1 þ R2ð ÞC:

Thus for 0< t � t1, v 1ð Þ ¼ V0, and (8.23)

becomes

vC tð Þ ¼ V0 1� exp � t

t1

� 	
 �
;

t1 ¼ R1 þ R2ð ÞC; 0< t � t1:

For t1 < t<1, the resistor R2 is bypassed

by a short circuit, so the time constant is given

by

t2 ¼ R1C:

If we take t1 as the time origin for the

second segment, the initial and final values of

vC(t) are given by

vC 0þð Þ ¼ V0 1� exp � t1
t1

� 	
 �
;

vC 1ð Þ ¼ V0:

We then reset the time origin to zero (delay the

response by t1) and obtain

vC tð Þ¼V0� V0�V0 1� exp � t1
t1

� 	
 �� �

exp � t� t1
t2

� 	
¼V0�V0

exp � t1
t1

� 	
exp � t� t1

t2

� 	
;

t2¼R1C; t> t1:

Therefore

vC tð Þ¼V0

0; t< 0

1�exp �t=t1ð Þ½ �; 0<t� t1

1�exp �t=t1ð Þexp �ðt� t1Þ=t2½ �; t> t1

8><
>:

where

t1 ¼ R1 þ R2ð ÞC; t2 ¼ R1C:

8.5 Capacitors in Series and Parallel

Figure 8.24a shows n capacitors in series. Because the

same current passes through each capacitor, Kirchhoff’s

voltage law gives

v ¼ 1

C1

ðt
�1

i ðt0Þ dt0

þ 1

C2

ð t
�1

i ðt0Þ dt0 þ 	 	 	 þ 1

Cn

ðt
�1

i ðt0Þ dt0

¼ 1

C1

þ 1

C2

þ 	 	 	 þ 1

Cn

� 	 ðt
�1

i ðt0Þ dt0;
(8.32)

C1 C2 Ceq

i

v

+

–

v

+

–
i

Ceq
v

+

–
i

v

+

–

C1 C2 CN

CN

i

L

L

(a) capacitors in series

(b) capacitors in parallel

⇒

⇒
Ceq C1 C2 CN

L = + + +1 1 1 1

Ceq = C1 + C2 +L+CN

Fig. 8.24 Capacitors in (a)

series and (b) parallel
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which can be written

v ¼ 1

Ceq

ðt
�1

i ðt0Þ dt0;
1

Ceq
¼ 1

C1

þ 1

C2

þ 	 	 	 þ 1

Cn
: (8.33)

Thus a series connection of capacitors is equivalent

at the terminals to a single capacitor having capaci-

tance Ceq given by (8.33). Combining capacitors in

series yields an equivalent capacitance that is smaller

than the smallest of the individual capacitances.

Figure 8.24b shows n capacitors in parallel.

Because the same voltage appears across each capaci-

tor, Kirchhoff’s current law gives

i ¼ C1

dv

dt
þ C2

dv

dt
þ 	 	 	 þ Cn

dv

dt

¼ C1 þ C2 þ 	 	 	 þ Cnð Þ dv
dt

; (8.34)

which can be written

i ¼ Ceq
dv

dt
; Ceq ¼ C1 þ C2 þ 	 	 	 þ Cn: (8.35)

Therefore the equivalent capacitance of n capaci-
tors in parallel is the sum of the individual capaci-

tances. Combining capacitors in parallel yields an

equivalent capacitance that is larger than the largest

of the individual capacitances.

Example 8.12. Find the equivalent capaci-

tance at the terminals of the circuit shown in

Fig. 8.25(a).

Solution: See Fig. 8.25(b). First combine the

two rightmost capacitors using (8.35). Then

combine the two series capacitors using

(8.33). Finally, combine the remaining two

parallel capacitors, again using (8.35).

Exercise 8.11. Refer to Fig. 8.26. Obtain an

expression for the equivalent capacitance at

the terminals a–b.

In practical problems, we rarely need to find the

equivalent capacitance of more than two capacitors in

series or parallel. Even this need arises primarily in only

two circumstances. One is in modeling, where various

approximations occasionally reduce more complex

arrangements to a point where remaining capacitances

(or other elements) appear in series or parallel. The

other is when a small variable capacitor is used in

parallel with a larger one to allow trimming (fine adjust-

ment) of the total capacitance. Otherwise, few if any

circuits are designed using capacitors in series or paral-

lel (where it is cheaper and easier to use one).

Note: The double-bar notation is used only for resis-

tors in parallel. Do not use the notationC1kC2 to denote

capacitors in parallel because the implied method for

obtaining the equivalent capacitance of two capacitors

in parallel is incorrect. Use C1 þ C2 instead.

8.6 Leakage Resistance

Dielectrics used in capacitors have resistivities that are

on the order of 1to100MO cm. Thus a dielectric is not

a perfect insulator and some conduction current passes

C 2C

2C

3C

2C
a

b

Fig. 8.26 See Exercise 8.11

2C

C 2C

2C

2C

C C C

C C

(a)

(b)

Fig. 8.25 See Example 8.12
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between the plates. This current is called leakage cur-

rent and the resistance of the dielectric is called leak-

age resistance. From Chapter 2, the resistance of a

sample of homogeneous material having length l,

cross-section area A, and resistivity r is given by

R ¼ r l
A
:

Thus the leakage resistance for a parallel-plate

capacitor is given by

Rleak ¼ r d
A

; (8.36)

where A is the area of one plate (the cross-sectional

area of the dielectric), r is the resistivity of the dielec-

tric, and d is the separation of the plates (the length of

the dielectric). Leakage resistance in modern capaci-

tors ranges from about 1MO to almost 1 TO 1012 Oð Þ.
For capacitors with the same geometry and identical

dielectric and plate materials, leakage resistance is

inversely proportional to capacitance; that is, from

(8.36) and (8.5),

Rleak ¼ r e0 er
C

: (8.37)

Equation (8.37) shows that leakage resistance

decreases with increasing capacitance. It follows that

leakage current generally increases with capacitance,

although a large capacitor having a very good (high-

resistivity) dielectric might exhibit lower leakage than

a smaller capacitor having a poor dielectric.

Exercise 8.12. Would including the leakage

resistances of the capacitors in Fig. 8.12 make

the circuit models realistic? Explain how or

why not.

Example 8.13. Refer to Fig. 8.27(a), where

V0 is constant and the capacitors are initially

uncharged, such that v1 0ð Þ ¼ v2 0ð Þ ¼ 0.

Obtain expressions for the voltages v1; v2 a

very long time after the switch is closed.

Solution: Because V0 is constant, the current

through the capacitors equals zero for t ! 1.

However, from Kirchhoff’s voltage law,

v1 þ v2 ¼ V0;

so the voltages across the capacitors are non-

zero. For t ! 1, the voltages are determined

by the leakage resistances, as shown in

Fig. 8.27(b), and not by the capacitances.

The circuit in Fig. 8.27(b) is a voltage

divider, and in dc steady state all of the cur-

rent I passes through the resistors (none

through the capacitors). It follows that

v1 ¼ R1V0

R1 þ R2

; v2 ¼ R2V0

R1 þ R2

: (8.38)

If we do not know the leakage resistance

(the usual case), but know the dielectric mate-

rials, we can estimate the leakage resistances

using (8.37):

R1 ¼ r1 e0 e1
C1

; R2 ¼ r2 e0 e2
C2

;

in which case (8.38) becomes

v1 ¼ V0

1þC1r2e2=ðC2r1e1Þ
;

v2 ¼ V0

1þC2r1e1=ðC1r2e2Þ
:

+

–

C1 C2

v1 v2+ – + –

+

–

C1 C2

v1 v2+ – + –

V0 V0

R1 R2

I

(a) (b)Fig. 8.27 See Example 8.13
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If the capacitors are of the same type (same

dielectric) and are precise, then r1 ¼ r2,
e1 ¼ e2 and

v1 ¼ C2V0

C1 þ C2

; v2 ¼ C1V0

C1 þ C2

:

In addition to shunt leakage resistance, physical

capacitors exhibit series resistance due partly to the

leads (if long), partly to conduction in the plates, and

partly to loss mechanisms in the dielectric that are

manifested externally as resistance. The total series

resistance is important at high frequencies and high

switching rates, as occur in modern digital computers,

and also in large capacitors used to smooth the supply

voltage in some power supplies, where the power

dissipated by the series resistance generates heat and

speeds aging of the capacitor.

8.7 Stray and Parasitic Capacitance;
Capacitive Coupling

Like resistance, capacitance is intentionally intro-

duced in most circuits to achieve certain ends. But

whether we like it or not, capacitance is present

wherever current-carrying conductors are separated

by an insulating medium. For example, capacitance

exists between wires on a circuit board and between

wires strung on utility poles. Capacitance that is more

or less widely distributed in a circuit, arising, for

example, from parallel conductors on the same or

opposite sides of a printed-circuit board or from con-

ductors near ground planes, usually is called stray

capacitance. Unintentional, more localized capa-

citance also exists in devices such as diodes and

transistors because of the geometries of those devices.

Such capacitance often is called junction capacitance
because of its association with device structures

called junctions. Capacitance in passive elements

such as resistors and inductors often is called residual
capacitance. Localized unintentional capacitance,

such as residual capacitance and junction capacitance

in electronic devices, often is called parasitic capaci-

tance.

Stray and parasitic capacitance can be significant,

depending upon the geometry involved and the rate at

which the relevant voltage varies. Parasitic capaci-

tance in transistors limits the speed with which a

transistor can respond to rapidly changing voltages

and thereby limits the frequency response of transistor

amplifiers, although the limit can be quite high. Stray

and parasitic capacitance can be especially trouble-

some in computers and in microwave circuits, where

voltages change very quickly. Stray capacitance can

be important between telephone lines that are parallel

over great distances, even though the voltages might

not change as quickly. If not prevented or properly

accounted for, stray and parasitic capacitance can pre-

vent a circuit from working as intended.

For example, suppose that a certain application calls

for a resistive voltage divider, as shown in Fig. 8.28(a),

where vS tð Þ ¼ V0 cos 2pf0 tð Þ. If the frequency f0 of the

source vS tð Þ is high enough, the residual (or parasitic)

capacitances of the resistors come into play, as shown

in Fig. 8.28(b). We are at this point unprepared for

detailed analysis of the circuit in Fig. 8.28(b), but you

can see that for a time-varying source voltage vS tð Þ, the
actual output voltage vb tð Þ will differ from the desired

(or intended) output voltage va tð Þ. If it is known that

that residual capacitance will be significant in a resis-

tive voltage divider, a designer can compensate for that

by intentionally introducing capacitances C1; C2 (as in

Fig. 8.28(b) that are much larger than the stray cap-

acitances, and then designing the resistive-capacitive

(b) actual(a) desired

vS (t)

C1

C2

R1
R2

+
–

R1
R2

+

–

+
– vS(t)va (t)

+

–

vb (t)Fig. 8.28 Residual

capacitance can affect

resistive voltage dividers at

high frequencies
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voltage divider accordingly. Such a voltage divider is

said to be compensated.
Parallel conductors and conductors parallel to

ground planes can be significant sources of stray

capacitance. Refer to Fig. 8.29, which represents par-

allel conductors in a vacuum (or air) above a ground

plane; for example, a two-conductor power transmis-

sion line strung on utility poles above ground, or a

smaller two-conductor wire running parallel to a

grounded metal chassis. The wire-to-wire capacitance

and the wire-to-ground capacitance per meter are

given by14

DCww

Dl
¼ pe0 ln

d

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 0:25 d=hð Þ2

q
2
64

3
75

2
64

3
75
�1

;

DCwg

Dl
¼ 2pe0 ln

2h� r

r

� 	
 ��1

; ð8:39Þ

where d is the center-to-center distance between the

conductors, h is the distance of the conductors from

the ground plane, r is the radius of the conductors, and

e0 ¼ 8:842� 10�12 Fm�1 is the permittivity of air.

Example 8.14. A pair of straight AWG 24

copper wires are parallel to each other and to

a metal chassis. The distance between the wires

is 1 mm and the distance of the pair from the

chassis is 1 cm. Calculate the wire-to-wire and

wire-to-ground capacitance per cm of length

and the total capacitance if the length of the

pair of wires is 4 cm.

Solution: From Chapter 2, the radius of AWG 24

wire is

r ¼ 1

2
8:251mmð Þ exp � 24

8:628

� 	
¼ 256 mm:

From (8.39), with r ¼ 256mm; d ¼ 1mm;

h ¼ 1 cm,

DCww

Dl
¼ pe0 ln

d

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 0:25 d=hð Þ2

q
2
64

3
75

2
64

3
75
�1

¼ 0:204 pF cm�1;

DCwg

Dl
¼ 2pe0 ln

2h� r

r

� 	
 ��1

¼ 0:128 pF cm�1:

The total capacitance per unit length is given

by

DC
Dl

¼ DCww

Dl
þ DCwg

Dl
ffi 0:332 pFm�1;

so the capacitance of a 4-cm length of wire is

C ffi 1:33 pF:

As you can see, wires a few or more cm in

length can introduce a few picofarads of stray

capacitance. Such capacitance limits the rate at

which the voltage across a load can change.

For example, if a 4 cm length of the conductors

of this example drives a 10 kO load, the effec-

tive time constant due to the wire-to-ground

capacitance alone is about 13 ns, which means

that the time required for the load voltage to

change from one value to another is approxi-

mately 65 ns. This means the load voltage can

switch between two levels no faster than about

D

hCwg Cwg

Cww

2r

conductors

ground

Fig. 8.29 Stray conductor-to-conductor and conductor-to-

ground capacitance

14Corcoran, George F., and Henry R. Reed, Introductory Elec-
trical Engineering, Wiley, New York, 1957, pp 419–426.
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15 million times per second. If we are talking

about a digital communication system, for

example, we could transmit no more than a

few million bits per second over the line to

the load, which would be unacceptably slow

in today’s world.

Equations (8.39) ignore whatever structures sup-

port the wires, insulation surrounding the wires, and

connections at the ends of the wires. They should not

be regarded as accurate relations for real-world cir-

cuits, in which many wires of various sizes run in

many directions, at various distances from each other

and from ground planes. A circuit designer will not

attempt to actually calculate stray capacitance using

(8.39), but will be guided by relations embodied in

those expressions. For example, increasing the dis-

tance d between wires, decreasing the radius r of

wires, and increasing the distances from ground

planes all act to decrease stray capacitance. The rela-

tive permittivity of an insulating material cannot be

less than unity, so binding the wires to each other

with an insulating material can increase wire-to-wire

capacitance. Thus, for example, using the smallest

wire necessary, using insulating material (if required)

having a low relative permittivity, and avoiding long

runs near ground planes and other wires can help

limit stray wiring capacitance.

One of the great advantages of integrated circuits is

their microscopic size. Conductors are extremely short

and have extremely small cross-sectional area. Thus

stray wiring capacitance in an integrated circuit can be

quite small, even though the distances between con-

ductors are also microscopic.

Sometimes, stray capacitive coupling in a circuit

can induce the derivative of a signal in one con-

ductor into a neighboring conductor, as illustrated

by Fig. 8.30. In absence of capacitive coupling, the

voltage v2 across the resistor R2 equals R2 i2. In

presence of stray capacitive coupling, as indicated

by the dashed capacitor, Kirchhoff’s current law

at the node joining the capacitor to the resistor R2

gives

C
d v2 � v1ð Þ

dt
þ v2
R2

� i2 ¼ 0

) v2 ¼ R2 i2 � R2 C
dv2
dt

þ R2 C
dv1
dt

:

t

v1

dv1
dt

t

t

i1 i2

R1 R2

C

v2

+

–

v1

+

–

v2 = R2 i2 + R2 C
dv1
dt

R2 i2

Fig. 8.30 Illustrating one

possible effect of stray

capacitive coupling. (Adapted

from Horowitz, Paul et al.

1995.)

8.7 Stray and Parasitic Capacitance; Capacitive Coupling 257



In presence of capacitive coupling, the voltage v2
contains a term proportional to the derivative of the

voltage v1. If the voltage v1 varies much more rapidly

than the voltage v2, then (on average)

dv1
dt

����
���� 
 dv2

dt

����
����:

It follows that

v2 ffi R2 i2 þ R2 C
dv1
dt

;

which shows that a voltage proportional to the deriv-

ative of v1 is superimposed on the (desired) voltage

R2 i2, again as illustrated (qualitatively) by Fig. 8.30.

Usually, such coupling is undesirable and must be

minimized by shielding and careful conductor layout.

If shielding and conductor layout do not eliminate

the problem, and if v1 varies much more rapidly than

v2, then a bypass capacitor in parallel with R2 might

reduce the induced interference to an acceptable

level.

Stray capacitance and capacitive coupling are dif-

ficult to compute for complex geometries, such as

exist in modern circuits, but a general knowledge of

origins and effects of stray capacitance and capaci-

tive coupling can help keep a circuit designer out of

trouble.

8.8 Variation of Capacitance with
Temperature

For most dielectric materials, relative permittivity var-

ies with temperature, so the capacitance of capacitors

made from those materials varies with temperature.

Manufacturers describe the relation of capacitance to

temperature in mainly one of two ways. For some

materials, the variation of capacitance with tempera-

ture is approximately linear. In such cases, manufac-

turers data sheets give a temperature coefficient of

capacitance (TCC) a, defined by

a ¼ CT � C0

T � T0ð ÞC0

¼ 1

C0

DC
DT

; (8.40)

where

CT ¼ capacitance at actual temperature T;

C0 ¼ capacitance at reference temperature T0

ðusually; 25�CÞ:

Thus the capacitance at temperature T is approxi-

mated as

CT ¼ C0 1þ aDTð Þ ¼ C0 1þ a T � T0ð Þ½ �: (8.41)

Manufacturers’ commonly specify the temperature

coefficient in parts per million (ppm), in which case

(8.41) becomes

CT ¼ C0 1þ appm � 10�6
� �

T � T0ð Þ� �
; (8.42)

where the unit of appm is K�1 or �Cð Þ�1
. It does not

matter which unit is used, because the numerical

value of the difference T � T0 is the same, whether

the temperatures are expressed in Kelvin (K) or

degrees Celsius.

Example 8.15. The capacitance and tempera-

ture coefficient for a certain capacitor at 25�C
are 50 nF and 700 ppm, respectively. Find the

capacitance at 65�C.

Solution: From (8.42),

C35 ¼ 50 nF� 1þ 70� 10�6
� �

65� 25ð Þ� �
¼ 51:4 nF:

For many dielectric materials, the variation of

capacitance with temperature is nonlinear, as illu-

strated by the hypothetical graph in Fig. 8.31. The

horizontal axis is temperature and the vertical axis is

the percent deviation of the capacitance from the

capacitance at 25�C, given by

DC
C25

� 100 ¼ C� C25

C25

� 100:

For T ¼ 25�C, C ¼ C25 and the deviation equals

zero. The deviation is within � 5% for approximately

5�C � T � 160�C. Thus a specification of � 5%
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would be accompanied by the temperature range

5�C � T � 160�C.
Table 8.1 shows typical variations for various dielec-

tric materials. For example, for polyester, the variation of

capacitance with temperature can be as much as � 12%
for the temperature range � 55�C � T � 125�C,
whereas for polycarbonate, it is no more than � 2%

over the same range.

To standardize such specifications, the industry

developed the code defined by Table 8.2. The code

consists of three characters: A letter (X, Y, or Z), a

number (2, 4.5, 6, or 7), and another letter (one of A–F,

P, R, S–V); for example, X7R. The First letter and the

number specify a temperature range and the last letter

specifies the temperature variation within that range.

For example, the X7 in X7R specifies the temperature

range �55 to 125�C and the R means that the capaci-

tance will vary by no more than �15% from the

nominal value over that range.

Exercise 8.13. Specify the tolerance and tem-

perature range corresponding to each of the

following designations: X5R, Y5V, Z5U.

Exercise 8.14. List the designations for the

capacitors that could replace a Y5U capacitor

based upon specifications of only capacitance

and tolerance alone.

(%)ΔC
C25ºC

T (ºC)

–75 –50 –25 0 25 50 75 100 125 150 175
–40

–35

–30

–25

–20

–15

–10

–5

0

5

10

Fig. 8.31 Variation of

capacitance with temperature

(hypothetical example)

Table 8.1 Variation of capacitance with temperature for various dielectric materials (Courtesy of AVX Corporation)

Dielectric Ceramic

(NP0)

Mica Polyester Poly-

carbonate

Poly-

propylene

Polystyrene Tantalum Aluminum

electrolytic

Capacitance

range

1 pF – 100

nF

1 pF – 90

nF

1 nF – 10

mF
1 pF – 100

nF

47 pF – 47

nF

100 pF – 27

nF

10 nF – 1000

mF
500 nF – 10

mF
Temp. range

(�C)
�55 þ 85 �55þ 125 �55þ 125 �55 þ 125 �55 þ 85 �55 þ 70 �55 þ 125 �40 þ 85

DC=C25�C %ð Þ � 0.3 �0.4þ 1.8 �12 � 2 � 2.5 � 1 � 8 �10

Table 8.2 Definition of codes for variation of capacitance
with temperature

Minimum

temperature �Cð Þ
Maximum

temperature �Cð Þ
Change in capacitance

with temperature %ð Þ
X �55 2 þ45 A � 1

Y �30 4 þ65 B � 1.5

Z þ10 5 þ85 C � 2.2

6 þ10 D � 3.3

7 þ125 E � 4.7

F � 7.5

P �10

R � 15

S � 22

T þ 22, �33

U þ 22, �56

V þ 22, �82
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In circuit-simulation programs, dependence of cap-

acitance on temperature often is approximated using

a quadratic function of temperature of the form

C ¼ C0 þ aDT þ b DTð Þ2; DT ¼ T � T0; (8.43)

where T is temperature �Cð Þ, T0 is a reference temper-

ature (often, 25�C), and C0 is the capacitance at the

reference temperature. The coefficients a FK�1ð Þ and
b FK�2ð Þ are called the first temperature coefficient

and the second temperature coefficient, respectively.

Pspice and other simulation programs allow a user to

specify the temperature coefficients.

Variation of capacitance with temperature is an

important consideration in circuit design. Indeed,

capacitors are classified on that basis, according to

whether they are sensitive or relatively insensitive to

temperature variations. In some applications, such as

coupling and bypass (described below), large capaci-

tance is relatively more important than temperature

variation. In others, such as timing, differentiating,

integrating, and filtering, stability of capacitance is

relatively more important than actual value, because

the important quantity is the product of a capacitance

and a resistance, and the latter can be precise.

To complicate matters further, capacitance can

vary not only with temperature, but also with any

applied dc bias voltage and with the frequency of an

applied sinusoidal voltage. We discuss some of these

details in a subsequent chapter. Here, we note only that

some manufacturers provide fairly complete Pspice

models for some of their offerings that take such

variations into account.

8.9 Energy Storage and Power
Dissipation in a Capacitor

The capacitor of Fig. 8.1 will remain charged when

disconnected from the battery. That is, a nonzero volt-

age will exist across the terminals of the capacitor,

which means that energy is stored in the electric field

between the plates. If a charged capacitor is connected

to a resistance, for example, current will pass through

the resistor as the capacitor discharges and work will

be done according to Joule’s law. If the capacitor is

allowed to discharge completely, the work done will

equal the energy stored in the field. Ability to store

energy for later release is what gives a capacitor elec-

trical memory.

The instantaneous power dissipated in a capacitor

having capacitance C is given by

p ¼ v i ¼ C v
dv

dt
¼ dw

dt
; (8.44)

where v(t) is the instantaneous voltage across the

capacitor and w tð Þ is the instantaneous energy stored

in the electric field produced by the voltage. Equation

(8.44) implies that

dw ¼ Cv dv ) w tð Þ ¼ C

ðv tð Þ

v �1ð Þ
v0 dv0

¼ 1

2
C v tð Þ2�v2 �1ð Þ
h i

:

We assume the voltage equals zero for t ! �1
(that the capacitor is initially uncharged). Thus the

instantaneous energy stored in the electric field pro-

duced by a capacitor is given by

wðtÞ ¼ 1

2
Cv2ðtÞ; (8.45)

where v(t) is the instantaneous voltage across the capac-
itor. For economy, the instantaneous energy stored in

the electric field produced by a capacitor usually is

referred to as the energy stored by (or in) the capacitor.
The energy stored in the electric field produced by a

voltage makes the voltage resistant to change, because

it takes time to transfer energy to or from the electric

field. In other words, the electric field created by a

voltage gives the voltage a kind of inertia that resists

changes in the voltage. A capacitor enhances this

effect by concentrating and intensifying the electric

field produced by a voltage across the capacitor.

Example 8.16. Continuing Example 8.4, the

energy stored in the capacitor at any time t is

given by

w ¼ 1

2
Cv2 ¼ 1

2
CV2 cos2 ð2pf tÞ

¼ CV2

4
1þ cosð4pf tÞ½ �

¼ 2:5� 10�6 1þ cosð4pf tÞ½ � J:
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Exercise 8.15. Refer to Fig. 8.8 and Exercise

8.2. Draw a graph of the energy stored in the

electric field produced by the capacitor.

Exercise 8.16. A capacitor having capaci-

tance C ¼ 250 pF is initially charged such

that the terminal voltage is V0. The capacitor

is then connected (at t ¼ 0) across a resistor

having resistance R ¼ 10 kO. At what time is

the energy stored in the capacitor equal to half

of its initial value?

The following fact is often useful: When a capaci-

tor is fully charged by a constant source through a
fixed resistance, the total energy delivered by the

source is exactly twice the final energy stored by the

capacitor.
We can show this as follows. In Fig. 8.32, the

switch is in position a for t< 0 and is moved to position

b at t ¼ 0. The capacitor charges to vC 1ð Þ ¼ V0, at

which point the energy stored on the capacitor is given

by

wC ¼ 1

2
CV2

0 :

The charge stored by the capacitor is given by

Q ¼ CV0. This charge must pass through the source,

so the work done by the source on this charge (the

energy delivered by the source) is given by

wS ¼ QV0 ¼ CV0
2;

which is exactly twice the energy stored by the

capacitor. Half of the energy delivered by the source

is dissipated in the resistor, independent of the

resistance of the resistor. We make use of this result

in Section 8.10.9.

The average power dissipated in an ideal capacitor

equals zero, provided the applied current or voltage is

bounded (as it always is in a physical circuit).

We can show this as follows: The average power

PT dissipated in a capacitor over an interval t0 �
t< t0 þ T is the change in stored energy divided by

the duration of the interval, given by

PT ¼ C

2T
v2 t0 þ Tð Þ � v2 t0ð Þ� �

: (8.46)

In any physical problem, voltages are finite, so the

quantity in the brackets is finite and

P ¼ lim
T!1

PT ¼ 0: (8.47)

The average power dissipated in a capacitor over a

finite time interval, given by (8.46) is not necessarily

zero. The instantaneous power dissipated in a capaci-

tor is not zero, nor is the peak power.

A capacitor can absorb energy at some times and

return energy to a circuit at other times. None of the

energy absorbed (by an ideal capacitor) is lost to the

circuit, but can be returned on demand. This is in

contrast to a resistor, which converts electrical energy

to heat energy that is then lost forever to the circuit.

On an instantaneous basis, a capacitor behaves some-

times like a sink and other times like a source, but on

average (over a sufficiently long time), is neither.

Example 8.17. Find the average powers

dissipated in the resistor and the source in the

circuit shown in Fig. 8.33, where R ¼ 2 kO and

vðtÞ ¼ V0 cos 2 p f tð Þ; V0 ¼ 15V:

Solution: The average power dissipated in the

resistor is

PR ¼ V2
0

2R
¼ 225V2

4000
¼ 56:3mW:

Because power is conserved and because

the average power dissipated in a capacitor

+

–

R

CV0
a

b

vC

+

–

i

Fig. 8.32 Pertaining to energy dissipation and storage in an RC
series circuit (see text)
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equals zero, the power dissipated in the source

is

Pv ¼ �PR ¼ �56:3mW:

Exercise 8.17. In Fig. 8.34, R ¼ 10 kO and

C ¼ 250 nF. The instantaneous power dis-

sipated in the resistor is given by pR tð Þ ¼ p0
þ p1 cos

2 2o0 tð Þ, with p0 ¼ 20mW, p1 ¼
50mW, and f0 ¼ 20 kHz. The dc component

of the source voltage vS is positive and the

source voltage is maximum at t ¼ 0. Obtain

an expression for the instantaneous voltage

vC(t) across the capacitor. Hint: Superposition

of power is applicable (Why?).

The discussion in this section pertains to an ideal

capacitor. Real capacitors exhibit leakage resistance

and what is called equivalent series resistance (ESR),

so the average power dissipated by a real capacitor is

not zero. Section 8.6 above describes leakage resis-

tance. We describe ESR in a subsequent chapter.

8.10 Applications

Capacitors are used in basically six ways:

• To discriminate between sinusoids based on fre-

quency (including dc), as in bypass, coupling, and

filtering applications (e.g., Sections 8.10.3 and

8.10.6, below);

• To produce a current or voltage proportional to the

derivative or integral of another current or voltage

(see Sections 8.10.1 and 8.10.2, below);

• To store energy or charge for later release; e.g., as

in the electronic flash unit on a camera and in

switched-capacitor resistors (see Section 8.10.8,

below);

• As a timing device; e.g., where some action is

triggered when voltage across a capacitor reaches

a certain threshold, as in pulse-detection circuits,

timing circuits, and some oscillators (not treated in

this book);

• To change the phase of one sinusoid relative to that

of another, as in power-factor correction, some

oscillators, and the starting and run capacitors on

electric motors. (Power-factor correction is treated

in a subsequent chapter);

• As components of circuit models for physical

devices; e.g., parasitic (junction) capacitance in a

transistor and parasitic (residual) capacitance in a

resistor or an inductor. (Discussed briefly in a sub-

sequent chapter).

At this point in our development, we are unpre-

pared to illustrate all of the applications listed above

or even to treat any particular one in great detail. This

section describes a few applications and effects of

capacitance at an introductory level. Additional appli-

cations and more detailed treatments are given in

subsequent chapters, where we introduce useful cir-

cuits in which capacitance is essential or unavoidable.

8.10.1 Differentiating Circuits

Applying Kirchhoff’s current law to the circuit shown

in Fig. 8.35 gives

� C
dvin
dt

� vout
R

¼ 0 ) vout ¼ �RC
dvin
dt

: (8.48)

The output is proportional to the derivative with

respect to time. The circuit is called a differentiator.
The circuit shown works reasonably well for slowly

varying inputs. Practical differentiators have addi-

tional components, the purposes of which are dis-

cussed in subsequent chapters.

R CvS vC (t)

+

–

+
–

Fig. 8.34 See Exercise 8.17

v R C+
–

Fig. 8.33 See Example 8.17
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Example 8.18. In Fig. 8.35, let

vinðtÞ ¼ V0 cos 2 p f tð Þ:

The (ideal) output is

vout ¼ �RC
dvin
dt

¼ 2 p f R C V0 sin 2 p f tð Þ:

Exercise 8.18. In Fig. 8.35, R ¼ 10 kO;
C ¼ 22 pF, and the supply voltage for

the op amp (assumed to be rail-to-rail) is

� VCC ¼ �15V. The input vin is given by

vin ¼ V0 cos 2pf tð Þ:

(a) If V0 ¼ 1V, what is the highest frequency

for which the circuit operates linearly? (b)

If f ¼ 1MHz, what is the largest value of

V0 for which the circuit operates linearly?

Example 8.19. In Fig. 8.35, R ¼ 200 kO;
C ¼ 10 nF, and the input vin is as shown in

Fig. 8.36. Draw a graph of the output.

Solution: The output is given by

vout tð Þ ¼ �RC
dvin tð Þ
dt

¼ �RC� instantaneous slope of vin tð Þ½ �:

For the values given, RC ¼ 2� 10�3 s.

For 0 � t< 1ms, the derivative (slope) is

5Vð Þ= 1msð Þ ¼ 5; 000Vs�1. For 3ms � t<

5ms, the derivative (slope) is � 5Vð Þ= 2msð Þ¼
�2;500Vs�1. For all other times, the slope equals

zero. Thus

vout¼
�2�10�3ð Þ 5;000ð Þ¼�10V; 0�t<1ms;

�2�10�3ð Þ �2;500ð Þ¼5V; 3ms�t<5ms;

0; allother times:

8><
>:

Figure 8.37 shows a graph of the output.

8.10.2 Integrating Circuits

Under certain conditions, the circuit shown in

Fig. 8.38 can produce an output proportional to the

integral of the input, in which case the circuit is called

an integrator. Because vn ¼ 0, the input current is

given by i ¼ vin=R. This is also the current through

the capacitor, because the current entering the n

t (ms)

vout (V )

0
0

1 2 3 4 5

–10

5

Fig. 8.37 See Example 8.19

+

–vin
vout

C

R

Fig. 8.35 Differentiating circuit

5

vin (V)

t  (ms)
0

0
1 2 3 4 5

Fig. 8.36 See Example 8.19
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terminal of the op amp equals zero. Thus the voltage

across the capacitor (the output voltage) is given by

vout ¼ � 1

C

ðt
�1

i t0ð Þ dt0

¼ � 1

RC

ðt
�1

vin t0ð Þ dt0: (8.49)

In practical op-amp circuits, there must be feedback

at dc. If the capacitor in Fig. 8.38 is ideal, there is no

such feedback. Physical capacitors exhibit leakage

resistance, and in some applications, leakage resis-

tance provides sufficient dc feedback. For present pur-

poses, we assume that is the case.

Exercise 8.19. In Fig. 8.38, let

vinðtÞ ¼ 0; t � 0;
V0 cos 2 p f tð Þ; t> 0:

�

Obtain an expression for the output vout:

Example 8.20. In Fig. 8.38, let

vin ¼ 0; t � 0;
V0; t> 0:

�

Obtain an expression for the output vout tð Þ.
Solution: From (8.49)

vout ¼
� 1

RC

ðt
�1

0 dt0 ¼ 0; t � 0;

� 1

RC

ðt
0

V0 dt
0 ¼ � V0 t

RC
; t > 0:

8>><
>>:

Figure 8.39 shows a graph of the output. What

limits the output?

Example 8.21. In Fig. 8.38, R ¼ 200 kO; C ¼ 10 nF, and the input vin is as shown in Fig. 8.40. Draw a

graph of the output.

Solution: The output is given by

vout tð Þ ¼ � 1

RC

ðt
�1

vin t0ð Þdt0 ¼ � 1

RC
� instantaneous net area bounded by

vin t0ð Þ and the t0 axis to the left of t0 ¼ t

" #
:

A graph of vin t0ð Þ versus the variable of integration t0 is obtained by simply re-labeling the axes in

Fig. 8.40. To perform the integration, imagine the time t (the upper limit of integration) advancing

from left to right on the t0 axis. For each value of t, compute the area bounded by v t0ð Þ and the t0 axis to
the left of t.

For t < 0, vin t0ð Þ ¼ 0 and the area bounded by vin t0ð Þ to the left of t equals zero.

For 0 � t< 1ms, the area bounded by vin t0ð Þ to the left of t equals �10Vð Þ � t.

t0

vin

vout

V0

Fig. 8.39 See Example 8.20

+

–
R Cvin vout

vni

i

Fig. 8.38 Integrating circuit
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For 1ms � t< 3ms, the area bounded by vin t0ð Þ to the left of t equals �10Vð Þ � 1msð Þ ¼ �10�3 V s.

For 3ms � t< 5ms, the area bounded by vin t0ð Þ to the left of t equals �10�3 V sþ 5Vð Þ � t� 3msð Þ.
For t> 5ms, the area bounded by vin t0ð Þ to the left of t is constant and equal to � 10�3 V sþ
5Vð Þ � 5ms� 3msð Þ ¼ 0. Thus

vout ¼ � 1

RC

0; t< 0;
�10Vð Þt; 0 � t< 1ms;
�10�3 V s; 1ms � t< 3ms;
�10�3 V sþ 5Vð Þ t� 3msð Þ; 3ms � t< 5ms;
0; t � 5ms

8>>>><
>>>>:

where RC ¼ 2ms. Figure 8.41 shows a graph of the output.

In Example 8.20, the magnitude of the output

increases linearly with time, and will drive the op

amp to saturation, at which point the circuit no longer

acts as an integrator. Exercise 8.19 seems to illustrate

that the circuit in Fig. 8.38 can function as an integra-

tor for a long time if the input contains no dc compo-

nent. However, in any real such circuit, a small but

nonzero dc offset at the input is almost unavoidable,

and will eventually drive the output to saturation,

because there is no (or very little) feedback at dc (an

ideal capacitor is an open circuit at dc). Practical

integrators provide a means of resetting the output to

zero after a predetermined time to avoid saturation.

Figure 8.42 shows such a circuit, in which the switch is

closed periodically to discharge the capacitor and reset

the output to zero (the switch usually is electronic, not

mechanical). The circuit in Fig. 8.42 is called a finite-

time integrator, because the integration ends when the

switch is closed. Finite-time integrators are used in a

number of applications, including analog computers

and various pulse-detection circuits.

Exercise 8.20. In Fig. 8.42, R1 ¼ 2 kO,
C ¼ 10 pF, and R2 ¼ 100O. The circuit must

be able to integrate a constant 5 mV input for

100ms (before the op amp saturates). (a)What is

the required power supply voltage? (b) When

the integrator is reset (when the switch is

closed), how long does it take for the capacitor

to discharge, before another integration can

begin? (Give and justify a reasonable time).

5

vout (V)

t (ms)
0

0
1 2 3 4 5

Fig. 8.41 See Example 8.20

t (ms)
0

0
1 2 3 4 5

−10

5

vin (V)

Fig. 8.40 See Example 8.20

R1
vin vout

R2

C

+

–

Fig. 8.42 A finite-time (resettable) integrator
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8.10.3 Bypass Capacitors

The purpose of a bypass capacitor is to shunt unde-

sirable time-varying components of a current, called

ripple, around a resistive load, while desirable dc

components pass through the load, such that the load

voltage is nearly constant. There are at least three

major areas of application:

• Currents demanded by various components in linear

systems fluctuate with varying demand. For exam-

ple, in an audio amplifier, current delivered to the

loudspeaker fluctuates with loudness, so the current

demanded of the amplifier’s output stage varies with

the instantaneous loudness of the audio output. Such

varying demand causes the current drawn from the

supply to fluctuate, and the fluctuations can be cou-

pled to signal lines; e.g., through stray capacitance or

by causing the power supplied to earlier stages to

fluctuate. Bypass capacitors can reduce such fluctua-

tions. Plastic-dielectric capacitors are often used in

such applications, but if high precision is required,

silver-mica capacitors might be used.

• In power supplies, relatively large bypass capaci-

tors (often, 1000 mF or more) are used to smooth the

ripples in a rectified sinusoidal voltage. The capa-

citors most commonly used in larger power

supplies are aluminum electrolytics because of the

large capacitances achievable with such capacitors.

Tantalum electrolytics might be used in smaller

(low-voltage) power supplies. Electrolytic capaci-

tors are typically imprecise. For example, the toler-

ance on an aluminum electrolytic might be þ60%/

�40%. Conservative sizing is necessary where

such capacitors are used.

• In digital systems, bypass capacitors are attached

from the power pin to ground at virtually every

integrated circuit (IC) to keep the supply voltage

at the pin within the operating range for the IC.

Typical values range from about 10 to 100 nF, and

occasionally to 500 nF. Ceramic capacitors are

often used in this application, partly because of

their large capacitance to volume ratios.

In this subsection, we describe bypassing in appli-

cations where the ripple can be approximated by a

sinusoid. In the next, we describe bypassing for recti-

fier circuits, and in the next after that, bypassing for

digital systems. We do not treat bypassing for very

high-frequency applications because a useful treat-

ment of that topic would take us too far afield.

Refer to Fig. 8.43(a). Let i tð Þ ¼ Idc þ iac tð Þ denote
the current through a resistive load R, where the dc

component Idc is the desirable component and the

ac component iac tð Þ is undesirable. In such cases, an

appropriate figure of merit is the ripple factor,

defined as

g ¼ Iac rms
Idcj j ¼ Iac rmsR

Idcj jR ¼ Vac rms

Vdcj j : (8.50)

To reduce the ripple in the load, we may connect a

bypass capacitor in parallel with the load, as shown in

Fig. 8.43(b). The purpose of the bypass capacitor is to

shunt most of the ac component iac tð Þ, such that the

load current iL tð Þ is largely the dc component Idc.

A simplified approach to specifying a bypass

capacitor is as follows. We assume the ripple is

approximately sinusoidal. Thus let

iac tð Þ ffi Iac cos o0 tð Þ:

If the capacitor is absent, all of the current passes

through the resistor, and the ripple factor is given by

g0 ¼
Iac rms
Idcj j ¼ Iacj jffiffiffi

2
p

Idcj j : (8.51)

With the capacitor in place, all of the dc current

passes through the resistor (a capacitor does not pass

dc), so the dc component of the load voltage is given by

Vdc ¼ Idc R:

Ideally, almost all of the ripple current is diverted

through the capacitor. In that case, the load voltage is

given approximately by

R C

iL (t) ≅ iac (t)
+

–

vL (t) = Vdc + vac (t)R

i(t) = Idc + iac (t)
i (t)

(a) (b)

Fig. 8.43 Illustrating the function of a bypass capacitor
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vL tð Þ ffi vL 0ð Þ þ 1

C

ðt
0

iac t0ð Þdt0

¼ vL 0ð Þ þ Iac
o0C

sin o0 tð Þ:

Thus the ac component of the load voltage is given

by

vac tð Þ ¼ Iac
o0C

sin o0 tð Þ

and the ripple factor is given (approximately) by

g ¼ Vac rms

Vdcj j ffi Iacj j
o0C

ffiffiffi
2

p
Idcj jR ¼ g0

o0RC
: (8.52)

Thus the bypass capacitance required to achieve

a specified (small) ripple factor g in a resistive load

R is given by

C ffi 1

o0R

g0
g

� 	
¼ 1

2pf0R
g0
g

� 	
; (8.53)

where g0 is the ripple factor in absence of bypassing

and f0 is the frequency of a sinusoidal approximation

to the ripple.

A somewhat more careful analysis yields (compare

with (8.52))

g ¼ Vac rms

Vdcj j ¼ g0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ D2

p ; D ¼ o0RC (8.54)

and (compare with (8.53))

C ffi 1

o0R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g0
g

� 	2

�1

s
: (8.55)

The difference between (8.53) and (8.55) is less

than 1% if g0> 7g, as is true in virtually all bypassing

applications.

Example 8.22. In Fig. 8.43, Idc ¼ 5 0mA,

Iac ¼ 5mA, f0 ¼ 10 kHz, and R ¼ 2O.
(a) Find the ripple factor in absence of the

capacitor. (b) Find the capacitance that redu-

ces the ripple factor to 0.1% (0.001).

Solution: (a) From (8.51),

g0 ¼
Iac

Idc
ffiffiffi
2

p
����

���� ¼ 5

50
ffiffiffi
2

p ¼ 70:7� 10�3:

From (8.53)

C ffi 1

o0R

g0
g

� 	
ffi 1

o0R

70:7� 10�3

1:00� 10�3

� 	

ffi 70:7

2p� 104 Hzð Þ 2Oð Þ ffi 563 mF:

Exercise 8.21. Refer to Example 8.22. Calcu-

late the required capacitance using (18.55).

If a bypass capacitor is effective for a sinusoidal

current having frequency f0 it is even more effective

for sinusoids having frequencies greater than f0.

Exercise 8.22. About 99% of any sinusoidal

current having frequency greater than 100 Hz

is to be diverted (bypassed) around a 1 kO
resistive load by a capacitor in parallel with

the load. What capacitance is required?

Equation (8.53) is not strictly applicable if the

ripple is not sinusoidal. Nonetheless, we often may

use that relation if the ripple is approximately periodic

and if we can estimate the period T of the ripple. In

such cases, it is advisable to incorporate a margin of

25% or so; i.e.,

C ffi 1:25 g0T
g 2pR

: (8.56)

For example, if the period of the ripple is about

1 ns, the equivalent load is about 1O, and we require

g0=g ¼ 100, the required capacitance is about 20 nF.
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8.10.4 Bypass Capacitors (Filter
Capacitors) in Rectifier Circuits

Equations (8.52) and (8.54) are strictly applicable only

to linear circuits in which the load is resistive and the

ripple is sinusoidal. They might be approximately

correct if the circuit is approximately linear, the load

is predominately resistive, and the ripple is approxi-

mately sinusoidal, but such applications must be con-

sidered on a case-by-case basis. An application in

which the relations above are generally inapplicable

is in power supplies where bypass capacitors (called

filter capacitors) are used to suppress the ripple intro-

duced by rectifier circuits. In such applications, the

circuit is decidedly nonlinear and the ripple is decid-

edly non-sinusoidal.

Figure 8.44 shows a half-wave rectifier circuit

driving a resistive load RL. Figures 8.45 and 8.46

show results of an analysis of the circuit.15 Figure

8.45 shows the load voltages for C ¼ 100 mF and

C ¼ 1; 000 mF. The peak-to-peak load voltage ripple

is approximately 102 V for C ¼ 100 mF and approxi-

mately 13.4 V for C ¼ 1; 000 mF. The rms ripple is

approximately 37.6 V for C ¼ 100 mF and approxi-

mately 4.92 V for C ¼ 1; 000 mF. The dc load voltage

is approximately 93.8 V for C ¼ 100 mF and approxi-

mately 108 V for C ¼ 1; 000 mF.16 The measured (cal-

culated) ripple factors are

g100 mF ffi
37:6V

93:8V
ffi 0:401;

g1000 mF ffi 4:92V

108V
ffi 0:046:

Increasing the capacitance by an order of mag-

nitude decreases the ripple by almost an order of

magnitude.

A price of increasing the filter capacitance is an

increase in the diode current, which determines the

size and cost of the diode. Figure 8.46 shows the initial

current in the diode for two values of the filter (bypass)

capacitor C. The maximum diode current is approxi-

mately 5 A for C ¼ 100 mF and 13.5 A for

C ¼ 1; 000 mF. These currents would be even larger
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(a) C = 100 μF

t (ms)

(b) C = 1000 μF

t  (ms)

vL vS

vL vS

VL dc

VL dc

Fig. 8.45 Load-voltage waveforms in a half-wave rectifier

circuit for two values of the filter capacitance

RL vL

RS

vS C

+

–

iD

vS = VS sin (w0t), VS = 170V, f0 = 60Hz

RS = 10 Ω, RL = 100 Ω

+
–

Fig. 8.44 Bypass (filter) capacitor in a half-wave rectifier

circuit

15The equations describing the circuit are nonlinear and cannot

be solved in closed form. The analysis was performed numeri-

cally, using methods described in John R. Hauser, Numerical
Methods for Nonlinear Engineering Models, Springer, 2009.
16All these values were obtained from the numerical analysis.
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if the circuit were energized on a peak of the source

voltage.

We can obtain approximate expressions for the rms

ripple and ripple factor, as follows: When the diode in

Fig. 8.45 is conducting, it is approximately a short

circuit (because the diode drop is much smaller than

the source voltage), and the parameters of the Théve-

nin equivalent for the circuit seen by the capacitor are

vT ¼ RLvS
RL þ RS

; RT ¼ RS RLk :

When the diode is not conducting, it is approxi-

mately an open circuit, and the capacitor discharges

through the load resistor RL. Thus the charging and

discharging time constants are different, and are given

by

Charging : tS ¼ RS RLkð ÞC; Discharging :tL ¼ RLC:

In this example and often in applications, RS � RL,

and the charging time constant is much smaller than

the discharge time constant. Thus the load voltage

almost follows the source voltage during charging,

but not during discharge. If the discharge time con-

stant is much larger than the period of the source

voltage, as is usually the case, the discharge will

occupy the lion’s share of each period, and we may

estimate the peak-to-peak ripple as

VRPP ¼ Vmax � Vmin; (8.57)

where

Vmin ffi Vmax exp � T

tL

� 	
; (8.58)

and thus

Vmax � Vmin ffi Vmax 1� exp � T

tL

� 	
 �
: (8.59)

The dotted line in Fig. 8.47 shows one period of the

ripple, translated to the origin. In the figure, Vmax and

Vmin denote the maximum and minimum values of the

load voltage, T is the period of the ripple, and tp is the

time at which the peak of the ripple occurs.

The solid line in Fig. 8.47 represents a piecewise-

linear (triangular-wave) approximation to the ripple.

For tp � t< T (approximately), the ripple follows an

exponential decay, with time constant tL ¼ RLC, as
given above. For tL 
 T, the exponential decay is

approximately linear during tp � t< T. It can be

shown that the rms amplitude of the ripple, based

upon the triangular-wave approximation, is given by

VLac rms ¼ Vmax � Vminffiffiffiffiffi
12

p : (8.60)

If the ripple is small, as is usual, then Vmax ffi VDC,

where VDC is the dc component of the load voltage.

With this approximation, (8.60) and (8.59) give

VLac rms ¼ Vmax � Vminffiffiffiffiffi
12

p ¼ Vmaxffiffiffiffiffi
12

p 1� exp � T

tL

� 	
 �

ffi VDCffiffiffiffiffi
12

p 1� exp � T

tL

� 	
 �
;

Vmax –Vmin

v̂L(V)

vL(V)

T
0

tp

t
0

Fig. 8.47 Piecewise-linear (triangular) approximation to the

load voltage in a half-wave rectifier circuit
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Fig. 8.46 Diode current in a half-wave rectifier circuit for two

values of the filter capacitance
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and the ripple factor is given by

g ¼ VLac rms

VDC
ffi 1ffiffiffiffiffi

12
p 1� exp � T

tL

� 	
 �
;

tL ¼ RLC: (8.61)

To achieve a small ripple, we want the discharge

time constant tL to be large relative to the period T of

the ripple, such that the load voltage does not change

much during the discharge part of each cycle. If that is

the case, the factor in the brackets in (8.61) is approxi-

mately T=tL and the ripple factor is approximately

g ¼ VLac rms

VDC
ffi T

tL
ffiffiffiffiffi
12

p ¼ T

RLC
ffiffiffiffiffi
12

p : (8.62)

For the circuit in Fig. 8.44, the ripple factors cal-

culated using (8.62) are 0.481 for C ¼ 100 mF and

0.048 for C ¼ 1; 000 mF, compared to 0.401 and

0.046 obtained by a numerical analysis of the circuit.

From (8.62), the capacitance C required to achieve

a specified small ripple factor g is given by

C ¼ T

RL g
ffiffiffiffiffi
12

p : (8.63)

From (8.63), achieving a ripple factor of 0.046 in

the circuit of Fig. 8.44 requires a capacitance of

1; 046 mF, which is close to the 1; 000 mF used to

achieve that ripple factor.

The approximate relation (8.63) improves as the

required ripple factor decreases, and is a useful design

relation for half-wave rectifier circuits. But keep in

mind that increasing the filter capacitance increases

the diode current and the required power-dissipation

rating for the diode.

Note that T is the period of the rectified voltage,

which equals the period of the source for half-wave

rectification and equals half the period of the source

for full-wave rectification. Keep in mind that several

approximations were invoked in deriving (8.63). One

assumed the ripple is triangular. Another assumed that

the maximum amplitude of the load voltage is approx-

imately equal to the dc component of the load voltage.

This approximation is poor unless the rms ripple is no

more than a few percent of the dc component. None-

theless, using a filter capacitor prescribed by (8.63)

achieves a slightly smaller ripple than the specified

value gð Þ. A capacitance calculated using (8.63) can be

quite large for low-frequency applications. For exam-

ple, for a 60 Hz source and 100O load, the capacit-

ance required to achieve a 1% ripple factor exceeds

4; 000 mF. Thus other components usually supplement

the smoothing provided by filter capacitors in such

applications.

8.10.5 Bypassing in Digital Systems

An important application of bypass capacitors is in

smoothing power-supply voltages at the power-input

terminals of each integrated circuit (IC) in a larger

digital system, such as a computer or memory bank.

Each IC can contain a great many individual switching

circuits (components of logic gates). Whenever a logic

gate changes state, it must charge or discharge stray

and parasitic capacitances, and draws a current pulse

(þ or –) from the supply to do so. Thus, as various

circuits in the IC switch from one state to another, the

current drawn by the IC from the power supply varies,

and wiring and source resistance can cause the supply

voltage to vary at the IC. The variation can be increased

by operation of other IC’s drawing from the same

supply. If the variation exceeds a certain tolerance, the

circuit can malfunction. The job of a bypass capacitor is

to keep the power-supply voltage at the IC within the

range acceptable to the IC. Supply-voltage fluctuations

at an IC are decidedly non-periodic, and specifying a

bypass capacitor for a digital integrated circuit is done

differently from specifying bypass capacitors for linear

and rectifier circuits, as described below.

On average, the voltage across a bypass capacitor

equals the supply voltage. The capacitor reduces ripple

by momentarily supplying current when the voltage

tries to fall and momentarily sinking current (absorb-

ing charge) when the voltage tries to rise. The bypass

capacitor’s terminal characteristic

i ¼ C
dv

dt

governs the relation between current and voltage

change. Using the approximation dv=dt ffi Dv=Dt and
solving for the capacitance gives

C ¼ i
Dt
Dv

; (8.64)
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which we interpret as follows: The current i is the

current sourced or sunk by the capacitor in order to

limit the change in voltage to Dv during an interval Dt.
We may use (8.64) to estimate the bypass capacitance

needed by a digital circuit, as illustrated by the next

example.

Example 8.23. A certain digital integrated

circuit (IC) is operating at a clock frequency

of 1 GHz. As it operates, it can require a

current of 50 mA above or below that provided

(on average) by the supply. It is required that

the supply voltage at the IC be kept within

Dv ¼ 5mV of the specified value. Specify a

bypass capacitor.

Solution: From (8.64)

C ¼ 50mAð Þ 1 ns

5mV

� 	
¼ 10 nF:

In most applications (in digital systems), bypass

capacitances fall in the range from about 10 to 500

nF. Such capacitors can be quite small, because the

operating voltages are small (typically, 5 V or less).

Figure 8.48 illustrates the smoothing effect of a

bypass capacitor. The upper trace is the voltage at

the power pin of an un-bypassed integrated logic cir-

cuit in a larger logic system. The fluctuations due to

switching in this and other circuits in the larger system

are evident. The lower trace shows the voltage at the

same pin after adding a bypass capacitor. While not

perfectly smooth, the bypassed voltage is well within

specifications on the IC.

Usually, one would add a little (10–25%) to the

capacitance given by (8.64) to account for the occa-

sional larger-than-expected current demand. On the

theory that bigger is better, you might be tempted

to choose a capacitance much larger than that. But

that is not always wise. Parasitic effects (e.g., lead

inductance and losses in the dielectric) and size

(space occupied) increase with capacitance, as does

the current required to charge or discharge the capa-

citor, so a larger-than-necessary capacitor can cause

as many problems as it solves.

8.10.6 Coupling Capacitors

Figure 8.49 shows a source connected to a resistive

load through a coupling capacitor C. The source and

load are said to be capacitively coupled.17 The usual

purpose of capacitive coupling is to prevent a dc

component of the source voltage from reaching the

load while allowing ac components above a certain

frequency to pass through to the load. Below, we

describe how to specify a coupling capacitor.

We assume the source voltage is of the form

vS tð Þ ¼ Vdc þ vac tð Þ;

where vac tð Þ has no dc component. The circuit is

linear, so superposition is applicable. The capacitor

will block the dc component Vdc by maintaining an

average charge Vdc, so the load voltage has no dc

component. We need concern ourselves with only the

ac component. We assume a sinusoidal model

vac tð Þ ¼ Vac cos o0 tð Þ; (8.65)

which could be the lowest-frequency component of a

sum of such voltages. The circuit is linear, so the

voltage across the capacitor is also sinusoidal, of the

form

vC tð Þ ¼ VC cos o0 tþ yð Þ: (8.66)

4

5

6

0 10 20 30 40 50 60 70 80 90 100 110 120 130
4
5

6

v1 (V)

v2 (V)

t  (ns)

Fig. 8.48 Supply voltage at

the terminals of an IC with and

without bypass

17Direct coupling also is called dc coupling and capacitive

coupling also is called ac coupling.
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From (8.12), the current through the capacitor is

given by

i ¼ C
dvC
dt

¼ �o0 CVC sin o0 tþ yð Þ:

It follows that the load voltage is given by

vR tð Þ ¼ i tð ÞR ¼ �o0 RCVC sin o0 tþ yð Þ
¼ VR sin o0 tþ yð Þ; (8.67)

where

VR ¼ �o0 RCVC ) VC ¼ � VR

o0 RC
: (8.68)

We wish to express the rms load voltage as a frac-

tion of the rms ac source voltage. Applying Kirchhoff’s

voltage law to the circuit gives

vac tð Þ ¼ vR tð Þ þ vC tð Þ ) Vac cos o0 tð Þ
¼ VR sin o0 tþ yð Þ þ VC cos o0 tþ yð Þ;

From trigonometry,

a cos að Þ þ b sin að Þ 
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
cos a� ’ð Þ;

’ ¼ tan�1 b

a

� 	
:

Thus

Vac cos o0 tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VR

2 þ VC
2

q
cos o0 tþ y� ’ð Þ;

so the rms amplitudes are related as

Vacj jffiffiffi
2

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VR

2 þ VC
2

p
ffiffiffi
2

p ) Vac
2 ¼ VR

2 þ VC
2

¼ VR
2 þ VR

o0 RC

� 	2

:

If we specify that

VRj j ¼ k Vacj j; 0< k< 1;

meaning that the rms ac load voltage is a specified

fraction k of the rms ac source voltage, then

Vac
2 ¼ k2Vac

2 1þ 1

o0 RC

� 	2
" #

) o0 RC ¼ kffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2

p :

Therefore the coupling capacitance required to

ensure that the rms ac load voltage equals at least a

fraction k of the rms ac source voltage is given by

C � k

o0 R
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2

p : (8.69)

The analysis leading to (8.69) ignores the source

resistance (not shown in Fig. 8.49). This is equivalent

to assuming that the load resistance is much larger

than the source resistance, which is true in the maj-

ority of applications where capacitive coupling is

employed. A much more tedious analysis that does

not ignore the source resistance leads to

C � k

2pf0 RL

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2

p 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2

1� k2
RS

RL
2þ RS

RL

� 	s :

(8.70)

In applying either (8.69) or (8.70), keep in mind

that tolerances on capacitors can be large – 20% or

more, and consider incorporating a margin of 25% or

so; e.g., by requiring

C � 1:25k

o0 R
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2

p :

Example 8.24. The first stage of a two-stage

amplifier is capacitively coupled to the second

stage, as shown in Fig. 8.50. The output resis-

tance of the first stage (the source resistance) is

negligible. The input resistance of the second

source load

C

vC+

+
–

–

vS R

i

vR

+

–

Fig. 8.49 Capacitive coupling of a source to a load
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stage is 20 kO. The voltage gain of each ampli-

fier is 25. The overall voltage gain must be at

least 500 for any sinusoid whose frequency

exceeds 30 Hz. Specify the coupling capacitor.

Solution: If the amplifiers were direct coupled,

the overall voltage gain would be 25ð Þ2¼ 625.

The specified gain at 30 Hz is 500, so

k ¼ 500

625
¼ 0:8

and we require

C� k

2pf0R
ffiffiffiffiffiffiffiffiffiffiffiffi
1�k2

p

)C� 0:8

2p 30Hzð Þ 20�103Oð Þ 0:6ð Þ
)C� 354nF:

The simulation shown in Fig. 8.51 below

illustrates this result. (The voltmeters indicate

rms amplitude.) The voltage gain of each

inverting amplifier equals 25, the coupling

capacitance is that calculated above, and the

overall voltage gain at 30 Hz (to three signifi-

cant figures) is

Av ¼ 5:00V

10:0mV
¼ 500;

as specified.

Exercise 8.23. The two stages of an amplifier

are coupled as shown in Fig. 8.50, where

C ¼ 500 nF. The output resistance of the first

stage is negligible and the input resistance of the

second stage is 10 kO. For what frequencies of a
sinusoidal output from the first stage is the

overall gain reduced by a factor of 0.5 or more?

Effects of capacitive coupling in cascaded stages

are cumulative. For example, refer to Fig. 8.52, where

o0> 0. We may assume (without loss of generality)

20 kΩ
20 kΩ

500 kΩ 500 kΩ

R1

R2 R4

XMM2

XMM1

U1
C1

U2
R3

354 nF
OPAMP_3T_VIRTUAL

OPAMP_3T_VIRTUAL

V1

14.14 mV
30 Hz
0Deg

−

−

−

+

+
+

−

+

−+

Fig. 8.51 See Example 8.24

C1st stage 2nd stage

Fig. 8.50 See Example 8.24
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that the initial phase angles yn are such that V1, V2, 	 	 	
VL are positive. We also assume that the output resis-

tance of each circuit (or the source) is much smaller

than the input resistance of the succeeding circuit (or

the load). Suppose the coupling capacitors are speci-

fied such that

V2 ¼ k1V1; V4 ¼ k2V3

for frequency f0. Then

VL ¼ Av3V4 ¼ Av3k2V3 ¼ Av3k2Av2V2

¼ Av3k2Av2k1V1 ¼ Av3k2Av2k1Av1VS:

The overall voltage gain is given by

Av ¼ VL

VS
¼ Av3Av2Av1k1k2:

If we want the overall voltage gain to be a fraction k

of the product of the individual gains, then we must

specify the coupling capacitors such that k1k2 ¼ k. If

the input resistances of circuit 2 and circuit 3 are R2

and R3, respectively, and if the output resistances of

circuit 1 and circuit 2 are negligible, then we would

require

C1 � k1

2pf0 R2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k1

2
p ; C2 � k2

2pf0 R3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2

2
p :

(8.71)

Example 8.25. Figure 8.53 shows a two-stage

amplifier, where vS ¼ VS cos 2pf0 tð Þ, with f0 ¼
80Hz and VS ¼ 5mV. Assume the op amps

are ideal. The source resistance and the output

resistances of the individual amplifiers are

negligible.

(a) Assume the coupling capacitors are con-

ductors and specify the resistances R1; R2

such that the overall voltage gain is

Av ¼ 2; 500.

(b) Specify the coupling capacitors such that

the overall voltage gain for f � f0 equals

or exceeds 0:8Av ¼ 2; 000.

Solution:

(a) The overall voltage gain is given by

Av ¼ VLrms

VS rms
¼ k1k2

R2

R1

� 	2

;

where

k1 ¼ V2 rms

V1 rms
; k2 ¼ VL rms

V3 rms
:

If the capacitors are conductors, then

k1 ffi 1, k2 ffi 1, and

Av ¼ 2; 500 ffi R2

R1

� 	2

¼ 50ð Þ2) R2 ¼ 50R1:

+

–

+

–
vS

R1

R2 R2

R1
C1 C2 RLvL

v1 v2 v3
+
–

Fig. 8.53 See Example 8.25

RL

C1 C2RS

v2 v4

+ +

– –

circuit 1 circuit 2 circuit 3vS v1

+

–
v3

+

–
vL

+

–

+
–

vS = VS cos (w0t) v1 = V1 cos (w0t + q1)

v2 = V2 cos (w0t + q2)
V1 = Av1VS

v3 = V3 cos (w0t + q3)

v4 = V4 cos (w 0t + q4)
V3 = Av2V2

vL = VL cos (w0t + qL)
VL = Av3V4Fig. 8.52 Circuits in cascade,

with capacitive coupling
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We choose

R2 ¼ 1MO ) R1 ¼ 20 kO:

(b) Let k1 ¼ k2 ¼
ffiffiffiffiffiffiffi
0:8

p
for f ¼ f0. From

(8.71)

C1 ¼C2 ¼
ffiffiffiffiffiffiffi
0:8

p

2pf0R1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�0:8

p ¼ 199nFffi 200nF:

Equations (8.69) and (8.70) are applicable to a

sinusoidal current or voltage, or to a sum of sinusoidal

currents or voltages, where the lowest frequency

represented equals f0. For piecewise-constant signals,

we can approach the problem of specifying a coupling

capacitor from another point of view. Refer to

Fig. 8.54, where a rectangular pulse train source vS tð Þ
is capacitively coupled to a resistive load RL. The dc

component of the pulse train is blocked by the capaci-

tor, so the average value of the load voltage must be

zero. Also, the voltage across the capacitor cannot

change instantaneously, so when the source voltage

changes by � V0, the load voltage must also change

by � V0. The dc component of the source voltage vS is

given by

VSdc ¼ 1

T

ðT
0

vS tð Þdt ¼ V0t0
T

;

so the maximum and minimum amplitudes of the ac

component of vS are given by

Vmax ¼ V0 1� t0
T

� �
; Vmin ¼ Vmax � V0: (8.72)

Figure 8.55 shows a qualitative graph of the load

voltage vL (exaggerated), superimposed on a graph

(dotted) of the ac component of the source voltage.

By inspection,

V2 ¼ V1 exp � t0
t

� �
; (8.73)

where

t ¼ RLC: (8.74)

We know that

V2 <Vmax <V1: (8.75)

Thus, a measure of the difference between the load

voltage vL and the ac component of vS is given by

V1 � V2 ¼ V1 1� exp � t0
t

� �h i
) V1 � V2

V1

¼ 1� exp � t0
t

� �
;

(8.76)

where we have used (8.73). If the difference V1 � V2 is

sufficiently small, as is usually the case in problems of

this kind, then V1 � V2 is approximately twice the

maximum error DV, and we may write

2DV
V1

¼ 1� exp � t0
t

� �
: (8.77)

Finally, if the error is sufficiently small, we may use

V1 ffi Vmax in (8.77) to obtain

2DV
Vmax

¼ 1� exp � t0
t

� �
) t ¼ � t0

ln 1� 2DV=Vmaxð Þ :
(8.78)

vSac

vL

t

V1

V2

Vmax

Vmax –V0

V2  –V0

V1–V0

V1

t0 T
0 0

vL

Fig. 8.55 Qualitative graph of the response of the circuit in

Fig. 8.54

V0

t
t0 T

0
0

vS

RL

C

vS vL

+

–

+
–

Fig. 8.54 Rectangular pulse-train source capacitively coupled

to a load (see also Fig. 8.55)
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Equation (8.78) gives the time constant required to

achieve a specified error. The relation is applicable to

circuits equivalent to the circuit in Fig. 8.54 and is

valid if DV � Vmax. For DV small, the relation tends

to give a time constant slightly larger than necessary

(an error smaller than specified). The parameter t0 is

the duration of the positive pulse in each period of

the input, VS max is the maximum amplitude of the ac

component of the input, and DV is (approximately) the

maximum difference between the load voltage and the

ac component of the input.

Example 8.26. In Fig. 8.54, V0 ¼ 10V,

T ¼ 10ms, t0 ¼ 2ms, and RL ¼ 5 kO. The

load voltage vL must be within 100 mV of the

ac component of the source voltage vS at all

times. Specify the coupling capacitor C. Calcu-
late the voltages V1 and V2 defined by Fig. 8.55

to verify your answer.

Solution: The dc component of the source volt-

age is

V0 t0
T

¼ 2V:

Thus, in (8.78) Vmax ¼ 8V and

DV ¼ 100mV. We find

t¼� t0
ln 1�2DV=Vmaxð Þ¼� 2ms

ln 1�0:2=10ð Þ
ffi 100ms)C¼ t

RL
¼ 100ms

5kO
¼ 20mF:

From Fig. 8.55, we have

V2¼V1 exp � t0
t

� �
;

V1�V0¼ V2�V0ð Þexp �T� t0
t

� 	
: (8.79)

Using the first relation to replace V2 in the

second gives

V1�V0¼ V1 exp �t0
t

� �
�V0

h i
exp �T� t0

t

� 	

)V1¼V0

exp �T� t0
t

� 	
�1

exp �T

t

� 	
�1

ffi 8:079V;

whence

V2 ¼ V1 exp � t0
t

� �
¼ 7:919V:

The errors are

V1 � Vmax ¼ 79mV;Vmax � V2 ¼ 81mV:

both of which are less than 100 mV.

Exercise 8.24. In practice, a non-negative

rectangular pulse train usually is described in

terms of its duty cycle d, period T, and peak

amplitude V0, where the duty cycle is the frac-

tion of each cycle for which the pulse train is

positive. Express the requirement (8.78) for

faithful transmission of the ac component of

a rectangular pulse train in terms of the duty

cycle of the pulse train.

8.10.7 Input Bias Current Compensation
in Capacitively Coupled Amplifiers

Recall from Chapter 7 that input bias currents in an op

amp can cause a dc offset voltage at the output of an

amplifier, and that the offset can be largely corrected

by inserting a compensating resistor RX as shown in

Fig. 8.56 for direct-coupled inverting and non-invert-

ing amplifiers. The approximations assume R1 
 RS

and R2 
 R1, which often hold for such amplifiers.

Input-bias-current compensation for capacitively

coupled amplifiers is different from that for direct-

coupled amplifiers. The compensating resistor for a

capacitively coupled inverting amplifier is connected

from the positive input (p) terminal to ground, as

shown in Fig. 8.57. But in this case, there is no dc

path back through the source, so no dc bias current

passes through R1. Requiring that the output vo due to

the input bias currents alone equals zero requires

vp ¼ vn, which, again assuming Ip ¼ In, implies

In R2

Ri

2

����
� 	

¼ Ip RX
Ri

2

����
� 	

) RX ¼ R2; (8.80)
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where Ri is the input resistance of the op amp. Thus,

for a capacitively coupled inverting amplifier, the

input bias current compensating resistance equals the

feedback resistance R2, not the input resistance R1, as

in direct-coupled amplifiers.

In a capacitively coupled non-inverting amplifier,

the compensating resistor must be connected from the

p terminal to ground, as shown in Fig. 8.58, because

there is no dc path back through the source. Requiring

that the output vo due to the input bias currents alone

equals zero requires vp ¼ vn, which (assuming Ip ¼ In)
leads to

Ip RX
Ri

2

����
� 	

¼ In R1 R2kð Þ Ri

2

����
) RX ¼ R1 R2k ; (8.81)

and again,

RX ¼ R1 R2k ffi R1; R2 
 R1: (8.82)

Input bias current compensation might be optional

for direct-coupled amplifiers and for capacitively

coupled inverting amplifiers, because the resulting

dc offset in the output might be insignificant in

some applications. But input bias current compensa-
tion is required for a capacitively coupled non-

inverting amplifier, because otherwise the bias cur-

rent Ip passes through only the resistance Ri=2 and

the resulting voltage is large enough to cause the op

amp to saturate.

One effect of bias-current compensation in a capac-

itively coupled non-inverting amplifier is a substantial

reduction of the amplifier input resistance, typically

from 1MO or more to approximately RX ¼ R1 R2k . In

a typical application, R2 
 R1 so the input resistance

of a bias-current-compensated capacitively coupled

non-inverting amplifier is about the same as that for

an inverting amplifier having the same dc voltage

gain. If direct coupling to a source is possible, a non-

inverting amplifier presents a much larger resistance

(magnitude) to the source than does a comparable

inverting amplifier, but if capacitive coupling is neces-

sary (to block a dc component), a non-inverting ampli-

fier offers no particular advantage over an inverting

amplifier in that regard. A capacitively coupled fol-

lower would require a dc path to ground from the

positive terminal, which would reduce the input resis-

tance and might eliminate the reason for using the

follower.

+

–

CRS

vS
n

p
o

RL

R2R1

RX
In

Ip

+
–

Fig. 8.58 Input bias current compensation for a capacitively

coupled non-inverting amplifier, where RX ffi R1

RX = (R1 + RS)  R2 ≅ R1 RX = R1  R2 –RS ≅ R1

R1

R2

+

–

+
–

+
–

vS

R2R1

RS

RX

RXRS

vS

(a) inverting amplifier (b) non-inverting amplifier

+
–

Fig. 8.56 Input bias-current

compensation in direct-

coupled inverting and non-

inverting amplifiers
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n

+
–

Fig. 8.57 DC bias compensation for a capacitively coupled

inverting amplifier, where RX ¼ R2
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Example 8.27. Figure 8.59(a) shows a pre-

liminary design for a two-stage amplifier that

will drive a resistive load RL ¼ 2 kO. The

available input voltage is vS ¼ VS cos 2pf0 tð Þ,
with VS � 10mV and f0 � 50Hz. The source

resistance RS is no larger than 50O. For fre-
quencies greater than or equal to f0, the mini-
mum overall voltage gain is to be Av ¼ 800,

with about equal gain from each stage. The

first stage is to be capacitively coupled to the

second, as shown, in case imperfect cancella-

tion of the input voltage offset in the first stage

produces an undesirable dc component in the

first-stage output v1. The available power-sup-

ply voltages are � VCC ¼ �15V. The power-

supply output resistance and associated

wiring resistance is less than 2O. Complete the

design. Include bias-current compensation

resistors.

Solution: Figure 8.59(b) shows a circuit diagram
for the amplifier. The power-supply circuitry is

omitted to avoid cluttering the diagram.

The voltage gain for frequencies much

larger than 50 Hz is not specified, but we

know it must be larger than 800. The larger

we make the overall high-frequency voltage

gain, the smaller will be the parameter k in

(8.69) and (consequently) the smaller will be

the required coupling capacitance. The maxi-

mum allowable voltage gain is determined by

the maximum amplitude of the input (10 mV)

and the supply voltage (15 V). Assuming rail-

to-rail operation,

max Avð Þ ¼ 15V

10mV
¼ 1; 500:

To provide a little margin, we choose,

somewhat arbitrarily,

Av ¼ 352 ¼ 1; 225:

It follows that

k ¼ 800

1; 225
¼ 0:653:

The feedback networks in the inverting and

non-inverting amplifiers are the same, so that

the voltage gains of the two stages are approx-

imately the same and approximately equal to

35. We choose R2 ¼ 1MO to minimize the

load on each op amp and to allow a large

input resistance. Thus, for the inverting

amplifier,

R2

R1

¼ 35; R2 ¼ 1MO ) R1 ¼ R2

35
ffi 28:6 kO:

For the non-inverting amplifier,

1þR4

R3

¼ 35; R4 ¼ 1MO) R3 ¼ R4

34
¼ 29:4kO:

inverting
amplifier

(a)

(b)

non-inverting
amplifier

RL
CRS

v1

+

–

+

–
+
–vS

vS

R1

R2

R4R3

C

v1

RLvL
v2

RX
RY

+
–

+
–

Fig. 8.59 See Example 8.27
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From (8.80) and (8.82), the bias-current

compensation resistances are

RX ¼ R2 ¼ 1MO; RY ¼ R3 ¼ 29:4 kO:

The lowest frequency of interest is 50Hz

and the input resistance for the second stage

is approximately RY . From (8.69), we require a

coupling capacitance

C ¼ k

2pf0 R3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2

p ) C ¼ 93:4 nF:

The more precise relation (8.70) gives

C¼ k

2pf0R3

ffiffiffiffiffiffiffiffiffiffiffiffi
1� k2

p 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2

1� k2
RS

R3

2þRS

R3

� 	s

¼ 93:5nF:

The difference, given typical tolerances on

capacitors, is insignificant. Figure 8.60 below

shows a simulation of the circuit. The

measured voltage gain at 50 Hz is

Av ¼ 7:999V

9:998mV
ffi 800:

8.10.8 Switched Capacitor Circuits

Refer to Fig. 8.61. The circuit diagrams illustrate that

the switches are alternately and oppositely open and

closed; i.e., when switch 1 is closed, switch 2 is open,

and vice-versa. The timing diagram on the right indi-

cates for how long each switch is closed. We assume

that the voltages v1 and v2 are approximately constant

during any time interval having duration DT. Each
time a switch is closed (or open), it remains so for a

time DT=2. When switch 1 is closed, the capacitor is

discharged. When switch 2 is closed, the capacitor is

charged to Dv ¼ v1 � v2, which means that a quantity

of charge given by Dq ¼ CDv flows through a load

attached to the port on the right. Each time switch 1 is

closed, switch 2 is open and no charge flows through

the load. The average current through the load over

one complete switching cycle is given by

�i ¼ C
Dv
DT

¼ C fs Dv; Dv ¼ v1 � v2; (8.83)

where fs ¼ DT�1 is the switching frequency (the

number of complete switching cycles per second)

and v1 � v2 is the voltage across the capacitor when

switch 2 is closed.

From (8.83) the average current through the capac-

itor is proportional to the voltage across the capacitor,

which means that the switched capacitor acts as a

Fig. 8.60 Simulation of the

circuit in Fig. 8.59(b)
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resistor. By Ohm’s law, the effective resistance of the

switched-capacitor arrangement is given by

Req ¼ Dv
�i
¼ Dv

C fs Dv
¼ 1

C fs
¼ DT

C
: (8.84)

For the analysis above and the resulting relation

(8.84) to be valid, the voltages v1 and v2 must be

slowly varying relative to the switching frequency fs.

We are unprepared for a detailed examination of this

issue, but we note that in practice, if the voltages are

sinusoidal, the switching rate might be 50–100 times

the frequency of the sinusoid.

Figure 8.62 shows another switched-capacitor

arrangement, where the load is connected from termi-

nal a to terminal b. We assume that the voltages v1 and
v2 are approximately constant during any interval of

duration DT=2. When the switches are in position 1,

the voltage across the capacitor equals v1. When the

switches are in position 2, the voltage across the cap-

acitor equals � v2. Thus the voltage across the capac-

itor changes from v1 to � v2 during the time DT=2 that

the switch is in position 2. The total change in the

voltage is Dv ¼ v1 þ v2. The corresponding change in

the charge on the capacitor is Dq ¼ CDv, with the

positive direction of charge flow is from right to left,

whereas the positive polarity of the voltage vC across

the capacitor is from left to right. In other words,

during the time DT=2 that the switch is in position 2,

the direction of charge flow is from the negative ter-

minal to the positive terminal on the capacitor. The

average current during one complete switching period

is given by

i ¼ Dq
DT

¼ �C
Dv
DT

and the apparent resistance is given by

Req ¼ �DT
C

¼ � 1

C fs
: (8.85)

Thus the circuit in Fig. 8.62 acts as a negative

resistance.

vC

C

C

v1

21 21 21

1

2

2 1

2

1 2
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2 2

ΔTΔT
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v2

+
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v2

+

–

i = 0

v1–v2i = –C
ΔT

+

–

v1

+

–

a

b

a

b

+ –

vC+ –

Fig. 8.62 A switched-

capacitor, negative-resistance

circuit
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Fig. 8.61 Switched capacitor

as a resistor
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In a circuit, a positive switched-capacitor resistor

(Fig. 8.61) can float; that is it is unnecessary for the

capacitor and load to have a common ground, because

the capacitor discharges through a closed loop. A

negative-resistance switched-capacitor filter cannot

float (relative to the load) because the capacitor must

discharge through the load.

In implementations of switched-capacitor resistors,

the switches are transistors, which act as single-pole

single-throw switches. Thus a capacitor and two tran-

sistors are required to implement the single switched-

capacitor positive resistor illustrated by Fig. 8.61.

Nonetheless, switched-capacitor resistors often are

preferred to ohmic resistors in integrated circuits, for

several reasons:

• A switched-capacitor resistor can occupy less area

on a chip than an equivalent ohmic resistor.

• The equivalent resistance of a switched-capacitor

resistor can be set precisely (e.g., by adjusting the

switching rate), whereas it is difficult to achieve

precise ohmic resistances in integrated circuits.

• The equivalent resistance of a switched-capacitor

resistor can be varied (by varying the switching

rate), whereas the resistance of an ohmic resistor

is fixed.

• In many practical circuits, performance depends not

upon the resistance of a single resistor, but instead

upon ratios of one resistance to another; e.g., in

inverting and non-inverting op-amp amplifier cir-

cuits. It is difficult to achieve a precise (single)

capacitor in integrated form, but it is not as difficult

to achieve precise capacitance ratios. A precise ratio

of one switched-capacitor resistor to another in an

integrated circuit can be achieved.

On the downside, switched capacitors can be noisy

(switching transients can contaminate voltages of

interest). Also, transistors are not perfect switches, in

that they introduce additional voltage drops. The

capacitor voltage does not quite reach the source volt-

age during the charging period and the maximum load

voltage is slightly less than the initial capacitor voltage

at the beginning of the discharge. Thus there is a

minimum source voltage for which a switched-capaci-

tor resistor will work. You will learn more about these

issues when you study electronics.

8.10.9 Power Dissipation in Switched-
Capacitor Circuits

The electronic switches used in switched-capacitor

resistors have a small but non-zero on-resistance Ron

when closed and a large but finite off-resistance Roff

when open. The on-resistance of the switches ranges

from a few microohms to a few ohms and the off-

resistance from a few megaohms to hundreds of giga-

ohms, depending upon the devices used. Figure 8.63

shows a circuit model for a switched-capacitor res-

istor, including the on- and off-resistances of the

switches. In the following analysis, we assume

Roff 
 Ron, DT 
 RonC, and that the applied voltage

v1 is approximately constant during any interval of

duration DT. These assumptions are generally valid

for any practical implementation using a switched-

capacitor as a resistor.

We assume Roff 
 Ron. For either switch position,

the Thévenin equivalent resistance seen by the capa-

citor is

RT ¼ Ron Ron þ Roff

� ��� ffi Ron:

Thus the charge and discharge time constants are

the same, both given by

t ffi RonC:

2
ΔT ΔT

1

2

1

0

t

1 2

Roff Roff

Ron Ron

v1

C

+

–

Fig. 8.63 Circuit model for a

switched-capacitor resistor
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Switched-capacitor resistors generally are designed

such that the capacitor charges and discharges com-

pletely each cycle. Thus

t � DT:

In what follows, we consider a single switching

interval beginning when switch 2 is closed, and take

the time origin as the beginning of that interval. Let v1
denote the applied voltage (approximately constant)

during the interval. While switch 2 is closed, the

capacitor charges from zero to

Roff þ Ron

� �
v1

2Ron þ Roff
ffi v1:

While switch 1 is closed, the capacitor discharges

from v1 to

Ron v1
2Ron þ Roff

ffi Ron

Roff
v1 ffi 0:

The charge placed on the capacitor while switch

2 is closed is given by

DQ ffi Cv1:

Thus the energy stored by the capacitor while

switch 2 is closed is given by

DwC ¼ 1

2
Cv1

2:

Recall from Section 8.9 that when a capacitor is

fully charged by a constant source through a resis-

tance, the total energy provided by the source equals

twice that finally stored by the capacitor. Thus the total

energy provided by the source in Fig. 8.63 is given by

DwS ¼ 2DwC ¼ Cv1
2:

The average power dissipated by the switched-

capacitor resistor is given by

P ¼ DwS

DT
¼ Cv1

2

DT
¼ v1

2

Req
;

where

Req ¼ DT
C

is the equivalent resistance of the switched-capacitor

resistor. We may conclude that the power dissipated

by a switched-capacitor resistor equals that dissipated

by an ordinary resistor having the same resistance,

provided that (1) the applied voltage is approximately

constant during any switching interval, (2) the off-

resistance of the switches is much larger than the on-

resistance, and (3) the capacitor charges and then dis-

charges completely during each switching cycle. For

the model in Fig. 8.63, the power is dissipated by the

switches, because the average power dissipated by an

ideal capacitor equals zero. This might not be true in a

physical circuit, because physical capacitors are not

entirely lossless.

In addition to their intentional use as resistors,

switched-capacitor configurations are found in mem-

ory and logic circuits (in digital computers and other

digital systems). In memory and logic circuits, the

switched capacitance is mainly device junction

capacitance and stray (wiring) capacitance, and pre-

dominately the latter. Below, we obtain an expression

for power dissipated in such circuits, which bears on

power supply and cooling requirements.

Refer to Fig. 8.64, where the switch toggles

between positions 1 and 2, being in each position for

a time DT/2. We assume the time constants R1C and

R2C for the charge and discharge are both much smal-

ler than the time DT/2, so the capacitor charges fully

+

–

R1 R2

CV0

1 2 1

2

1

2

(a) switched-capacitor circuit (b) switch position (periodic)
2

ΔT ΔT

2
Fig. 8.64 Circuit used to

calculate power dissipation in

a switched capacitor
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(to V0) while the switch is in position 1 and discharges

completely while the switch is in position 2. Thus the

work done in each position is given by

W ¼ 1

2
CV0

2

and the average power dissipated during one complete

switching cycle is given by

P ¼ 2W

DT
¼ CV0

2

DT
: (8.86)

The switching in Fig. 8.64 is periodic, so the aver-

age power (over all time) equals the average power

dissipated during any one interval of duration DT.
Equation (8.86) can be written

P ¼ CV0
2 fs; fs ¼ 1

DT
; (8.87)

where fs is called the switching frequency. In a digital

logic circuit, switching operations are controlled by

a clock waveform, which is approximately a square

wave. A logic gate can change state at most once

during a complete clock cycle. Thus the frequency of

the clock driving a switched capacitor is twice the

switching frequency fs appearing in (8.87). If DT is

the duration of a complete switching cycle, the clock

frequency would be fC ¼ 2=DT or DT ¼ 2=fC and

(8.87) becomes

P ¼ 1

2
CV0

2 fC: (8.88)

Equation (8.88) is strictly applicable only to a cir-

cuit that switches periodically, at a rate fC. However,

in a typical memory or logic circuit, there are very

many gates switching in what can be modeled as a

random pattern. As a result, the total power dissipated

can be estimated as

PT ¼ N

2
CV0

2 fC; (8.89)

where N is the average number of gates that switch

during any one clock period.

Example 8.28. In a certain microprocessor,

the clock rate is 2 GHz and the logic-level

voltage is 1 V. The capacitance associated

with each gate or memory cell is about 10 fF

(10�14 F), which is a realistic value. (a) What

is the power dissipation per gate or memory

cell? (b) The microprocessor contains a total of

108 gates and memory cells, but on average,

only 10% are switching at any given time. If

(8.88) is valid, what is the average power

dissipated by the microprocessor?

Solution: (a) From (8.88), the power dissipa-

tion per device is

P¼ 1

2
CV0

2 fC

¼ 1

2
10fFð Þ 1Vð Þ2 2GHzð Þ¼ 10mW: (8.90)

(b) If only about 10% of the gates are switch-

ing at any given time, the total power

dissipated is

PT ¼ 0:1� 108
� �

10 mWð Þ ¼ 100W:

Without extra measures for cooling, the

microprocessor would become quite hot. Mod-

ern microprocessors are packaged with an inte-

gral heat sink and fan, and dissipate on the

order of 100 W cm�2 (chip area). Current

projections predict an ultimate density of

about 1012 devices per cm2, so heat dissipation

will become an even greater problem in the

future. Even today, high-performance main-

frame computers require elaborate liquid cool-

ing systems.

Equation (8.87) has profound implications for high-

speed logic design, because it shows that average

power dissipated increases only linearly with capaci-

tance, only linearly with switching rate (clock rate),

but as the square of the voltage V. Generally, the
minimum achievable capacitance is dictated by device

geometry and chip layout, whereas demand for

increased performance drives the clock rate fc to

ever-higher values. As a result, integrated logic-circuit

designers are driven to make logic-level voltages as
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small as possible. For example, if the voltage V0 in

(8.87) is decreased from 5 to 2 V, the power dissipa-

tion is multiplied by the factor (2/5)2¼0.16, which is a

decrease of about 84%. Such a reduction has signifi-

cant implications for power-supply requirements (e.g.,

battery weight and lifetime) and for measures neces-

sary to remove heat.

Example 8.29. The clock rate for a certain

integrated logic circuit is 1.2 GHz. By what

percentage must the supply voltage be

decreased if the clock rate is to be increased

by 50% to 1.8 GHZ and the power dissipation

must remain the same?

Solution: The power dissipated is fixed. From

(8.87)

P ¼ 1

2
CV1

2fC1 ¼ 1

2
CV2

2fC2 ) V2 ¼
ffiffiffiffiffiffi
fC1
fC2

s
V1

ffi 0:82V1:

The supply voltage must be decreased by

about 18%.

8.11 Problems

Section 8.2 is prerequisite for the following

problems.

P 8.1 Two metal plates 4 m long and 100 mm wide

are parallel and separated by a dielectric whose rela-

tive permittivity is 3.5. The capacitance of the arrange-

ment is 35 nF. What is the thickness of the dielectric?

Ignore edge effects.

P 8.2 Single-layer ceramic disc capacitors usually

are made by plating each side of a thin ceramic disk

(the dielectric) with a suitable metal, such as silver.

The relative permittivities of some ceramics exceed

104, so ceramic disk capacitors can provide relatively

large capacitances in a small volume. The relative

permittivity of a particular ceramic is 12,000. What

is the thickness of a single-layer disc capacitor utiliz-

ing that dielectric if the capacitance is 50 nF, the

diameter is 1 cm, and the thickness of each plate is

25 mm? Neglect edge effects (fringing).

P 8.3 Two parallel-plate capacitors C1; C2 have

the same plate area A. The relative permittivities of

the dielectrics are e1; e2. What is the relation between

the plate separations if the capacitances are the same?

P 8.4 The plates of one parallel-plate capacitor are

square, 1 m on a side, and 100 mm apart. The capaci-

tance is equal to that of a second parallel-plate air-

dielectric capacitor whose plates are 2 � 4 m and

50 mm apart. What is the relative permittivity er of

the dielectric material between the plates of the first

capacitor?

P 8.5 A parallel-plate air-dielectric capacitor is

charged to 100 V and disconnected from the source.

The distance between the plates is then halved. What

is the new voltage across the capacitor?

P 8.6 The capacitance of a certain air-dielectric

parallel-plate capacitor is 2 pF. The plate separation

is halved and the space between the plates is filled with

an oil whose relative permittivity is 400. What is the

new capacitance?

P 8.7 The capacitance of a certain rectangular air-

dielectric parallel-plate capacitor is 4 pF. Each dimen-

sion of each plate is halved and the space between the

plates is filled with a glass whose relative permittivity

is 5. What is the new capacitance?

P 8.8 Figure P 8.1 shows the circuit-diagram sym-

bol for a varactor diode, which when reverse-biased

(when v> 0) acts as a voltage-controlled capacitor

having capacitance

C ¼ C0

1þ v=v0½ �a :

For a certain varactor diode, C0 ¼ 67 pF,

v0 ¼ 1:18V, and a ¼ 0:44. (a) Construct a graph of

capacitance versus voltage for this diode for

100mV � v � 100V. Use logarithmic scales for both

axes. (b) Let v ¼ Vdc þ Vac cos 2pf tð Þ, with Vdc ¼ 2V,

Vac ¼ 1V, and f ¼ 10 kHz. Construct a graph of the

capacitance versus time (one period).

v
+

–
Fig. P 8.1 See Problem P 8.8
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Section 8.3 is prerequisite for the following

problems.

P 8.9 The charge on one plate of a certain capacitor

is given by

q tð Þ ¼ Q0 sin 2pf tð Þ; Q0 > 0:

Let Vrms denote the rms voltage across the capacitor

and obtain expressions for the capacitance, the rms

current Irms through the capacitor, and the ratio

Vrms=Irms.
P 8.10 Refer to Fig. P 8.2, where C ¼ 400 nF,

R ¼ 10:O, and the voltage across the capacitor is as

shown. Draw a graph of the current i versus time.

P 8.11 Refer to Fig. P 8.3. Draw a graph of the

source voltage vS versus time.

P 8.12 Figure P 8.4 shows graphs of the voltage v(t)
across and current i tð Þ through a capacitor, where

v tð Þ ¼ V0 cos 2pf tð Þ; i tð Þ ¼ �I0 sin 2pf tð Þ;

with V0 ¼ 5V and I0 ¼ 31mA. The current enters the

positive terminal of the capacitor. Find the capacitance

of the capacitor.

P 8.13 The voltage across a capacitor cannot

change instantaneously because such change would

require infinite current. Can the capacitance of a vari-

able capacitor change instantaneously?

P 8.14 In Fig. P 8.5, vC ¼ VC cos 2pf0 tð Þ. Show
that the source voltage can be expressed as a single

sinusoidal function of time of the form vS tð Þ ¼
VS cos 2pf0 tþ yð Þ.

P 8.15 In Fig. P 8.5, the voltage across the resistor is

given by vR¼VRcos 2pf0 tþ0:25pð Þ, withVR¼10:64V.

Find the voltage vC(t) across the capacitor.

P 8.16 Refer to Fig. P 8.6. Obtain an expression for

the source voltage vS tð Þ. Give the values of all para-

meters in the expression.

P 8.17 A variable capacitor is set to 200 pF and

connected to a source having open-circuit (available)

voltage V0 ¼ 15V. After it is fully charged, the capac-

itor is disconnected from the source and the capaci-

tance is increased to 5 nF. What is the new voltage

across the capacitor?

P 8.18 (i) Show that the circuit in Fig. P 8.7(a) is

equivalent at the terminals a–b to the circuit in

Fig. P 8.7(b). Thus show that the circuit in Fig. P 8.7(a)

is a capacitancemultiplier. (ii)What limits the charge

(voltage) that can be placed on the capacitor?

vS

RS
C vC

+

–

vC  (mV)

t (μs)

50

–50

1

2 3

4

RS = 10 Ω, C = 100nF

+
–

Fig. P 8.3 See Problem P 8.11
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Fig. P 8.4 See Problem P 8.12
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Fig. P 8.2 See Problem P 8.10
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RS = 50 Ω, C = 50nF
Fig. P 8.5 See Problem

P 8.14, 15
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Section 8.4 is prerequisite for the following

problems.

P 8.19 Refer to Fig. P 8.8, where v 0ð Þ<V1<V2.

The switch is moved from position 0 to position 1 at

t ¼ 0, then to position 2 at t ¼ t1, then back to position
0 at t ¼ t2. Sketch neatly and label fully a graph of the

voltage v(t) for 0 � t � t2. Then give an expression for

the voltage v(t) for t > 0.

P 8.20 In Fig. P 8.9, the switch is closed at t ¼ 0.

The graph shows the voltage across the capacitor for

t > 0. Estimate the parameters of the Thévenin source.

P 8.21 In Fig. P 8.10, the switch is moved from a to

b at t ¼ 0, having been at a for a very long time. The

graph shows the voltage across the resistor as a func-

tion of time. Estimate the source voltage V0 and the

capacitance C.
P 8.22 A capacitor C ¼ 10 nF in series with a resis-

tor R ¼ 10O is suddenly connected (at t ¼ 0) to a dc

source V0 ¼ 20V. What is the final t ! 1ð Þ value of
the charge (C) on the capacitor? If the initial charge

on the capacitor equals zero, what is the initial value

of the current? At what time does the charge reach

99% of its final value?

Thevenin
source

vC

+

–
C

0
0 1 2 3 4 5 6 7 8

2

4

6

8

10

t (μs)

vC (mV)

C = 50nF
Fig. P 8.9 See Problem

P 8.20
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b

Fig. P 8.7 See Problem P 8.18
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Fig. P 8.10 See Problem

P 8.21
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Fig. P 8.8 See Problem P 8.19
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+

–

+
– C

R1
R2vS (t)

R1 = 1kΩ, R2 = 2kΩ, C = 25nF

6
π

vC (t) = Vdc +Vac cos  ω0t +

Vdc = 10V, Vac = 15V, f0 = 1kHz
Fig. P 8.6 See Problem

P 8.16
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P 8.23 Refer to Fig. P 8.11, where the circuit is

in steady state. (a) What is required of R and C if the

output voltage is to be approximately equal to the

input voltage? (b) Construct plots of the voltage

vout tð Þ versus time for one complete period of the

input for C ¼ 100 nF and (a) R ¼ 10 kO, (b)

R ¼ 2 kO. (c) Calculate the average power dissipated

by the resistor for (i) R ¼ 10 kO and (ii) R ¼ 2 kO.
P 8.24 Refer to Fig. P 8.12, where the circuit is in

steady state. (a) What is required of R and C if the

output voltage is to be approximately equal to the

input voltage? (b) Construct plots of the voltage

vout tð Þ versus time for one complete period of the

input for C ¼ 100 nF and (i) R ¼ 10 kO, (ii)

R ¼ 2 kO. (c) Calculate the average power dissipated

by the resistor for (i) R ¼ 10 kO and (ii) R ¼ 2 kO.
P 8.25 Refer to Fig. P 8.13, where the output is in

steady-state. Sketch a graph of the output voltage vout
versus time. You need not determine the voltages

involved, but the graph should closely resemble the

actual output.

P 8.26 In Fig. P 8.14, the switch is closed (at t ¼ 0)

after being open for a very long time. Obtain symbolic

expressions for the initial and final values of the volt-

age vC, the initial value of the current i, and the time at

which the voltage vC equals 99% of the final value.

P 8.27 In Fig. P 8.15, the switch has been at a for a

very long time. It is moved from a to b at t ¼ 0 and

back to a at t ¼ RC. Sketch neatly and label fully a

graph of the voltage vC(t) for 0 � t � 5RC.

P 8.28 A capacitor is charged to a voltage V0 and

then connected to two identical resistors through

switches, as shown in Fig. P 8.16. Switch S1 is closed

at t ¼ 0 and switch S2 is closed at t ¼ RC. Sketch
neatly and label fully a graph of the voltage vC (t) for

0 � t � 5RC.

P 8.29 A capacitor is charged to a voltage V0 and

then connected to two identical resistors and two

switches, as shown in Fig. P 8.17. Switch S1 is closed

vin vout
R

C
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vin(V)

1

–1

1 3 42

Fig. P 8.11 See Problem P 8.23
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Fig. P 8.12 See Problem P 8.24
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Fig. P 8.14 See Problem P 8.26
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Fig. P 8.16 See Problem P 8.28
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Fig. P 8.15 See Problem P 8.27
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Fig. P 8.13 See Problem P 8.25
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at t ¼ 0 and switch S2 is closed at t ¼ RC. Sketch

neatly and label fully a graph of the current i tð Þ for

0 � t � 5RC.

P 8.30 In Fig. P 8.18, the capacitor is initially

uncharged. Switch S1 is closed at t ¼ 0 and switch S2
is closed at t ¼ RC. Sketch neatly and label fully a

graph of the voltage vC(t) for 0 � t � 5RC. Show

the time constants associated with each exponential

rise.

P 8.31 In Fig. P 8.19, R ¼ 2:2 kO � 10%,

C ¼ 50 nF� 20%, and V0 ¼ 10V. The switch is

closed at t ¼ 0. Construct graphs showing upper and

lower bounds on the voltage vC(t) for t > 0.

P 8.32 If a capacitor is charged to a voltage

vC 0�ð Þ ¼ V0 and subsequently discharged through a

resistor, as depicted by Fig. P 8.20, the voltage vC(t)
decreases exponentially, as vC tð Þ ¼ V0 exp �t=tð Þ,
where t ¼ RC. You might have heard it said that

“theoretically, neither the voltage nor the current

ever actually reach zero, but only approach zero

asymptotically.” In essence, this problem asks you to

evaluate that claim. (a) Can the magnitude of the

charge on the capacitor be non-zero and less than

that of one electron? Obtain an expression for the

time at which the charge on the capacitor becomes

less than that of one electron (in magnitude). (b) Let

V0 ¼ 10V, C ¼ 100 nF, and R ¼ 10 kO. Calculate
the time defined in part (a). (c) The relation vC tð Þ ¼
V0 exp �t=tð Þ is derived from a differential equation

under the assumption that charge and current can be

represented by real variables. In reality, charge is

discrete (is a whole multiple of the charge on one

electron). Are the differential equation and the expo-

nential solution valid when only a few electrons par-

ticipate in the current?

P 8.33 In the circuit shown in Fig. P 8.21, switch

S2 is closed and switch S1 is open for all t< 0. At t¼ 0

switch S2 is opened and switch S1 is closed. At t ¼ t1
switch S2 is closed. Finally, at t ¼ t2, switch S1 is

opened. (a) Sketch neatly and label fully a graph of

the voltage v(t) versus t. Do not assume v t1ð Þ ¼ 0 or

v t2ð Þ ¼ 0. (b) Obtain an expression for the voltage v(t).
P 8.34 In Fig. P 8.22, the switch is in position a

for t < 0 and is moved to b at t ¼ 0. Show that the

total energy dissipated in the resistor is independent

of the resistance R.
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Fig. P 8.18 See Problem P 8.30
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Fig. P 8.19 See Problem P 8.31

RCvC (t)

+

–

t = 0

Fig. P 8.20 See Problem

P 8.32
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Fig. P 8.21 See Problem P 8.33
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Fig. P 8.22 See Problem P 8.34
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Section 8.5 is prerequisite for the following

problems.

P 8.35 A large, parallel-plate, air-dielectric capaci-

tor is charged to Vab ¼ 50V. Then a material having

relative permittivity er ¼ 4 is inserted halfway

between the plates, as illustrated by the shading in

Fig. P 8.23. What is the new value of Vab? Assume

the plates are large enough that edge effects are negli-

gible.

P 8.36 Refer to Problem P 8.35. One can vary the

capacitance of a parallel-plate capacitor by occupying

more or less of the space between the plates with a

dielectric material, the remainder occupied by air.

Describe such a capacitor whose capacitance can be

varied from 10 to 50 pF. Assume square plates and a

separation of 1 mm. What is the area of each plate?

What relative permittivity is required of the inserted

dielectric material?

P 8.37 Figure P 8.24 shows an air-dielectric vari-

able capacitor having 16 rotating and 15 fixed

leaves.18 The distance between each fixed leaf and a

neighboring rotating leaf is 500 mm. For simplicity,

assume the leaves have the shapes shown, where the

cross indicates the centerline of the shaft. Ignore edge

effects and the small semicircular bumps on the leaves

(for the shaft) and obtain an expression for the capaci-

tance of the capacitor as a function of the angle y. Give
the range of the variable capacitance for 0 � y � p.
Is the expression least accurate for y near zero or

y near p?

P 8.38 In Fig. P 8.25, C2>C1 and the capacitors are

initially uncharged. The switch is closed at t¼ 0.Which

of the two currents i1; i2 decreases to 0.1 V0/R first?

P 8.39 In Fig. P 8.26, C2 >C1 and the capacitors

are initially uncharged. The switch is closed at

t ¼ 0. Which of the two voltages v1; v2 reaches

0.9 V0 first?

P 8.40 Refer to Fig. P 8.27. Capacitors C1 and C2

are individually charged to voltages V1 and V2, respec-

tively, and then connected in series with a switch

and resistor. The switch is closed at t ¼ 0. (a) Obtain

an expression for the voltage across the resistor for

t > 0. (b) Obtain an expression for the time at which

jv(t)j ¼ 0.1jv(0þ)j.
P 8.41 An accurate, high-precision capacitor hav-

ing capacitance C ¼ 51:5 nF is needed in a certain

application. The required accuracy and precision are

to be obtained as illustrated by Fig. P 8.28, where a

fixed capacitor having capacitance C0 ¼ 47 nF� 5%

is trimmed by a smaller variable capacitor DC while

the total capacitance is monitored by a very accurate

capacitance meter. (a) Specify the variable capacitor.

(b) Could you achieve an equivalent result using a

series connection of the same two capacitors?

P 8.42 Two identical capacitors having capacitance

C ¼ C0 � 10% are connected in series. Obtain expres-

sions for the capacitance and the tolerance of the series

connection.

P 8.43 Two identical capacitors having capacitance

C ¼ C0 � 10% are connected in parallel. Obtain

expressions for the capacitance and the tolerance of

the parallel connection.

Note. The circuit models in Problems P 8.44–

P 8.47 below are unrealistic, because they pre-

sume that the voltage across a capacitor can

change instantaneously. However, the models

do allow correct calculation of total charge

transfer

P 8.44 Refer to Fig. P 8.29. Obtain an expression

for the voltage V2 after the switch is moved from a to b

if V2 ¼ 0 before the switch is moved. How much

charge is transferred from C1 to C2?

P 8.45 Refer to Fig. P 8.30. Capacitor C1 is charged

to voltage V1 and then connected to the parallel con-

nection of C2 and C3, which are uncharged. Obtain

a

b

Fig. P 8.23 See Problem P 8.35

18Photograph courtesy MTM Scientific, Corp.

8.11 Problems 289



expressions for the charge on each capacitor (in cou-

lombs) after the switch is closed.

P 8.46 Refer to Fig. P 8.31. Capacitor C1 is charged

to voltage V0 and then connected to the series connec-

tion of C2 and C3, which are uncharged. Express the

voltages across the capacitors after the switch is closed

in terms of the initial voltage V0 and the capacitances

C1; C2; C3.

P 8.47 Ideal capacitors C1; C2 are charged indi-

vidually to voltages V01; V02 and then connected as

shown in Fig. P 8.32. Obtain expressions for the

voltages across the capacitors after the switch is

closed.
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P 8.40
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2cm

3cm

4cm

θ

fixed leaf

Fig. P 8.24 See Problem
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Section 8.6 is prerequisite for the following

problems.

P 8.48 A capacitor is connected in series with

a voltage source v tð Þ ¼ V0 cos o0 tð Þ and an rms

ammeter having zero internal resistance, as shown in

Fig. P 8.33.

(a) Assume the leakage resistance of the capacitor is

infinite and obtain an expression for the current i tð Þ.
Denote the peak amplitude of the current by I0.

(b) Assume the leakage resistance of the capacitor is

infinite and express the capacitance in terms of the

frequency of the source and the rms amplitudes of

the current i tð Þ and the voltage v(t).
(c) Assume the leakage resistance is finite and obtain

an expression for the current i tð Þ. Denote the peak
amplitude of the current by I0.

(d) Assume the leakage resistance of the capacitor is

finite and express the capacitance in terms of the

leakage resistance, the frequency of the source,

and the rms amplitudes of the current i tð Þ and the

voltage v(t).

P 8.49 A current source is used to charge a capaci-

tor having capacitance C and leakage resistance Rl, as

shown in Fig. P 8.34. What is the maximum voltage

that can be impressed on the capacitor? If the capacitor

is disconnected from the source after being fully

charged, how long will it take for the capacitor to

discharge?

P 8.50 Refer to Fig. P 8.34. Under what condition

will the final capacitor voltage be within 1% of the

voltage available from the source?

P 8.51 In Fig. P 8.34, I0 ¼ 10 mA, RS ¼ 1MO, and
the voltage VC is steady at 7 V. (a) What is the leakage

resistance of the capacitor? (b) The charged capacitor

is disconnected from the circuit and connected to a dc

voltmeter having internal resistance Rm ¼ 10MO. The
voltage across the capacitor drops to half its initial

value in 8 s. What is the capacitance C?

P 8.52 Refer to Fig. P 8.35, where the components

have been connected as shown for a very long time and

the capacitor has leakage resistance Rl. Under what

condition is VC within 0.1% of V0?

P 8.53 In Fig. P 8.35, V0 ¼ 15V and R ¼ 100 kO,
and the voltage VC is steady at 14.8 V. (a) What is the

leakage resistance of the capacitor? (b) The charged

capacitor is disconnected from the circuit and con-

nected to a dc voltmeter having internal resistance

Rm ¼ 10MO. The voltage across the capacitor

drops to half its initial value in 4 s. What is the

capacitance C?

Section 8.7 is prerequisite for the following

problems.

P 8.54 Let C denote the end-to-end parasitic capa-

citance for an axial-lead, cylindrical resistor having

resistance R. Assume the voltage across the resistor is

given by v ¼ V0 cos o0 tð Þ. Obtain an expression for

the frequency f0 at which the rms current through the

parasitic capacitance equals 1% of the rms current

through the resistor. Calculate the frequency for

R ¼ 100 kO and C ¼ 1 pF.

P 8.55 The wire-to-wire capacitance of a parallel

pair of identical conductors in air far above the ground

is given (approximately) by

C ¼ p e0L
ln d � rð Þ=r½ � ;

VC
I0 RS C

+

–
source

Fig. P 8.34 See Problem

P 8.49, 50, 51

A

vS (t) C

i (t)

+
–

Fig. P 8.33 See Problem P 8.48

+

–
C

R

V0
VC

+

–

Fig. P 8.35 See Problem P 8.52, 53
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where e0 ¼ 8:854� 10�12 Fm�1 is the permittivity of

free space (or air), d is the center-to-center separation

of the wires, r is the radius of each wire, and L is

the length of the pair. (a) Find the capacitance of a

100-mile long pair of AWG 00 copper wires 1.2 m

apart and well above the ground. (b) A 440 V 60 Hz

generator is attached to one end of the wires. Ignoring

everything but the wire-to-wire capacitance, what is

the rms amplitude of the current drawn from the gen-

erator if no load is attached to the far end?

P 8.56 Refer to Problem P 8.55. Suppose the

AWG wire size used for a certain long-distance

power transmission line is increased from AWG 0 to

AWG 00. The wires are well above ground. By what

factor must the distance between the wires be

increased if the wire-to-wire capacitance must remain

the same?

P 8.57 Proximity to ground increases the wire-to-

wire capacitance of a pair of suspended conductors.

The capacitance of such a pair is given by

C ¼ 2p e0L

ln
2hd

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4h2 þ d2

p

 � ;

where e0 ¼ 8:854� 10�12 Fm�1 is the permittivity of

free space (or air), d is the center-to-center separation

of the wires, r is the radius of each wire, h is the height

of each wire above the ground, and L is the length of

the pair. (a) Find the capacitance of a 100-mile long

pair of AWG 00 copper wires 1.2 m apart and 20 ft

above the ground. (b) A 440 V 60 Hz generator is

attached to one end of the wires. Ignoring everything

but the wire-to-wire capacitance, what is the current

drawn from the generator if no load is attached to the

far end?

P 8.58 Refer to Problem P 8.57. Suppose the AWG

wire size used for a certain long-distance power trans-

mission line is increased from AWG 00 to AWG 000

and the distance between the wires remains the same.

The height above ground is much larger than the

separation between the wires. Is it necessary to

increase the height of the wires above ground if the

wire-to-wire capacitance must remain the same?

Section 8.9 is prerequisite for the following

problems.

P 8.59 Show that the instantaneous energy w tð Þ
stored in the electric field in an ideal capacitor is

given by

w tð Þ ¼ 1

2C
Q2 tð Þ;

where C is the capacitance and Q is the charge on

either plate.

P 8.60 Refer to Fig. P 8.36, where the capacitor is

initially uncharged and the switch is closed at t ¼ 0.

Show that for t! 1 the total energy dissipated in the

resistor equals the total energy stored in the capacitor.

P 8.61 To increase the energy-storage capability of

a capacitor, should one increase or decrease the thick-

ness of the dielectric?

P 8.62 Show that the stored energy per unit volume

(per m3) for a capacitor is given by

w

vol
¼ 1

2
ere0E2;

where E is the electric field strength Vm�1ð Þ in the

dielectric.

P 8.63 Refer to Problem P 8.62. How does the

maximum stored energy per unit volume (volumetric

energy density) for a capacitor compare with that for

gasoline?

P 8.64 Refer to Problem P 8.8. The parameters of

the varactor diode are C0 ¼ 50 pF, v0 ¼ 1V, and

a ¼ 0:5. The voltage across the varactor diode is

given by

v ¼ Vdc þ Vac cos 2pf tð Þ; Vdc ¼ 500mV;

Vac ¼ 100mV; f ¼ 20 kHz:

Calculate the average power dissipated by the var-

actor diode.

Section 8.10 is prerequisite for the following

problems.

P 8.65 Refer to Fig. P 8.37, where the input is

sinusoidal, having frequency f, and the op amp is

+

–
CV0

R

Fig. P 8.36 See Problem

P 8.60
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ideal. Under what conditions is the output approxi-

mately proportional to the derivative of the input?

P 8.66 Refer to Fig. P 8.38, where the input is

sinusoidal, having frequency f, and the op amp is

ideal. Under what conditions is the output approxi-

mately proportional to the derivative of the input?

P 8.67 Refer to Fig. P 8.39, where the input is

sinusoidal, having frequency f, and the op amp is

ideal. Under what conditions is the output approxi-

mately proportional to the integral of the input?

P 8.68 Refer to Fig. P 8.40, where the input is

sinusoidal, having frequency f, and the op amp is

ideal. Under what conditions is the output approxi-

mately proportional to the integral of the input?

P 8.69 Refer to Fig. P 8.41, where the input is

sinusoidal, having frequency f, and the op amp is

ideal. Under what conditions is the output approxi-

mately proportional to the integral of the input?

P 8.70 A 15 V supply having internal resistance

RS ¼ 1O supplies power to ten circuits, each of which

represents an average load of 10O and each of which

is bypassed at its power pin by a 50 nF capacitor.

(a) What is the steady-state current that must be

provided by the supply?

(b) What is the initial current (when the circuit is first

energized and all capacitors are discharged)?

(c) What is the time constant for the initial surge

current and what is the total additional energy

that must be provided by the supply during the

initial surge?

(d) By what factor is the additional energy multiplied

if each bypass capacitance is doubled in an

attempt to further reduce ripple?

P 8.71 In the absence of a bypass capacitor, the

ripple factor at the power pin of a certain circuit is

0.015. A 10 nF bypass capacitor reduces the ripple

factor to 0.002. What bypass capacitance is required

to reduce the ripple factor to 0.0001?

P 8.72Without bypass, the ripple factor at the power

pin of a certain circuit is 0.02. The ripple is approxi-

mately sinusoidal, with a frequency of 180 Hz. A 75mF
bypass capacitor reduces the ripple factor to 0.002.What

is the Thévenin-equivalent resistance at the power pin?

P 8.73 A certain digital IC has eight outputs. The

load seen by each is equivalent to a 40 pF capacitor,

and the logic-level voltage and the supply voltage

are both 5 V. The outputs can change state in 4 ns.

(a) What is the additional supply current (pulse)

demanded by the IC if all eight outputs switch from

off (0 V) to on (5 V) at once? (b) What bypass capaci-

tance should be used at the IC’s power pin if the IC is

clocked at 100 MHz (the minimum duration of a state

+

–

vin vout

C
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Fig. P 8.38 See Problem P 8.66

+

–
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vout
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–
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Fig. P 8.41 See Problem P 8.69
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is 10 ns) and the supply voltage must be held to within

1% of the nominal value?

P 8.74 Figure P 8.42 shows a simulation of a half-

wave rectifier circuit. Multimeter XMM2 indicates

the rms amplitude of the ac (ripple) component of

the load voltage and multimeter XMM1 indicates the

dc component, where for C ¼ 200 mF, the rms ampli-

tude of the ripple is approximately 19.1 V and the

dc component of the load voltage is approximately

102.5 V

(a) What is the ripple factor for the circuit as shown?

How good is the agreement of the measured ripple

factor with the approximate formula developed in

the text?

(b) Use the approximate relation developed in the

text to find the capacitance needed to reduce the

ripple factor to 0.015. Then use a simulation to

determine the actual ripple for that value of capac-

itance. Be sure to give the simulation time to

achieve steady state (wait until the voltage read-

ings change very little with time).

(c) For the capacitance found in part (b), what is the

worst-case (maximum) current through the diode

when the circuit is first switched on?

P 8.75 Figure P 8.43 shows a simulation of a full-

wave rectifier circuit, with an oscillograph of the ac

(ripple) component load voltage and measurements
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of the dc load voltage ffi 121Vð Þ and rms ripple

ffi 1:27Vð Þ. Note that the source floats.
(a) What is the load-voltage ripple factor?

(b) Trace the paths traveled by the current i for vS> 0

and vS < 0. If the capacitor is removed (if iL ¼ i),

what is the waveform of the load voltage vL?

(c) Use the relation

C ¼ T

RL g
ffiffiffiffiffi
12

p

developed in the text to calculate the capacitance

required to reduce the ripple factor to 0.005. Use a

simulation to check the result. Be sure to give the

simulation time to achieve steady state.

P 8.76 Figure P 8.44 shows a full-wave rectifier

circuit using two identical sources.

(a) Trace the paths traveled by the current i for vS>0

and vS<0. If the capacitor is removed (if iL ¼ i),

what is the waveform of the load voltage vL?
(b) Simulate the circuit and plot the steady-state load

voltage waveform for C ¼ 1; 000 mF. Measure the

rms amplitude of the ripple voltage and the dc

component of the load voltage. Calculate the rip-

ple from both the measured values and the formula

developed in the text.

(c) What capacitance would be required to reduce the

peak-to-peak ripple to 1 V?

(d) Simulate the circuit using the capacitance you

found in part (c) and verify your calculation.

(e) If the source resistance for each source is 5O, what
is the maximum possible surge current through

either diode?

P 8.77 Refer to Fig. P 8.45. Specify the coupling

capacitors such that the overall voltage gain equals or

exceeds 450 for all frequencies of interest. The source

resistance is negligible, the op amps are ideal, and the

output resistance of each stage is negligible. Use a

simulation to check your work.

P 8.78 Refer to Fig. P 8.46. What coupling

capacitance C is required if the voltage gain for

f0 ¼ 1 kHz must be at least 95% of the voltage gain

for f0 ¼ 10 kHz? Use a simulation to check your work.

P 8.79 (a) Specify the components of a cascade of

two or more inverting amplifiers such that the

overall voltage gain would be 104 if the amplifiers

were direct coupled. The feedback resistances can-

not exceed 1MO and the input resistance of each

inverting amplifier must be at least 25 kO. Assume

the op amps are ideal.

(b) In actual use, the source will be capacitively cou-

pled to the first stage, each stage will be capaci-

tively coupled to the next, and a 10 kO load

resistance will be capacitively coupled to the last

stage. The overall voltage gain must be at least

9800 for any sinusoidal input whose frequency

exceeds 1 kHz. Specify the coupling capacitors.

(c) Use a simulation to verify your design.

P 8.80 Refer to Fig. P 8.47. Specify the coupling

capacitors such that the overall voltage gain at 1.5 kHz

vS

vS

RL

C

RL= 100 Ω, vS = VS sin(2p ft)
VS = 170V, f = 160Hz

i

+–

+–

Fig. P 8.44 See Problem P 8.76

+

–

+

–

C1 C2 RL

R4

R3

vS

R1 = 25kΩ, R2 = 500kΩ, R3 = 20kΩ, R4 = 500kΩ, RL = 5kΩ
Vcc = 25V, vS = VS cos(2p f0t); VS ≤ 40mV, f0 ≥ 100Hz
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–

Fig. P 8.45 See Problem

P 8.77

+
–vS
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Fig. P 8.46 See Problem P 8.78
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is at least 98% of the gain would be achieved if the

stages were direct coupled. Use a simulation to verify

your design.

P 8.81 Refer to Fig. P 8.48. The source resistance is

negligible and the op amp is ideal. (a) The overall high

frequency voltage gain must be 50 dB. The voltage

gain at 30 Hz must be no less than 49 dB. Specify the

components. (b) The maximum amplitude of the input

is 100 mV. What is the minimum acceptable supply

voltage? Assume a symmetric supply and rail-to-rail

operation. (c) Perform a simulation to verify your

design.

P 8.82 In Fig. P 8.49, the leakage resistance Rleak is

ignored and the coupling capacitance C is specified

such that VLrms ¼ 0:8VS rms for f ¼ 30Hz. It is subse-

quently found that the capacitor leakage resistance is

approximately equal to the load resistance RL. What is

the actual value of VL rms=VS rms for f ¼ 30Hz?

P 8.83 In Fig. P 8.50, the source is a square

wave, as shown. In steady state, the load voltage vL
must be within 5% of the input vS at all times. Specify

the coupling capacitor C. Use a simulation to verify

your answer.

P 8.84 Refer to Fig. P 8.51, The source resistance is

negligible and the load resistance is RL ¼ 5 kO. The op
amp is rail-to-rail and otherwise ideal. The input vS tð Þ
is a rectangular pulse train, as shown. Let vS ac tð Þ
denote the ac component of the input. The circuit

is intended to amplify the ac component of the

input, such that vL tð Þ ffi 100 vS ac. The absolute error

100vS ac � vL tð Þj j must not exceed 100 mV. Specify

the circuit components.
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P 8.85 Refer to Fig. P 8.52. Specify the capacitor

such that the voltage v1 is always within 1% of the ac

component of the source voltage vS. Then determine

the maximum percent difference between the load

voltage vL and a true rectangular pulse train. Use a

simulation to check your work.

P 8.86 In Fig. P 8.53, RL ¼ 5 kO, R1 ¼ 20 kO,
R2 ¼ 1MO, C ¼ 50 nF, the op amp is ideal, and the

supply voltages are � 20V. The source vS has a con-

stant (dc) component and one sinusoidal (ac) compo-

nent; i.e.,

vS tð Þ ¼ VDC þ VAC cos 2pf0 tð Þ:

Specify the resistance RX. What is the lowest fre-

quency for which the voltage gain for the ac compo-

nent of the source exceeds 30 dB?

P 8.87 In Fig. P 8.54, the source vS has one constant

and one sinusoidal component. Specify the resistors

and the capacitor such that the voltage gain equals 30

dB at 50 Hz.

P 8.88 Figure P 8.55 shows two amplifiers in cas-

cade. The op amps are ideal. At 1 kHz, the voltage

gain and input resistance of each amplifier (not includ-

ing the capacitors) are approximately 35 dB and

10 kO. What are appropriate values for the input-

bias-current compensating resistors RX; RY?

P 8.89 Figure P 8.56 shows two amplifiers in cas-

cade. The op amps are ideal. At 1 kHz, the voltage

gain and input resistance of each amplifier (not includ-

ing the capacitors) are approximately 40 dB and

+
–

RLvL

C

R1

R1
R2

vS

0
0 t (ms)

20 80

50

vS (mV)

R1 = 10kΩ, R2 = 1MΩ, RL = 20kΩ

v1

+
–

Fig. P 8.52 See Problem P 8.85
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+
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Fig. P 8.53 See Problem P 8.86
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Fig. P 8.54 See Problem P 8.87
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Fig. P 8.56 See Problem

P 8.89

+

–
+
–vS

R1

R2

R1 R2

v1

RLvL
v2

RX
RY

C1 C2

+
–

Fig. P 8.55 See Problem

P 8.88

8.11 Problems 297



10 kO. What are appropriate values for the input-bias-

current compensating resistors RX; RY?

P 8.90 Figure P 8.57 shows two amplifiers in cas-

cade. The op amps are ideal. At 1 kHz, the voltage

gain and input resistance of each amplifier (not includ-

ing the capacitors) are approximately 25 dB and

20 kO. What are appropriate values for the input-

bias-current compensating resistors RX; RY?

P 8.91 Refer to Fig. P 8.58, where the timing

diagram indicates which switch is closed, as a function

of time. Obtain a symbolic expression for the equiva-

lent resistance of the switched capacitor. Then use the

equivalent resistance to calculate the dc component

(average value) of the load voltage vL. Simulate the

circuit to confirm your answer. Discuss the practicality

of this particular switched-capacitor implementation.

P 8.92 Refer to Fig. P 8.59. The switches are in

position 2 and the capacitors are uncharged at t ¼ 0�,
at which time the switches begin operating as indi-

cated by the timing diagram. (a) Plot the voltage v(t)

versus time for 0 � t � 10 ms. (b) Replace the

switched capacitor by an equivalent resistor and

plot the voltage v(t) on the axes used in part (a). Do

the two circuits exhibit the same (or very similar)

transient response?

P 8.93 Refer to Fig. P 8.60. Switches 1 and 2 operate

as indicated by the timing diagram. The voltages v1
and v2 are approximately constant during any interval

1 1 1

2 2

2
ΔT

t
0 ΔT

2
3ΔT 2ΔT L

switch position

+

–

C1 C2V0

1 1

2 2
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ΔT = 2ns ,Rs = 10W

v
+

–

Rs

Fig. P 8.59 See Problem

P 8.92, 96
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of duration DT=2. (a) Show that the circuit is approxi-

mately equivalent to a resistor and obtain an expres-

sion for the resistance. (b) While terminals a–b are

open and the switches are operating as described

above and at a very fast rate, a resistor RL and capaci-

tor CL are connected in parallel and then to terminals

c–d. Then a voltage source v1 tð Þ ¼ V0 is connected to

terminals a–b. Assume the switched capacitor can be

represented by its equivalent resistance and obtain an

expression for the output v2 tð Þ.
P 8.94 Refer to Fig. P 8.61, where the switch posi-

tions alternate, as indicated by the timing diagram.

Obtain expressions for (a) the time average of the

current i, (b) the equivalent resistance at the terminals

a–b, (c) the average current through each switch.

P 8.95 In Fig. P 8.62, V0 ¼ 10V, C1 ¼ 5 nF,

C2 ¼ 100 nF and DT ¼ 2 ns. The switch is at position

0 for t < 0 and begins toggling between positions 1

and 2 thereafter, as indicated by the timing diagram.

The capacitor C2 is initially uncharged, such that

vout 0ð Þ ¼ 0. (a) Plot the voltage vout versus time for

0 � t � 200 ns.

P 8.96 Refer to Fig. P 8.59 (Problem P 8.92). The

capacitors are uncharged for t ¼ 0, at which time the

switches begin operating as indicated by the timing

diagram.

(a) Plot the energy stored in C2 versus time for

0 � t � 10 ms.
(b) On the same axes, plot the cumulative work done

by the source for 0 � t � 10 ms.

(c) Find the equivalent resistance Req of the switched

capacitor. Use the equivalent RC circuit model

shown in Fig. P 8.63 and plot the energy delivered

by the source and the energy stored in C2 for

0 � t � 5t, where t is the time constant for the

equivalent RC circuit. Are the results consistent

with those obtained in parts (a) and (b)?

P 8.97 Refer to Fig. P 8.64, Plot the voltages v1(t)

and v2(t) and the instantaneous power delivered by the

source on the same axes.

P 8.98 Refer to Fig. P 8.65, where the switch

operates as indicated by the timing diagram. (a) Obtain

an expression for the average power delivered by the

+
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1 2

1 1 1
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source. (b) It is shown in the text that the average

power dissipated by a capacitor equals zero. If that is

the case, where is the power delivered by the source

dissipated?

P 8.99 Refer to Fig. P 8.65, where the switch

operates as indicated by the timing diagram. (a) Obtain

an expression for the energy stored in the capacitor

while the switch is in position 2. (b) Obtain an

expression for the work done by the source while

the switch is in position 2. (c) Why are the expres-

sions obtained in parts (a) and (b) different?

P 8.100 Refer to Fig. P 8.66, where the op amp is

ideal and the switches have been operating as indi-

cated for a very long time. The source resistance (not

shown) is small but it is not zero. What is the average

power delivered by the source V0?

P 8.101 Refer to Fig. P 8.67, where the switches

have been operating as indicated for a very long

time. Assume that DT is much larger than each

of t1 ¼ R1C and t2 ¼ R2C. Obtain an expression for

the power delivered by the sources (dissipated in

the circuit).
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Chapter 9

Inductance

A phenomenon called inductance is analogous to

capacitance, but with the roles of current and voltage

swapped. Whereas capacitance stores energy in an

electric field produced by voltage, inductance stores

energy in a magnetic field produced by current.

Whereas capacitance resists changes in terminal volt-

age, inductance resists changes in terminal current.

Inductance is relatively unimportant in low- to mid-

frequency, low-power electronic circuits, where its

desirable effects can be obtained by other means, but

is important in high-frequency circuits and in electric

power generation and distribution systems. Because

inductance arises from a magnetic field, we begin

with a discussion of magnetic fields.

9.1 Magnetic Field

If you sprinkle iron filings on a sheet of paper over-

laying a magnet, the filings will arrange themselves

along curved lines exiting (by convention) the north

pole of the magnet and entering the south pole, as

illustrated in Fig. 9.1. It is said that the magnet pro-

duces a magnetic field characterized by lines of force

that align the filings. The stronger the magnet, the

greater the density of lines passing through any plane

perpendicular to the surface of the paper. Capitalize

Magnetic flux, denoted by f, is a measure of the

density of the lines. The SI unit of magnetic flux is

the weber (Wb).1

Energy is stored in a magnetic field because the

field has the potential of doing work on magnetic

material. For example, suppose we fix a strong magnet

to a smooth surface and place a piece of iron against

one of the poles of the magnet. Then we move the iron

a short distance away from the magnet against the

force of attraction. If we then release the iron, the

field will do work on the iron by accelerating it toward

the magnet. When we move the iron away from the

magnet, we store energy in the field. When we release

the iron, the iron gains kinetic energy from the field

equal to the energy we stored in the field (ignoring

friction).

A moving charge (current) produces a magnetic

field. In introductory physics books, it is shown that

the magnetic flux produced by a current in a long

straight wire is concentric to the wire, as illustrated

in Fig. 9.2. The direction of the magnetic flux pro-

duced by a current in a wire can be determined using

the right-hand rule: If you wrap the fingers of your

right hand around the wire with your thumb pointing

in the direction of the current, your fingers point in the

direction of the flux.2

The flux produced by the current is proportional to

the current. So long as the current is steady, the field is

steady, and there is no energy exchange between the

field and the current producing the field. But energy is

exchanged between the field and a changing current.

If the current increases then the flux, being proportional

to the current, increases as well and the energy stored

in the field increases. If the current decreases, then the

flux decreases and the field returns energy to the cur-

rent. Because work must be done to store energy in

or extract energy from the field, the magnetic field

1After the German physicistWilhelmEduardWeber (1804–1891).

2Of course, if you actually do this with a “live” wire, all of your

appendages could point in different directions.

T.H. Glisson, Introduction to Circuit Analysis and Design,
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produced by a current always acts to oppose any

change in the current. The magnetic field gives a kind

of inertia to the moving charges comprising the current.

9.2 Self Inductance

The magnetic field produced by a current in a conduc-

tor opposes a change in that current by inducing a

voltage that tends to keep the current from changing.

The induced voltage v is given by Faraday’s law of
induction3

v ¼ dl
dt

; (9.1)

where l is themagneticflux linkagewith the conductor.

Flux linkage l depends upon both the quantityf of flux

in the space containing the conductor and the geometry

of the conductor; e.g., if a quantity f of flux links every

turn of an N-turn coiled conductor, the flux linkage is

l ¼ N f. The polarity of the induced voltage is that

which opposes a change of flux (Lenz’s law). If the

current is decreasing, the induced voltage tends to pro-

duce a current in the direction of the current already

present. If the current is increasing, the induced volt-

age tends to produce a current in the direction opposite

to that of the current already present.

Because magnetic flux is proportional to the cur-

rent that produces the flux,4 the flux linkage with a

conductor also is proportional to the current produc-

ing the flux and we may write

l ¼ L i; (9.2)

where L is a constant of proportionality called induc-

tance. The SI unit of inductance is the henry5 (H),

where 1 H equals 1 Vs A–1.

If the flux that induces a voltage in a conductor is

due entirely to current in the same conductor, the

associated inductance is called self-inductance. It

also is possible for flux produced by current in one

conductor to induce a voltage in another conductor,

in which case the associated inductance is called

mutual inductance. In practice and in this book,

inductance alone means self-inductance. If mutual

inductance is meant, the adjective mutual is included.

Inductance depends strongly upon the geometry of

the conductor carrying the current and the medium in

which the field is produced (e.g., air versus iron). The

inductance of a conductor is increased by winding the

conductor in a coil, as illustrated in Fig. 9.3. In this

configuration, the flux produced is greater than that for

a straight wire carrying the same current because the

current enclosed by and creating flux loops is effec-

tively N times the current in a single conductor, where

N is the number of turns in the coil. Thus the total flux

produced is N times that produced by a single conduc-

tor:

f ¼ Nf1: (9.3)

In (9.3), the flux f1 is proportional to the current

producing the flux; i.e., f1 ¼ k i. Furthermore, flux

linkage with an N-turn coil is N times that for a straight

conductor because each loop links the coiled conduc-

tor N times. Thus

Fig. 9.1 Iron filings reveal magnetic lines of force from a

permanent magnet

Fig. 9.2 Magnetic flux arising from current in a conductor

3After the English chemist and physicist Michael Faraday,

(1791–1867). Faraday’s law of induction is treated in virtually

all introductory physics textbooks.

4This assertion must be modified for flux produced in a magnetic

material by relatively large currents. We ignore that refinement

here.
5After the American physicist Joseph Henry (1791–1878).
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l ¼ N f ¼ N N f1ð Þ ¼ k N2 i ¼ L i; (9.4)

where, from (9.2), inductance L is given by

L ¼ l
i
¼ k N2 (9.5)

The flux produced by current in a coil (and thus the

inductance of the coil) can be further increased by

winding the coil around a magnetic material, such as

iron. The direction of the flux is again determined

using a right-hand rule: Imagine wrapping the fingers

of your right hand around the coil in the direction of

the current; your thumb then points in the direction of

the flux through the center of the coil.

9.3 Inductance of Air-Core Coils

The inductance of a long, tightly wound, single-layer,
helical air-core coil having N turns, length l, and

diameter d is given by6

L ¼ pm0 N
2 d2

4l
¼ m0 N

2A

l
; (9.6)

where m0 ¼ 4 p� 10�7 Hm�1 is the permeability of a

vacuum (also very nearly that of air), A ¼ pd2
�
4 is the

cross-sectional area of the coil, and longmeans l � d.

We may write (9.6) as

L ¼ k N2; (9.7)

in agreement with (9.5).

Exercise 9.1. What is the SI unit of k in (9.7)?

Flux loops near each end of a coil do not link as

many turns as those near the middle. The associated

reduction in the total flux linkage can be neglected

in long coils. But for short coils, it is necessary to

correct for the reduced flux linkages. Various hand-

books give various formulas for short coils, one

being

L ¼ m0 N
2 d2

0:579 d þ 1:273 lð Þ ; (9.8)

where N is the number of turns, d is the diameter of

the coil and l is the length of the coil. Equation (9.8)

is accurate to about � 1% for tightly wound, single-

layer, helical, air-core coils.

Example 9.1. Find the number of turns needed

on a paper tube 10 cm long and 1 cm in diameter

to produce an inductor having inductance

L ¼ 1mH. Assume the coil is helical and tightly

wound in a single layer.

Solution: From (9.8),

N ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:579 d þ 1:273 lð ÞL

m0d2

s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:579ð Þ 1 cmð Þ þ 1:273ð Þ 10 cmð Þ

4p� 10�7 Hm�1ð Þ 1 cmð Þ2 1mHð Þ
s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

13:31 cmð Þ 1mHð Þ
4p� 10�7 Hm�1ð Þ 1 cmð Þ2

s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

13:31mH

4p� 10�7 Hm�1ð Þ 1 cmð Þ

s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

13:31mH

4p� 10�7 Hm�1ð Þ 0:01mð Þ

s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
13:31� 10�3 H

4p� 10�9 Hð Þ

s
¼ 1029:

Fig. 9.3 Magnetic flux produced by current in a coil

6This relation is derived in all introductory, university-level

physics textbooks.
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Exercise 9.2. If the coil in Example 9.1 occu-

pies the full length (10 cm) of the paper core and

the thickness of the insulation is negligible, what

is the maximum diameter of the wire? If the wire

is copper, what is the resistance of the coil?

9.4 Inductors

Inductance can be introduced in circuits using compo-

nents called inductors, to achieve certain desired

effects. Figure 9.4 shows several inductors. Inductors

are constructed by winding wire around a core, which

might be air (a paper or plastic tube), iron, or other

material. Inductors wound on a core of non-magnetic

material, such as paper or plastic are called air-core

inductors and inductors wound on a core of magnetic

material such as iron, ferrite, or steel are called iron-

core inductors.

Figure 9.5 shows circuit-diagram symbols for

inductors. Figure 9.5(a) shows the conventional cir-

cuit-diagram symbol for an air-core or ideal inductor

having inductance L. Figure 9.5(b) shows a variation

sometimes used to denote an inductor wound on a

core made of iron (or other magnetic material). Figure

9.5(c) shows the conventional symbol for a variable

inductor, almost all of which have magnetic cores. A

common type of variable inductor has a threaded

cylindrical magnetic core. The inductance is varied

by screwing the core farther into or out of the coils

constituting the winding. As has become common

practice, we use the symbol in Fig. 9.5(a) for an

inductor, regardless of the core material. We also

limit our treatment to inductors that are linear under

normal operating conditions.

Because of the way they are constructed, inductors

sometimes are called coils. Because of their purpose in

certain applications, some iron-core inductors some-

times are called chokes. Often, iron-core inductors

used in power supplies are called chokes, and iron-

core and air-core inductors used in other applications

Fig. 9.4 Assorted inductors

(not to scale): (a), (b) small

radial-lead inductors, (c) small

ferrite-core noise-suppression

inductor, (d), (e) surface-

mount inductors, (f) high-

current PCB inductor, (g)

axial-lead high-current

inductor, (h) toroidal inductor

(Photographs courtesy of

Rapid Electronics, Ltd)
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are called coils, but this terminology is neither stan-

dard nor universal.

Inductance is introduced intentionally in circuits for

various purposes, some of which are described in the

sequel. In most applications where either inductance or

capacitance could be used, such as in active filters and

integrating and differentiating circuits, capacitance is

preferred because of the smaller size and lower cost of

capacitors, relative to inductors. Also, it is easier to

produce a capacitor than an inductor of comparable

precision in an integrated circuit, and it is easier to

confine the electric field in a capacitor than it is to confine

themagnetic field produced by an inductor, so capacitors

produce less electrical interference than inductors.

Nonetheless, there are important applications for

inductors, especially in some power supplies and in

high-frequency circuits, where they are used in con-

junction with capacitance to build very selective fil-

ters. Inductance is especially important in circuit

models for electric power generation and distribution

systems, because generators, motors, and transformers

exhibit significant inductance. Inductance is only

occasionally encountered in low- to moderate-fre-

quency electronic circuits, where desirable effects of

inductance can be introduced in other ways (avoiding

need for bulky and heavy coils).

9.5 Terminal Characteristic of an
Inductor

Using (9.2), we may rewrite Faraday’s law (9.1) as

v ¼ L
di

dt
; (9.9)

where v is the voltage across the terminals of an

inductor and i is the current entering the terminal

designated positive, as shown in Fig. 9.6. Equation

(9.9) is one expression of the terminal characteristic

of an inductor.

Several implications of (9.9) are noteworthy:

• The voltage across an inductor is nonzero whenever

the current through the inductor is changing (when

di=dt is nonzero) and is zero otherwise. An inductor

acts as a conductor (a short circuit) for constant
current.

• The magnitude of the voltage across an inductor is

proportional to the rate of change of the current

through the inductor. The faster the current changes,

the larger is the opposing voltage. An inductor

opposes changes in the current through the inductor.
• Changing the current through an inductor instanta-

neously would require infinite voltage across the

inductor. Thus, in physical circuits, the current

through an inductor is a continuous function of

time. In other words, the current though an induc-

tor cannot change instantaneously.
• The voltage across an inductor is proportional to

the inductance L. More voltage is required to

change the current through an inductor at a speci-

fied rate in a larger inductor than a smaller one.

Conversely, for a fixed rate of change in current, a

large inductance produces a larger induced voltage

than does a smaller inductance.

A circuit in which all currents and voltages are

constant is said to be in dc steady state. If the current

through an inductor is constant, the voltage across the

inductor is zero. Thus, for any circuit in dc steady
state, all inductors in the circuit are effectively short

circuits.

Example 9.2. Figure 9.7(a) shows the current

in an inductor having inductance L. From (9.9)

the resulting (induced) voltage across the

inductor is the product of the inductance and

the derivative (instantaneous slope) of the cur-

rent. Figure 9.7(b) shows the voltage across the

inductor, where

v1 ¼ Li1
t1

; v2 ¼ Lði2 � i1Þ
t4 � t2

:

L

(a) fixed, air-core (b) fixed, iron-core (c) variable, iron-core

L L

Fig. 9.5 Circuit-diagram symbols for inductors

L

v
i

+ –Fig. 9.6 Symbol for an

inductor, annotated in

agreement with (9.9)
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Exercise 9.3. Figure 9.8 shows the current

in an inductor having inductance L ¼ 10mH.

Draw a graph of the voltage across the

inductor.

Example 9.3. The current in an inductor hav-

ing inductance L ¼ 1 mH (10–3 H) is given by

iðtÞ ¼ I cosð2 p f tÞ, with I ¼ 5 mA and

f ¼ 1 kHz. The voltage induced across the

inductor is

vðtÞ ¼ L
d½I cosð2p f tÞ�

dt
¼ �2p f LI sinð2p f tÞ:

The maximum (peak) voltage is 2 p f LI ¼
2 p ð1 kHzÞð1mHÞð5mAÞ ffi 31:4mV. If the

frequency is increased to 100 kHz, the

voltage increases to 3.14 V, illustrating that

the voltage across an inductor is proportional to

the rate of change of the current through the

inductor.

Exercise 9.4. The current in an inductor hav-

ing inductance L ¼ 10 mH is given by

iðtÞ ¼ I0 þ I1 sinð2 p f tþ p=4Þ. Obtain an

expression for the voltage induced across the

inductor.

Example 9.4. In the circuit shown in Fig. 9.9,

the switch is moved from a to b at t ¼ 0, having

been in position a for t < 0. Obtain expressions

for the voltage across the inductor just before

the switch is moved (at t ¼ 0�) and just after

the switch is moved (at t ¼ 0þ).

Solution: Because the source is constant and

because the switch is in position a for t < 0, the

current i is constant and the inductor appears to

be a short circuit for t ¼ 0�. The current through
the inductor at t ¼ 0� is given by i ¼ V0=R. For
t ¼ 0�, Kirchhoff’s voltage law gives

�V0 þRið0�Þþ vð0�Þ ¼ �V0 þR
V0

R
þ vð0�Þ

¼ 0) vð0�Þ ¼ 0:

Because the current in an inductor cannot

change instantaneously, the current is the

same for t ¼ 0� and t ¼ 0þ. By Kirchhoff’s

voltage law, for t ¼ 0þ,

R ið0þÞ þ vð0þÞ ¼ R
V0

R
þ vð0þÞ ¼ 0

)vð0þÞ ¼ �V0:

i1

i2

t1 t2
v2

v1

t3 t4
t

t1

t2 t4 t

v(t)i(t)

(a) (b)

Fig. 9.7 Current through and voltage across the inductor of Example 9.2

i  (mA)

t  (ms)
0 4 5 7 10

12

5

–5

Fig. 9.8 See Exercise 9.3
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Equation (9.9) expresses voltage across an inductor

in terms of current through the inductor. From (9.9),

diðtÞ ¼ 1

L
vðtÞdt: (9.10)

Integrating (9.10) from time t0 to time t gives

ðt
t0

di t0ð Þ ¼ i tð Þ � i t0ð Þ ¼ 1

L

ðt
t0

vðt0Þdt0

or

i tð Þ ¼ i t0ð Þ þ 1

L

ðt
t0

vðt0Þdt0: (9.11)

Example 9.5. The voltage across a 100 mH

inductor is given by

v tð Þ ¼ 0; t � 0;
V0 cosð2p f tÞ; t > 0;

�

with V0 ¼ 20V and f ¼ 400 Hz. The current

through the inductor equals zero for t ¼ 0.

From (9.11) the current through the inductor

is given by

iðtÞ ¼ i 0ð Þþ 1

L

ðt
0

v t0ð Þdt0 ¼ 1

L

ðt
0

V0 cos 2p f t0ð Þdt0

¼ V0

2p f L
sin 2p f tð Þ ¼ I0 sin 2p f tð Þ;

where

I0 ¼ V0

2p f L
¼ 20V

2pð400HzÞð100mHÞ
ffi 79:6mA:

Exercise 9.5. The voltage across a 100 mH

inductor is given by

vðtÞ ¼ 0; t � 0;
V0 e

�t=t; t > 0:

�

It also is known that the current through the

inductor equals zero for t < 0. Obtain an

expression for the current through the inductor.

Exercise 9.6. Figure 9.10 shows a graph of the

voltage across a 20 mH inductor. The voltage

equals zero for times not shown and the current

through the inductor equals zero for t< 0. Draw

a graph of the current through the inductor for

0 � t � 12ms:

9.6 Time Constant

A circuit composed of only resistors and one inductor

is called an RL circuit. In this section, we obtain

expressions for currents and voltages in an RL circuit

subjected to an abrupt change in excitation.

Recall that t0
� and t0

þ denote times infinitesimally

before and after a time t0. For example, if t¼ 0 denotes

the time at which switch is closed, then t ¼ 0� is the

time just before the switch is closed and t ¼ 0þ is the

time just after the switch is closed.

Refer to Fig. 9.11, where the switch is open for

t < 0 and is closed at t ¼ 0. The switch is open for

t ¼ 0�, so i 0�ð Þ ¼ 0. Thus, from (9.11)

+

–
v
+

–

V0 L

Ra

b

i

Fig. 9.9 See Example 9.4
t (μs)

v (mV)

4 12

3 6 8

10

–10

5

0
0

Fig. 9.10 See Exercise 9.6
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i tð Þ ¼ i 0�ð Þ þ 1

L

ðt
0�

vL t0ð Þdt0 ¼ 1

L

ðt
0�

vL t0ð Þdt0

and Kirchhoff’s current law gives, for t > 0

vL tð Þ � V0

R
þ 1

L

ðt
0�
vL t0ð Þdt0 ¼ 0: (9.12)

Differentiating (9.12) once with respect to time and

rearranging terms gives, for t > 0

L

R

dvL tð Þ
dt

¼ �vL tð Þ; (9.13)

According to (9.14), the voltage vL and its deriva-

tive have the same mathematical form (are propor-

tional). The function having that property is the

exponential function. You can show by substitution

that the solution to (9.14) is

vL tð Þ ¼ K exp �R t

L

� �
; t > 0; (9.14)

From (9.12),

vL 0þð Þ � V0

R
þ 1

L

ð0þ
0�

vL t0ð Þdt0 ¼ vL 0þð Þ � V0

R
¼ 0

) vL 0þð Þ ¼ V0

Thus

vL tð Þ ¼ V0 exp �R t

L

� �
; t > 0 (9.15)

Equation (9.15) usually is written

vL tð Þ ¼ V0 exp � t

t

� �
; t > 0: (9.16)

where

t ¼ L

R
(9.17)

is the time constant for the series RL circuit. The time

constant determines how long it takes for the voltage
across the inductor to vanish. Because e�1 ffi 0:37,

the voltage across the inductor drops to 37% of its

initial value in a time equal to one time constant.

Similarly, e�3 ffi 0:05, so the voltage drops to 5% of

its initial value in a time equal to three time constants.

You can show that the voltage is less than 1% of its

initial value when t equals five time constants.

From Ohm’s law,

i tð Þ ¼ V0 � vL tð Þ
R

: (9.18)

Using (9.16) in (9.18) gives

i tð Þ ¼ V0

R
1� exp � t

t

� �h i
; t > 0; t¼ L

R
: (9.19)

Figure 9.12 shows graphs of the voltage vL and the

current i, normalized to their maximum values, versus

time as a multiple of the time constant. The time

constant determines how long it takes for the current

through the inductor to reach the steady-state value
i 1ð Þ ¼ V0=R .

In Fig. 9.13, the source is piecewise-constant,

switching from one value to another at t ¼ 0 :

vS tð Þ ¼ V1; t < 0;
V2; t 	 0:

�
(9.20)

The inductor presents zero resistance to dc. It fol-

lows that

i 0þð Þ ¼ i 0�ð Þ ¼ V1

R
; i 1ð Þ ¼ V2

R
: (9.21)

By Kirchhoff’s voltage law,

Ri tð Þ þ L
di tð Þ
dt

¼ V2

) L

R

di tð Þ
dt

þ i tð Þ ¼ V2

R
¼ i 1ð Þ; t > 0

(9.22)

+

–
LV0

R
vL

+

–

vR+ –

i

Fig. 9.11 A switched RL series circuit. See (9.12)
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You can show by substitution that (9.22) is

satisfied if

i tð Þ ¼ i 1ð Þ � i 1ð Þ � i 0þð Þ½ � exp � t

t

� �
; t ¼ L

R
:

(9.23)

It can be shown that (9.23) is the complete solution

to the differential equation (9.22). Equation (9.23) can

be applied to any circuit that can be reduced to the form

shown in Fig. 9.13, where vS(t) is piecewise constant.
For example, refer again to the circuit in Fig. 9.11,

where the switch is closed at t ¼ 0. By inspection,

i 0þð Þ ¼ 0; i 1ð Þ ¼ V0

R
; t ¼ L

R
:

From (9.23), for t > 0

i tð Þ ¼V0

R
� V0

R
�0

� �
exp � t

t

� �
¼V0

R
1� exp � t

t

� �h i
;

which we obtained by a more circuitous route above

(see (9.19)).

Equation (9.23) is applicable not only to the

current through an inductor, but to any branch current,
in any circuit that is equivalent to the form shown in

Fig. 9.13. Also, any node voltage in such a circuit can

be expressed as

v tð Þ ¼ v 1ð Þ � v 1ð Þ � v 0þð Þ½ � exp � t

t

� �
; t ¼ L

R
:

(9.24)

When applying (9.23) or (9.24), be careful to use

the correct time constant for the interval of interest and

to use i 0þð Þ or v 0þð Þ, not i 0�ð Þ or v 0�ð Þ, unless you
are describing the current through an inductor, in

which case i 0þð Þ ¼ i 0�ð Þ. Also keep in mind that

i 1ð Þ or v 1ð Þ denote the eventual value of the current
given by (9.23) or the voltage given by (9.24) if (9.23)

or (9.24) remain valid for t ! 1. But they are not

necessarily the actual end-point values in any interval,

because the validity of an instance of (9.23) or (9.24)

might be terminated (e.g., by a switching) before the

current or voltage reaches i 1ð Þ or v 1ð Þ.

Example 9.6. Refer to Fig. 9.14, where the

switch is open for t < 0 and is closed at t ¼ 0.

Obtain expressions for i1 tð Þ; i2 tð Þ; iL tð Þ for t> 0.

Solution: We need the circuit time constant and

the initial and final values for each current. The

Thévenin equivalent resistance at the terminals

of the inductor is given by RT ¼ R1 R2k , so the

time constant is given by

t ¼ L

RT
¼ R1 þ R2ð ÞL

R1R2

: (9.25)

Because the switch is open for t < 0, and

because the current through an inductor cannot

change instantaneously, we know that

iL 0þð Þ ¼ 0 ) i1 0þð Þ ¼ i2 0þð Þ ¼ V0

R1 þ R2

:

Because an inductor presents a short circuit

to a constant voltage or current, we know that

iL 1ð Þ ¼ V0

R1

; i2 1ð Þ ¼ 0; i1 1ð Þ ¼ iL 1ð Þ ¼ V0

R1

:

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

t
τ

vL(t)

V0

Ri(t)

V0

Fig. 9.12 Inductor voltage and current in the circuit shown in

Fig. 9.11

vS

i

R

L+
–

Fig. 9.13 An RL series

circuit subjected to piecewise-

constant excitation. See (9.20)
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We may now use (9.23) to obtain the

requested expressions:

i1 tð Þ ¼ i1 1ð Þ� i1 1ð Þ� i1 0þð Þ½ �exp � t

t

� �
¼ V0

R1

� V0

R1

� V0

R1 þR2

� �
exp � t

t

� �
;

i2 tð Þ ¼ i2 1ð Þ� i2 1ð Þ� i2 0þð Þ½ �exp � t

t

� �
¼ V0

R1 þR2

exp � t

t

� �
;

iL tð Þ ¼ iL 1ð Þ� iL 1ð Þ� iL 0þð Þ½ �exp � t

t

� �
¼ V0

R1

1� exp � t

t

� �h i
:

In all cases, the time constant t is given by

(9.25) and the expression is valid for t > 0.

Exercise 9.7. Show that the currents (expres-

sions) obtained in Example 9.6 satisfy

Kirchhoff’s current law.

Exercise 9.8. Use the expression for iL tð Þ
obtained in Example 9.6 to obtain an expres-

sion for the voltage across the inductor. Then

use that expression and the source voltage to

obtain expressions for the currents i1 tð Þ; i2 tð Þ.
Show that these expressions for i1 tð Þ; i2 tð Þ
agree with those obtained in Example 9.6.

Exercise 9.9. Refer to Fig. 9.15. The switch

is closed for t < 0 and opened at t ¼ 0.

Obtain expressions for the current iL and the

voltage vL.

Example 9.7. Refer to Fig. 9.16. The source

voltage vS tð Þ equals zero for times not shown.

Obtain an expression for the voltage across the

inductor for t > 0.

Solution: One approach is to obtain an expression

for the current i(t) and subsequently use

vL tð Þ ¼ vS tð Þ � Ri tð Þ:

The time constant is

t ¼ L

R
¼ 1 ms:

For t < 0, the source appears as a short circuit,

so i 0þð Þ ¼ i 0�ð Þ ¼ 0. For 0 < t � t1, the current

increases toward

i1 1ð Þ ¼ V1

R
¼ 10mA;

where the subscript on i1 indicates that the

relation holds for the first segment of the

response. From the relations above and (9.23),

we have

i1 tð Þ ¼ i1 1ð Þ � i1 1ð Þ � i1 0þð Þ½ � exp � t

t

� �
¼ V1

R
� V1

R
� 0

	 

exp � t

t

� �

¼ V1

R
1� exp � t

t

� �h i
;

t ¼ L

R
; 0 < t � t1:

+

–
L

R1

R2V0

i1
i2

iL

Fig. 9.14 See Example 9.6

R R vL

+

–

iL

LI0

Fig. 9.15 See Exercise 9.9
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The final value of the first segment becomes

the initial value for the second segment, because

the current through an inductor is continuous.

Thus, if we reset the time origin to t1,

i2 0þð Þ ¼ i1 t1ð Þ ¼ V1

R
1� exp � t1

t

� �h i
¼ 10mAð Þ 1� exp �2ð Þ½ �
ffi 8:65mA

and

i2 1ð Þ ¼ V2

R
¼ 5mA:

We use these values in (9.23) and translate the

resulting segment to t1. Thus

i2 tð Þ ¼ i2 1ð Þ� i2 1ð Þ� i2 0þð Þ½ �exp � t� t1
t

� �
¼ V2

R
� V2

R
� i1 t1ð Þ

	 

exp � t� t1

t

� �
;

t1< t� t2:

The final value of the second segment

becomes the initial value for the third segment,

because the current through an inductor is contin-

uous. Thus,

i3 0þð Þ¼ i2 t2ð Þ

¼V2

R
� V2

R
� i1 t1ð Þ

	 

exp � t2� t1

t

� �
ffi 5mA� 5mA�8:65mA½ �exp �2ð Þ
ffi 4:73mA

and

i3 1ð Þ ¼ 0:

We use these values in (9.23) and translate the

resulting segment to t2. Thus

i3 tð Þ ¼i3 1ð Þ� i3 1ð Þ� i3 0þð Þ½ �exp � t� t2
t

� �
¼0� 0� i2 t2ð Þ½ �exp � t� t1

t

� �
¼ i2 t2ð Þexp � t� t2

t

� �
; t > t2:

Thus

i tð Þ¼

0; t<0;

i1 tð Þ; 0<t� t1;

i2 tð Þ; t1<t� t2;

i3 tð Þ; t> t2:

8>>><
>>>:

9>>>=
>>>;

) vL tð Þ¼ vS tð Þ�Ri tð Þ

¼

0; t< 0;

V1�Ri1 tð Þ; 0<t� t1;

V2�Ri2 tð Þ; t1<t� t2;

�Ri3 tð Þ; t>t2;

8>>><
>>>:

9>>>=
>>>;

¼

0; t< 0;

V1 exp � t

t

� �
; 0< t � t1;

V2�Ri1 t1ð Þ½ �exp �t� t1
t

� �
; t1< t � t2;

�Ri2 t2ð Þexp �t� t2
t

� �
; t> t2:

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

Figure 9.17 shows a graph of the voltage vL tð Þ
versus time.

t1 t2

t

vS

V1

V2

0

0

R

LvS vL

+
+

–
–

R = 1kΩ, L = 1mH, V1 = 10V, V2 = 5V, t1 = 2μs, t2 = 4μs

i

Fig. 9.16 See Example 9.7
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Fig. 9.17 Load voltage in the circuit in Fig. 9.16. See Example

9.7

9.6 Time Constant 311



9.7 Inductors in Series and Parallel

In this section, we assume that coils connected

in series or in parallel are connected in such a

way that there are no magnetic flux linkages

between the coils. Section 9.12 treats magneti-

cally coupled coils.

Refer to Fig. 9.18. By Kirchhoff’s voltage law,

v ¼ L1
di

dt
þ L2

di

dt
þ 
 
 
 þ LN

di

dt

¼ L1 þ L2 þ 
 
 
 þ LNð Þ di
dt
: (9.26)

Therefore a series connection of inductors is

equivalent (at the terminals) to one inductor having

inductance Leq given by

Leq ¼ L1 þ L2 þ 
 
 
 þ LN: (9.27)

Refer to Fig. 9.19. By Kirchhoff’s current law,

i¼ 1

L1

ðt
�1

vðtÞdtþ 1

L2

ðt
�1

vðtÞdtþ


þ 1

LN

ðt
�1

vðtÞdt

¼ 1

L1
þ 1

L2
þ


þ 1

LN

� � ðt
�1

vðtÞdt:
(9.28)

Therefore a parallel connection of inductors is

equivalent (at the terminals) to one inductor having

inductance Leq given by

1

Leq
¼ 1

L1
þ 1

L2
þ 
 
 
 þ 1

LN
: (9.29)

Equations (9.27) and (9.29) assume that none of the

flux produced by any one of the inductors links any of

the other inductors; that is, that there is no mutual

inductance between the coils. This assumption is

invalid, as are (9.27) and (9.29), if the coils comprising

the inductors are close enough together that magnetic

coupling is significant.

Equation (9.29) ignores the winding resistances of

the individual inductors, which might not be a bad

approximation at low frequencies, for inductors having

small dc resistances.

Equations (9.27) and (9.29) are rarely useful in prac-

tice. It might happen occasionally that certain approx-

imations lead to a circuit model in which two inductors

appear in series or parallel, inwhich case (9.27) or (9.29)

allow further simplification. But (9.27) and (9.29) rarely

arise in design because one would never specify two or

more inductors where one would do. An exception

might be where a very accurate and precise inductance

is needed, in which case one might use a fixed induc-

tance in series with a smaller, adjustable inductance.

Example 9.8. Obtain an expression for the

equivalent inductance at the terminals a-b of

the circuit shown in Fig. 9.20. Assume the

magnetic fields produced by the inductors do

not overlap.

Solution: From (9.29), the equivalent induc-

tance of the parallel inductors L2; L3 is given by

1

L23
¼ 1

L2
þ 1

L3
) L23 ¼ L2 L3

L2 þ L3
:

From (9.27), the equivalent inductance of

the circuit at the specified terminals is given by

Leq ¼ L1 þ L23 ¼ L1 þ L2 L3
L2 þ L3

:

Exercise 9.10. Obtain an expression for the

equivalent inductance at the terminals a–b of

L1 L2

=

i
+

–

v v

i

+

–

Leq

Fig. 9.18 Inductors in series

L1 L2 LN =

i

+

+

v v

i

+

–

Leq

Fig. 9.19 Inductors in parallel
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the circuit shown in Fig. 9.21. Assume the

magnetic fields produced by the inductors do

not overlap.

9.8 Energy Storage and Power
dissipation in an Inductor

The instantaneous power dissipated in an inductor

having inductance L is given by

p ¼ v i ¼ L
di

dt
i ¼ dw

dt
; (9.30)

where i(t) is the instantaneous current through the

inductor and w tð Þ is the instantaneous energy stored

in the magnetic field produced by the current. We have

from (9.30) that dw ¼ L i di, which implies

wðtÞ ¼ L

ð
i di ¼ 1

2
Li2ðtÞ þ B

where B is a constant of integration. From (9.4), mag-

netic flux is proportional to current, so if i(t) ¼ 0, the

flux equals zero, the magnetic field strength equals

zero, and the stored energy w(t) equals zero. Thus

B ¼ 0 and the instantaneous energy stored in the

magnetic field produced by an inductor is given by

w tð Þ ¼ 1

2
L i2 tð Þ; (9.31)

where i(t) is the instantaneous current through the induc-

tor. For economy, the instantaneous energy stored in the
magnetic field produced by an inductor usually is

referred to as the energy stored by (or in) the inductor.

The energy stored in the magnetic field produced

by a current makes the current resistant to change,

because it takes time to transfer energy from the cur-

rent to the magnetic field or vice-versa. In other words,

the magnetic field created by a current gives the cur-

rent a kind of inertia that resists changes in the current.

An inductor enhances this effect by concentrating and

intensifying the magnetic field produced by a current

through the inductor.

Exercise 9.11. The current in an inductor

having inductance L ¼ 1 mH is given by

iðtÞ ¼ I cosð2 p f tÞ, with I ¼ 5 mA and

f ¼ 1 kHz. Express the instantaneous energy

stored in the inductor as a function of time.

The average power dissipated in an inductor over a

finite time interval t0 � t < t0 þ T is given by

PT ¼ 1

T
e t0 þ Tð Þ � e t0ð Þ½ �

¼ 1

T

1

2
L i2 t0 þ Tð Þ � 1

2
L i2 t0ð Þ

	 

: (9.32)

We assume the stored energy (or, equivalently, the

current through the inductor) is finite always. Thus the

terms in the brackets on the right side of (9.32) are

finite. It follows that the average power dissipated in

an inductor equals zero:

P ¼ lim
T!1

PTð Þ ¼ 0:

The instantaneous power dissipated in an inductor

is not zero, nor is the peak power. An inductor can

absorb energy at some times and return energy to a

circuit at other times. None of the energy absorbed (by

an ideal inductor) is lost to the circuit, but can be

returned on demand. This is in contrast to a resistor,

which converts electrical energy to heat energy that is

then lost forever to the circuit. On an instantaneous

basis, an inductor behaves sometimes like a sink and

other times like a source, but on average (over a

sufficiently long time), is neither.

a

b

L

LL

2L 2L

Fig. 9.21 See Exercise 9.10

i
a

b

L1

L2 L3v
+

–

Fig. 9.20 See Example 9.8
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Example 9.9. Find the average powers

dissipated in the resistor and the source in the

circuit shown in Fig. 9.22, where R ¼ 2 kO and

iðtÞ ¼ I0 cos 2 p f tð Þ; I0 ¼ 10mA:

Solution: Because the average power

dissipated in the inductor equals zero, and

because power is conserved, the sum of the

powers dissipated in the resistor and the source

equals zero. The power dissipated in the resis-

tor is

PR ¼ irms
2 R ¼ I0

2 R

2
¼ 100mW

and the power dissipated in the source is

Pi ¼ �PR ¼ �100mW:

Exercise 9.12. Refer to Fig. 9.23. What is the

voltage vL across the inductor a very long time

after the switch is moved from a to b? What is

the current iL through the inductor at that time?

Exercise 9.13. Refer to Fig. 9.24. What is the

voltage vL across the inductor a very long time

after the switch is moved from a to b? What is

the current iL through the inductor at that time?

9.9 Parasitic Self-Inductance

Self-inductance is present wherever current exists,

whether we like it or not. Parasitic self-inductance

refers to unintentional and generally undesirable

inductance that is present in components other than

inductors, such as conductors, resistors, and capaci-

tors. In the simplest cases, parasitic self-inductance is

due largely to current in the leads of such components

and in conductors (wires) that interconnect devices.

Numerous formulas have been presented for the

self inductance of a straight, isolated, non-magnetic

wire.7 One of these is

L ¼ m0l
2p

ln
4l

d

� �
� 1

	 

; m0 ¼ 4p� 10�9 H cm�1;

(9.33)

where the length l of the wire is much larger than the

diameter d. Figure 9.25 shows a graph of inductance

in nH versus wire length in cm for 1 cm � l � 10 cm,

calculated from (9.33). Also shown (dotted line) is

a linear approximation to (9.33) for that range of

wire length. The slope of the linear approximation is

approximately 12 nH cm�1, which implies that the self-

inductance of an isolated straight conductor is about

12 nH cm�1. Inductances calculated using (9.33)

might be a bit high, as other methods yield lower values.

But in design, it usually is best to be conservative.

i

R

L

Fig. 9.22 See Example 9.9

L

a

b
vL

iL
V0

R

+

–

+

–

Fig. 9.23 See Exercise 9.12

I0 R L

a

b

vL

iL –

+

Fig. 9.24 See Exercise 9.13

7Grover, F.W., Inductance Calculations, Dover, New York,

2004.
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In many cases, lumped-constant models fail before

self-inductance of conductors becomes significant.

Lumped-constant models are valid only for circuits

whose dimensions are much larger than the wave-

lengths of currents and voltages involved. The wave-

length l of a sinusoidal current or voltage (in air)

having frequency f is given by

l ¼ c

f
; (9.34)

where c ffi 3� 108 m s�1 is the speed of light. For

example, the wavelength of a 1 GHz sinusoid is 30

cm, so ordinary lumped-constant models can be

applied to centimeter-size circuits operating at fre-

quencies of 1 GHz or below, but probably cannot be

applied to such circuits at frequencies of 10 GHz

(wavelengths of 3 cm) or to circuits in which the

lengths of conductors approach 30 cm. For example,

although the graph in Fig. 9.25 indicates that a 5-cm

conductor has a self-inductance of 50 nH, that fact is

meaningless at frequencies higher than 1 GHz or so,

because a wavelength of 5 cm corresponds to a fre-

quency of 6 GHz.

Where a lumped-constant model is valid, self-

inductances are significant if the associated currents

and voltages are significant relative to currents and

voltages of interest. For example, consider a circuit

whose dimensions are on the order of 1 cm and in

which currents and voltages of interest are on the order

of 1 mA and 1 mV, respectively. From the develop-

ment above, the self-inductance of a 1-cm wire is on

the order of 12 nH cm�1ð Þ � 1 cmð Þ ¼ 12 nH. The

associated self-induced voltage for a sinusoidal cur-

rent through the wire is given by

v ¼ L
di

dt
¼ L

d

dt
I0 cos 2 p f tð Þ½ �

¼ �2 p f L I0 sin 2p f tð Þ: (9.35)

The peak amplitude of the self-induced voltage

equals 1 mV (is comparable to voltages of interest) if

2 p f L I0 ¼ 1mV; (9.36)

which implies

f ¼ 1mV

2 pð Þ 12 nHð Þ 1mAð Þ ffi 13:3MHz: (9.37)

The self-induced voltage along a 1-cm straight wire

carrying a 1-mA sinusoidal current is less than 1 mV

until the frequency of the current approaches 13 MHz.

At that frequency and for that current, a lumped-con-

stant R; L; Cð Þ model remains valid for a centimeter-

size circuit, because the wavelength of a 13 MHz

current or voltage is

l ¼ c

f
¼ 3� 108

13� 106
ffi 23m; (9.38)

which is very much larger than 1 cm. Thus in this case,

self-inductance is both meaningful and significant.

Exercise 9.14. A sinusoidal current having

frequency f and peak amplitude I passes

through an axial-lead resistor having resistance

R and series self-inductance L. Assuming a

lumped-constant model is applicable, obtain

an expression for the frequency at which the

rms voltage drop across the self-inductance

equals 1% of the rms voltage drop across the

resistance.

Inductors are used in basically three ways:

• In series with a load, to suppress ripple or high-

frequency noise;

0 1 2 3 4 5 6 7 8 9 10
0

50

100

150

Linear
Approx.

L (nH)

l (cm)

Eq. (9.29)

Fig. 9.25 Self-inductance of a straight wire as a function of

wire length

9.9 Parasitic Self-Inductance 315



• As components of circuit models for physical

devices;. e.g., electric motors, generators, and

transformers;

• In conjunction with capacitors, to construct fre-

quency-selective circuits (filters).

We are as yet unprepared to treat circuits contain-

ing both inductors and capacitors. But we can describe

how an inductor alone can be used to reduce ripple (or

undesirable high-frequency noise) accompanying a

desirable current or voltage.

9.10 Reducing Ripple

Recall that in some applications where the dc compo-

nent Vdc of a voltage is the desirable component and

the ac component vac is undesirable, the ripple factor,

defined as

g ¼ Vac rms

Vdcj j (9.39)

is a useful figure of merit. Like capacitors, inductors

can be used to reduce ac ripple in a resistive load.

When used for this purpose, an inductor is called a

choke. Whereas a bypass capacitor is connected in

parallel with a load, a choke is connected in series

with a load, as shown in Fig. 9.26, where the source vS
consists of a desirable dc component VSdc and an

undesirable ac component (ripple) vS ac tð Þ. If the

choke is absent (is replaced by a conductor), the load

voltage vR equals the source voltage vS and the ripple

factor is given by

g0 ¼
VSac rms

VS dcj j : (9.40)

Below, we obtain an expression for the ripple fac-

tor with the inductor present. We assume the ac com-

ponent of the source voltage is sinusoidal. The

required trigonometric and algebraic manipulations

are simplest if we assume the initial phase of the ac

component of the current i equals zero, such that

i ¼ Idc þ Iac cos o0 tð Þ: (9.41)

It follows that the load voltage is given by

vR ¼ RIdc þ RIac cos o0 tð Þ ¼ VRdc þ VRac cos o0 tð Þ

and that the source voltage is given by an expression of

the form

vS ¼ VSdc þ VSac cos o0 tþ yð Þ: (9.42)

Superposition allows us to find the responses to the

dc and ac component of the source individually.

Because an inductor acts as a short circuit for dc, the

dc component of the load voltage (the voltage across

the resistor) equals the dc component of the source

voltage. Thus

VRdc ¼ VSdc: (9.43)

The ac components of the voltages involved satisfy

Kirchhoff’s voltage law. Thus

vLacþ vRac¼ vSac ) L
diac
dt

þRiac ¼VSac cos o0 tþyð Þ:

From (9.41), iac ¼ Iac cos o0 tð Þ. Thus

� Lo0Iac sin o0 tð Þ þ RIac cos o0 tð Þ
¼ VSac cos o0 tþ yð Þ
¼ VSac cos o0 tð Þ cos yð Þ � sin o0 tð Þ sin yð Þ½ �;

which holds for all time only if the coefficients of

cos o0 tð Þ and sin o0 tð Þ on the left side equal the

corresponding coefficients on the right side. Thus we

obtain two equations

RIac ¼ VSac cos yð Þ; Lo0Iac ¼ VSac sin yð Þ;

which yield

RIacð Þ2þ Lo0Iacð Þ2¼ VSacð Þ2: (9.44)i

vS vR

L
R

vL+ –

+

–
–
+

Fig. 9.26 Use of an inductive

choke to reduce ripple
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The ac component of the load voltage vR is given by

VRac ¼ RIac;

so (9.44) becomes

VRacð Þ2þ Lo0

R
VRac

� �2

¼ VSacð Þ2;

which reduces to

VRacj j ¼ VSacj jffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Q2

p ;

where we have defined

Q ¼ o0L

R
: (9.45)

The ripple factor is given by

g ¼ VRac

Vdc

ffiffiffi
2

p
����

���� ¼ 1

Vdcj j ffiffiffi
2

p Vacj jffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Q2

p ¼ g0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Q2

p ;

(9.46)

where, from (9.40)

g0 ¼
Vac

Vdc

ffiffiffi
2

p
����

����: (9.47)

Conversely, the inductance L required to attain a

specified ripple factor g is found as follows: From

(9.46),

Q ¼ o0L

R
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g0
g

� �2

�1

s
; (9.48)

whence

L ¼ R

o0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g0
g

� �2

�1

s
; g0 ¼

Vac

Vdc

ffiffiffi
2

p
����

����: (9.49)

In many applications, g0=g � 1, in which case

L ffi Rg0
o0g

; g0 � g: (9.50)

Example 9.10. In Fig. 9.26, R ¼ 2O and

vS ¼ Vdc þ Vac cos o0tþ yð Þ with Vdc ¼ 100V,

Vac ¼ 25
ffiffiffi
2

p
V, and f0 ¼ 120Hz. The required

ripple factor is 0.1% (0.001). Specify the induc-

tance L.

Solution: From (9.49)

g0 ¼
Vac

Vdc

ffiffiffi
2

p
����

����¼ 25
ffiffiffi
2

p
V

100
ffiffiffi
2

p
V
¼ 0:25;

L¼ R

o0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g0
g

� �2

�1

s

¼ 2O
240p s�1

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:25

0:001

� �2

�1

s
¼ 663mH:

We could have simplified the calculation

somewhat by using (9.50), because

g0
g
¼ 0:25

0:001
¼ 250 � 1:

Thus

L ffi Rg0
o0g

¼ 2Oð Þ 0:25ð Þ
240p s�1ð Þ 0:001ð Þ ¼ 663mH:

as before.

Exercise 9.15. The dc output of a certain

power supply is 12 V. For a 4O resistive

load, the ripple factor of the load voltage is

g ¼ 10�4. (a) What is the rms amplitude of the

ac component of the load voltage? (b) Assum-

ing the ripple is a 120 Hz sinusoid, what is the

ripple factor for the load voltage if a 200 mH

inductor is connected in series with the load?

Another approach is to require that the ac compo-

nent of the load voltage be a small fraction of the ac

component of the source voltage, which is equivalent

to requiring that the ac component of the inductor

voltage be much larger than the ac component of the

load voltage, which requires
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L
diac
dt

����
���� � Riacj j: (9.51)

Using (9.41) in (9.51) gives

o0LIacj j � RIacj j ) o0L

R
¼ Q � 1; (9.52)

which implies that requiring a large fraction of the

total ac voltage to appear across the inductor is equiv-

alent to requiring that

Q ¼ o0L

R
� 1: (9.53)

Also, from (9.46), if Q is large,

g0
g
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Q2

p
ffi Q; Q � 1;

or

g ¼ g0
Q
; Q � 1: (9.54)

which yields

L ¼ R g0
o0 g

(9.55)

as before. Equations (9.50) and (9.55) are good

approximations to (9.49) (less than about 1% error) if

g0=g > 7, which is usually true in applications.

Exercise 9.16. The voltage across a 2O resis-

tive load is given by

v ¼ Vdc þ Vac cos 2 p f tð Þ;

with f ¼ 10 kHz, Vdc ¼ 5V, and Vac ¼
500mV. Specify a series choke such that the

load ripple is reduced by a factor of 1000.

Using a series choke to reduce the ripple in a load

voltage or current is not always an alternative to

bypassing the load with a capacitor. A bypass capaci-

tor reduces the voltage ripple across both the capacitor

and the load, whereas the total ripple voltage across

the series connection of a choke and load is not

reduced by the choke. For example, suppose we wish

to reduce the ac component of the voltage between two

nodes a, b connected by a resistor. Connecting a

capacitor in parallel with the resistor will reduce the

ac component of vab, but connecting an inductor in

series with the resistor will not.

Keep in mind that the analysis above assumes sinu-

soidal ripple, as given by (9.42). If the ac component

of the source vS in Fig. 9.26 is not sinusoidal, then the

ac components of the source voltage and load voltage

have different waveforms.8 In that case, analysis of the

load ripple is much more complicated and beyond the

scope of this book.

9.11 Inductive Kick

Current through an inductor cannot change instanta-

neously. Because voltage across the terminals of an

inductor is proportional to the time derivative of cur-

rent through the inductor, the terminal voltage

becomes as large as necessary to prevent an instanta-

neous change in current. For example, consider the

situation illustrated by Fig. 9.27, where a switch

attempts to interrupt the current through an inductor.

When the switch is suddenly opened, a very large

voltage can appear across the switch, leading to arcing

and (sooner or later) failure of the switch. Such a high

voltage in a switched inductive circuit is called induc-

tive kick.9 Inductive kick is a useful phenomenon in

certain applications, such as automobile ignition sys-

tems, where the large voltage applied to the spark

–

+
V0 L

Fig. 9.27 Switching arc

caused by inductive kick

8For example, if the current through an inductor has a triangular

waveform, then the voltage across the inductor has a rectangular

(piecewise-constant) waveform.
9This terminology is borrowed from Paul Horowitz and Win-

field Hill, The Art of Electronics, (2nd Ed.), Cambridge Univer-

sity Press, New York, 1980.
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plugs is obtained by interrupting the current through

the primary of a transformer,10 and in some high-

voltage power supplies, where high voltages are pro-

duced in essentially the same manner. But in many

cases, inductive kick is undesirable and potentially

destructive.

Special measures often are necessary to protect

switching apparatus and other components when

switching large inductive loads such as transformers

and electric motors. Such measures take various

forms, ranging from none for small inductive loads

carrying small currents to elaborate measures for large

inductive loads carrying large currents. For example,

if the inductance in Fig. 9.27 is very small, perhaps a

sufficiently robust switch is all that is necessary. But if

the inductance is large, additional provisions are nec-

essary. One such provision for a dc motor is to shunt

the switch with a diode, as illustrated by Fig. 9.28. The

diode allows energy stored in the inductor to dissipate

in the forward resistance of the diode and in the resis-

tance of the motor windings. This method does not

work for an ac motor, because in that case, the diode

would shunt every other half cycle and useable power

to the motor would be greatly reduced.11

Figure 9.29 shows a protection method sometimes

employed for ac motors. The resistor is large enough

that only a small fraction of the total current is diverted

from the motor while it is running. But when the

switch is opened, the current through the inductor is

diverted to the RC branch, and energy is stored in the

capacitor for subsequent dissipation in the resistor and

the resistance of the motor windings. Thus the electri-

cal energy stored in the magnetic field of the motor

and the mechanical energy stored in the load, which

otherwise would be dissipated in an arc at the switch,

is dissipated instead as heat by the resistor. For small

to medium (1/10–5 hp) motors, the resistance R is

typically about 20�200O and the capacitance C is

typically about 0:01�0:1 mF. The RC protective circuit

shown in Fig. 9.29 is called a snubber. More complex

snubber circuits can more effectively convert the

mechanical energy stored in a rotating machine to

heat dissipation in a resistor, allowing faster decreases

in motor speed. Analysis of such circuits is best done

using methods treated in subsequent chapters.

9.12 Magnetically Coupled Coils and
Mutual Inductance

Faraday’s law of induction states that a change in

magnetic flux linking a conductor induces a voltage

in the conductor, regardless of the source of the flux. A

magnetic field produced by a changing current in one

conductor can induce a voltage in a neighboring con-

ductor. That is, if changing flux arising from changing

current in one conductor links a second conductor,

then voltage will be induced in the second conductor.

The polarity of the induced voltage is such that any

current produced by the voltage will attempt to keep

the flux from changing. Two conductors (or coils, or

circuits) linked in this way are said to bemagnetically

coupled and induction of a voltage in one conductor

by changing current in another is called mutual

inductance.

We begin by obtaining a circuit model for magnet-

ically coupled coils. We refer to Fig. 9.30, where the

resistances R1; R2 represent the resistance of the wire

forming the coils. The currents i1; i2 produce mag-

netic flux, where:

f11 is the flux produced by the current i1 that links

only coil 1

f12 is the flux produced by the current i1 that links

both coils

+

–

dc motor
V0

Fig. 9.28 A diode as an arc suppressor

v (t)

R C

ac motor+
–

Fig. 9.29 An RC (snubber) circuit as an arc suppressor

10The ignition coil in an automobile is actually a transformer.
11In fact, the motor might not even run, unless it is a universal or

ac/dc motor.
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f22 is the flux produced by the current i2 that links

only coil 2, and

f21 is the flux produced by the current i2 that links
both coils.

The total flux f1 produced by the current through

coil 1 and the total flux f2 produced by the current

through coil 2 are given by

f1 ¼ f11 þ f12; f2 ¼ f22 þ f21: (9.56)

Actually, not all of the flux produced by the current

through a coil links every turn of the coil. The fluxes

defined above are effective fluxes that account for that
fact. For example, the flux f11 is an effective flux

which, if linked with all the turns of coil 1, gives the

correct total number of flux linkages.

We assume the coils are wound such that the total

flux produced by a current is proportional to the cur-

rent.12 Thus the total flux produced by each coil is

proportional to the current through the coil. A fraction

k of the flux produced by coil 1 links with coil 2 and

(by symmetry) the same fraction the flux produced by

coil 2 links with coil 1. We have

f1 ¼ aN1i1; f12 ¼ kf1 ¼ kaN1i1 (9.57)

and

f2 ¼ aN2i2; f21 ¼ kf2 ¼ kaN2i2; (9.58)

where a depends upon the coil geometry and core

material, but not on the current or flux.

From (9.57) and (9.58),

k ¼ f12

f1

¼ f21

f2

: (9.59)

The parameter k is the coupling coefficient for the

coils because the fractions f12=f1 and f21=f2 indi-

cate the degree of coupling between two coils. That is,

how much of the flux produced by one coil links the

other coil. The maximum possible value of each frac-

tion is unity.

We are dealing with currents through and voltages

across coils, so we seek an inductive model relating

the currents and voltages in Fig. 9.30. With reference

to (9.4), the self-inductances L1; L2 of the coils are

given by

L1 ¼ N1f1

i1
) f1 ¼

L1i1
N1

; L2 ¼ N2f2

i2
) f2 ¼

L2i2
N2

:

(9.60)

By analogy, we define the mutual inductances

M21; M12 as

M21 ¼ N1f21

i2
) f21 ¼

M21i2
N1

;

M12 ¼ N2f12

i1
) f12 ¼

M12i1
N2

:

(9.61)

Using the right sides of (9.57) and (9.58) in (9.61)

yields

M21 ¼ kaN1N2; M12 ¼ kaN1N2

) M12 ¼ M21 ¼ M:
(9.62)

v1

i1 i2

N1 turns N2 turns

R1

vA

+ +

– –

v2

R2

vB

+ +

– –

f11

f12
f21 f22

Fig. 9.30 Magnetically

coupled coils

12This is equivalent to assuming that the permeability of the core

material is constant and independent of position.

320 9 Inductance



From (9.60), (9.61), and (9.62), we obtain

L2 L2 ¼ N2f2

i2

N1f1

i1
;

M12M21 ¼ M2 ¼ N2f12

i1

N1f21

i2
) M2

L2 L2
¼ f12f21

f2f1

:

It follows from this result and (9.59) that the cou-

pling coefficient is given by

k ¼
ffiffiffiffiffiffiffiffiffiffi
M2

L2 L2

s
¼ Mj jffiffiffiffiffiffiffiffiffiffi

L2 L2
p : (9.63)

Conventionally, as used in circuit equations,

mutual inductance is positive, so the absolute-value

sign in (9.63) is unnecessary. This remark is explained

more fully in the sequel.

Using (9.62), the right side of (9.61) can be written

f21 ¼
Mi2
N1

; f12 ¼
Mi1
N2

: (9.64)

The total flux linkages for the two coils are

l1 ¼ N1 f1 � f21ð Þ; l2 ¼ N2 f2 � f12ð Þ: (9.65)

where the positive sign applies if the fluxes produced

by each current are in the same direction (as shown in

Fig. 9.30) and the negative sign applies otherwise.

Using (9.60) and (9.64) in (9.65) gives

l1 ¼ N1

L1i1
N1

�Mi2
N1

� �
¼ L1i1 �Mi2;

l2 ¼ N2

L2i2
N2

�Mi1
N2

� �
¼ L2i2 �Mi1;

(9.66)

where M 	 0. By Faraday’s law, the voltages across

the coils are given by

v1 ¼ dl1
dt

¼ L1
di1
dt

�M
di2
dt

;

v2 ¼ dl2
dt

¼ L2
di2
dt

�M
di1
dt

:

(9.67)

To knowwhether to use the positive or negative signs

on the mutual terms in (9.67), we must know whether

the fluxes produced by i1 and i2 are in the same or

opposite directions. If the fluxes are in the same direc-

tion, we must use the positive sign. If the fluxes are in

opposite directions, wemust use the negative sign. If we

know how the coils are wound – e.g., if we are presented

with a picture like the one shown in Fig. 9.31 – we can

determine which sign should be used. If the current

directions and coil windings are as shown in

Fig. 9.31(a), we would use the positive sign. If the

current directions and coil windings are as shown in

Fig. 9.31(b), we would use the negative sign.

But it is impractical to require such detailed repre-

sentations of coils in circuit diagrams, so we use

instead a convention called the dot convention,

where dots are used to indicate corresponding ends

of coupled coils. If the positive directions of the cur-

rents are either both into or both out of corresponding

ends, we must use the positive sign. Otherwise, we

must use the negative sign.

Figure 9.32 shows how the dot convention can be

used to indicate the corresponding ends of the coils

drawn in Fig. 9.31. For the arrangement in Fig. 9.32(a),

which corresponds to Fig. 9.31(a), we would write

f1 f1

f2

f2

i1 i1

i2i2

(a) (b)

Fig. 9.31 The sign of the mutual terms in (9.67) is (a) positive

or (b) negative, depending upon how the coils are wound and the

directions of the currents in the coils

i1i1

i2i2

L1 L1

L2 L2

M M

v1

+

–

v1

+

–

v2

+

–

v2

+

–

(a) (b)

Fig. 9.32 Dot-convention labeling for the coils in Fig. 9.31
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v1 ¼ L1
di1
dt

þM
di2
dt

; v2 ¼ L2
di2
dt

þM
di1
dt

;

whereas for the arrangement in Fig. 9.32(b), which

corresponds to Fig. 9.31(b), we would write

v1 ¼ L1
di1
dt

�M
di2
dt

; v2 ¼ L2
di2
dt

�M
di1
dt

:

Example 9.11. Obtain the equivalent induc-

tance at the terminals a–b of the circuit shown

in Fig. 9.33(a).

Solution: We re-draw the circuit to obtain the

circuit diagram in Fig. 9.33(b), which defines the

loop currents such that each enters the dotted

terminal of the associated coil. Applying Kirchh-

off’s voltage law to each of the indicated loops

gives

v¼ L1
di1
dt

þM
di2
dt

;

v¼ L2
di2
dt

þM
di1
dt

; (9.68)

where we use the positive sign on the mutual

term because both currents enter dotted term-

inals. We can write (9.68) in vector-matrix form

as

L1 M
M L2

	 

i01
i02

" #
¼ v

v

" #
; (9.69)

where i01 ¼ di1=dt; i02 ¼ di2=dt. The solution is

i01
i02

	 

¼ L1 M

M L2

	 
�1
v
v

	 

¼ v

L1L2�M2

L2�M
L1�M

	 

;

which, when written out, becomes

i01 ¼
di1
dt

¼ L2 �M

L1L2 �M2
v;

i02 ¼
di2
dt

¼ L1 �M

L1L2 �M2
v;

whence

di1
dt

þdi2
dt

¼ d i1þ i2ð Þ
dt

¼ di

dt
¼L2þL1�2M

L1L2�M2
v;

which yields

v ¼ L1L2 �M2

L2 þ L1 � 2M

� �
di

dt
:

This last relation has the form

v ¼ Leq
di

dt
;

where the equivalent inductance Leq is given by

Leq ¼ L1L2 �M2

L1 þ L2 � 2M
:

From (9.63),

M ¼ ffiffiffiffiffiffiffiffiffiffi
L1L2

p ) k ¼ 1: (9.70)

Coils for which the coupling coefficient is near

unity are said to be tightly coupled. Tight coupling

between coils can only be achieved if the coils are

wound on a common magnetic core.

Exercise 9.17. Refer to (9.68). Show that if

the coupling coefficient equals unity, then

v2 ¼ �
ffiffiffiffiffi
L2
L1

r
v1; k ¼ 1: (9.71)

Exercise 9.18. The solution given in Example

9.11 is invalid if the coupling coefficient is

unity, because if k ¼ 1, then M ¼ ffiffiffiffiffiffiffiffiffiffi
L1L2

p
and

L1 L2M

i

i1 i2

v

+

–

Leq ⇒v
+

–

i

L1
L2

M

a

b

(a) (b)

Fig. 9.33 See Example 9.11
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the matrix on the left in (9.69) is singular.

(a) Show that if M ¼ ffiffiffiffiffiffiffiffiffiffi
L1L2

p
then v ¼ 0 and

ffiffiffiffiffi
L2

p di2
dt

¼ � ffiffiffiffiffi
L1

p di1
dt

:

(b) Does this mean that i2
ffiffiffiffiffi
L2

p ¼ �i1
ffiffiffiffiffi
L1

p
?

Explain.

9.13 Parasitic Mutual Inductance

Parasitic mutual inductance between two long, straight,

non-magnetic, identical wires depends upon wire

spacing and pair geometry (e.g., parallel or twisted),

but does not exceed the self inductance of either wire.

Refer to Fig. 9.34, which shows an end view of two

neighboring conductors carrying current into the page.

We identify four components of the total flux (per unit

length of the conductors):

f11 ¼ flux produced by current i1

that links only conductor 1

f12 ¼ flux produced by current i1

that links both conductors

f22 ¼ flux produced by current i2

that links only conductor 2

f21 ¼ flux produced by current i2

that links both conductors (9.72)

Thus the total flux produced by current i1 equals

f1 ¼ f11 þ f12, the total flux produced by current i2
equals f2 ¼ f22 þ f21, and the self-inductances (per

unit length) of the individual conductors are given by

f1 ¼ L1 i1; f2 ¼ L2 i2: (9.73)

Similarly, the flux f12 produced by current i1 that

links conductor 2 and the flux f21 produced by current

i2 that links conductor 1 give rise to mutual induc-

tances given by

f12 ¼ M12 i1; f21 ¼ M21 i2: (9.74)

By symmetry,

M12 ¼ M21 ¼ M: (9.75)

The induced voltages in the conductors are given by

v1 ¼ L1
di1
dt

�M
di2
dt

;

v2 ¼ L2
di2
dt

�M
di1
dt

;

(9.76)

where the positive sign is used if the currents are in the

same direction, as assumed in Fig. 9.34, and negative

if the currents are in opposite directions. In other

words, if the fluxes produced by the conductors are

in the same direction (both clockwise or both counter-

clockwise), then the self-induced and mutually-

induced voltages have the same polarity. Otherwise,

the self-induced and mutually-induced voltages have

opposite polarity.

Parasitic mutual inductance can be significant in

very large circuits, even if the frequencies of currents

and voltages involved are relatively low; for example,

where telephone lines run parallel to electric-power

lines over a great distance, 60-cycle hum is induced in

the telephone lines and telephone companies must

employ special circuits (filters) to eliminate the

hum.13 Similarly, parasitic mutual inductance between

f11 f22

f12

f21
i1 i2

x

Fig. 9.34 Flux linkages between parallel current-carrying con-

ductors

13Between-conductor capacitance also contributes to the cou-

pling. Also, because of nonlinearities in power transformers, the

third and fifth harmonics (180- and 300-Hz components) also

are present in current on power lines. Telephone companies use

filters to eliminate (block) components at and below 300 Hz.
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parallel telephone lines can introduce what is called

crosstalk, where one conversation is superimposed on

another. Privacy considerations require telephone

companies to take measures to avoid crosstalk. Both

problems have been greatly alleviated by a shift to

digital transmission.

Detailed treatment of such issues is beyond the

scope of this book. A standard undergraduate course

in electromagnetism will help prepare you to tackle

such important problems in practice.

9.14 Transformers

Magnetic coupling is the basis of operation for devices

called transformers, which use magnetically coupled

coils to allow current in one or more coils to induce

voltages in one or more other coils, according to Fara-

day’s law of induction. One or more of the coils might

be tapped at various points. The coils driven by

sources are called primary coils and the coils driving

loads are called secondary coils. For economy,

practicing engineers omit coil and refer to a primary

coil as a primary and to a secondary coil as a second-

ary. We limit our discussion to transformers having

one primary and one secondary. The secondary might

have a center tap.

The primary and secondary usually are wound on a

common core. The core can be a magnetic material,

such as iron, some steels, and ferrite, or a non-mag-

netic material, such as air (a hollow paper or plastic

tube). A transformer having a magnetic core usually is

called an iron-core transformer, regardless of the

specific composition of the core. A transformer having

a non-magnetic core usually is called an air-core

transformer, although the core might be (at least in

part) paper or plastic. Some transformers for radio-

frequency applications have a magnetic core that can

be screwed into (or out of) a hollow cylindrical paper

or plastic tube on which both coils are wound, which

effectively changes the coupling coefficient and the

inductances. Adjustable power transformers have a

sliding tap on the secondary which effectively changes

the number of secondary turns (and thereby the sec-

ondary voltage. See (9.80)). Figure 9.35 shows circuit-

diagram symbols for various kinds of transformers.

Figure 9.36 shows a selection of transformers (not

to scale).

Each term of the form M di=dtð Þ in (9.67) is a

voltage induced in one coil by current in the other.

The voltage induced in one coil depends upon the

mutual inductance M and upon the rate of change of

the current in the other coil. Thus the voltage induced

can be large, even if the coupling coefficient (or

mutual inductance) is small. Also, air-core transfor-

mers do not exhibit various nonlinear effects and core

losses inherent in iron-core transformers. For these

and other reasons, most transformers for high-fre-

quency applications (large di=dt ) are air-core. Many

for broadcast radio applications (medium di=dt ) are

either air-core or adjustable. Almost all transformers

for audio � 20 kHzð Þ and power (60 Hz) applications

are iron-core. Coupling coefficients range from about

0.01 for some air-core transformers to about 0.99 for

some iron-core power transformers. For most audio

and high-frequency transformers, linearity is more

important than efficiency. For power transformers,

efficiency (tight coupling) is as important if not more

important than linearity. Air-core transformers are

linear, whereas iron-core transformers are at best

only approximately so, more nearly linear for smaller

than for larger currents and voltages. We limit our

treatment to transformers for which linearity is an

acceptable approximation, at least for preliminary

analysis or design.

It is impractical to show the internal structure of a

transformer (how the coils are wound) in a circuit

diagram, so we use the dot convention described in

Section 9.12, where dots are placed at corresponding

ends of the primary and secondary windings, as illu-

strated by Fig. 9.37, where

v1 ¼ L1
di1
dt

þM
di2
dt

; v2 ¼ L2
di2
dt

þM
di1
dt

: (9.77)

When preparing to write circuit equations for a

transformer, we are free to choose the positive direc-

tions for the currents. There is no reason to intentionally

air-core iron-core adjustable center-tapped
secondary

Fig. 9.35 Circuit-diagram symbols for transformers
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confuse ourselves, so we should always choose the

directions and polarities such that both currents enter

the dotted terminals, in which case the dotted terminals

are positive. If we do that, we will always use the

positive sign before the mutual inductance M in the

circuit equations.

Fig. 9.36 Assorted

transformers (not to scale):

(a) chassis-mount power

transformer, (b) PCB power

transformer, (c) encapsulated

power transformer, (d) (e),

PCB-mount pulse

transformers, (f) PCB-mount

audio transformer

(Photographs courtesy of

Rapid Electronics, Ltd)

v1 v2

i1 i2
R1

R2vS

+

–

+

–

+
–

Fig. 9.37 Dot convention for a transformer
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The dot convention is extended to three and more

coupled circuits by using various dot shapes (e.g.,

diamonds, squares, etc.), but we do not need that

generalization.

Exercise 9.19. The shape in Fig. 9.38 repre-

sents a rectangular iron core. Draw coils on the

left and right parts of the core such that (a) both

coils are dotted at the top and (b) one coil is

dotted at the top and the other at the bottom.

We are at this point unprepared to solve trans-

former problems, except in certain simple cases, one

of which is the subject of the next example.

Example 9.12. Obtain an expression for the

equivalent inductance seen at the primary

winding of a transformer whose secondary is

shorted.

Solution: Refer to Fig. 9.39. Kirchhoff’s volt-

age law gives

L1
di1
dt

þM
di2
dt

¼ v; L2
di2
dt

þM
di1
dt

¼ 0:

Using the second equation to eliminate i2
from the first gives

v ¼ L1 �M2

L2

� �
di1
dt

) Leq ¼ L1 �M2

L2
:

9.15 Ideal Transformers

An ideal transformer is a fictional lossless trans-

former whose coupling coefficient is unity. Because

the coupling coefficient k equals unity, all of the flux

produced by the primary links the secondary, and vice

versa. That is, f12 ¼ f1, f21 ¼ f2, and (9.65)

becomes

l1 ¼ N1 f1 � f2ð Þ;
l2 ¼ N2 f2 � f1ð Þ ¼ �N2 f1 � f2ð Þ: (9.78)

It follows (Faraday’s law) that

v1 ¼ dl1
dt

¼ N1

d f1 � f2ð Þ
dt

;

v2 ¼ dl2
dt

¼ �N2

d f1 � f2ð Þ
dt

;

(9.79)

and thus

v2 ¼ �N2

N1

v1; k ¼ 1: (9.80)

Because an ideal transformer is lossless, the wind-

ing resistances equal zero, and all of the power deliv-

ered to the primary is delivered to a load connected to

the secondary. Refer to Fig. 9.40. The instantaneous

power delivered to the primary is given by pin ¼ v1 i1.

Consistent with the passive sign convention, the

instantaneous power delivered to the load is given by

pout ¼ �v2 i2. For a lossless transformer,

pin ¼ pout ) v1 i1 ¼ �v2 i2 ) v2
v1

¼ � i1
i2
: (9.81)

Equation (9.80) holds if the coupling coefficient

equals unity, even if losses are present, whereas

(9.81) holds only if the transformer is lossless. How-

ever, if losses are present, the voltages v1; v2 are

inaccessible (the resistance and inductance are

distributed all along each winding), so the fact that

(9.80) holds in presence of losses is of little interest

unless the losses are small relative to the power deliv-

ered to the primary. Also, winding resistance is not the

only loss mechanism in a transformer: Time-varying

magnetic fields in an iron-core transformer produce

eddy currents and attendant losses in the core material.

Fig. 9.38 See Exercise 9.19

M

L1 L2

i1 i2

v
+

–
Leq ⇒

Fig. 9.39 See Example 9.12
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Equations (9.80) and (9.81) hold only for a trans-
former having unity (perfect) coupling and no losses.

Nonetheless, (9.80) and (9.81) provide a starting point

for understanding and designing circuits that incorpo-

rate real (not ideal) transformers.

The ratio of secondary to primary turns for a trans-

former is called the turns ratio14 and is denoted by n.

n ¼ N2

N1

¼ turns ratio: (9.82)

From (9.80), (9.81), and (9.82), the primary and

secondary voltages and currents in an ideal trans-

former are related as

v2 ¼ � n v1; i2 ¼ � n�1 i1: (9.83)

Equations (9.83) are valid only for a lossless trans-

former having unity coupling and only for time-vary-
ing (ac) voltages and currents. A transformer (ideal or

otherwise) does not pass dc.15

In (9.83), v2 ¼ nv1 if the assumed polarities for v1
and v2 are the same with respect to the dotted term-

inals. Otherwise, v2 ¼ �nv1. In (9.83), i2 ¼ �n�1i1 if

the positive direction for both currents is either into or

out of the dotted terminals. Otherwise, i2 ¼ n�1i1. To

avoid confusion, it is best to take the positive direction

of primary current into the dotted terminal of the
primary and the positive direction of secondary cur-

rent out of the dotted terminal of the secondary, and to

assign voltage polarities such that the dotted terminals
are positive, as shown in Fig. 9.41.16 In that case,

(9.83) becomes

v2 ¼ N2

N1

v1 ¼ n v1;

i2 ¼ N1

N2

i1 ¼ n�1 i1:

(9.84)

For an ideal transformer, the least confusing posi-

tive directions and polarities of primary and second-

ary currents and voltages, relative to the dot positions,

are those consistent with (9.84), as described by the

Italicized statement above. For a non-ideal trans-

former, the least confusing positive directions of pri-

mary and secondary currents, relative to the dot

positions, are those that make the sign before the

mutual inductance positive.

With reference to Fig. 9.41, (9.84) specifies the

terminal characteristics of an ideal transformer. Self

and mutual inductance are irrelevant and do not

appear in equations describing an ideal transformer.

Thus, although the symbol for an ideal transformer

(Fig. 9.41) suggests inductance in the primary and

secondary, an ideal transformer possesses neither
self-inductance nor mutual inductance. For an ideal

transformer, the only relevant relations are those

given by (9.84), where the assumed current direc-
tions and voltage polarities are as shown in

Fig. 9.41.

Ideal transformers do not exist. However, iron-core

transformers can achieve tight coupling (coupling

coefficients approaching 0.99) and high efficiency

(95% or more). The ideal transformer is a somewhat
realistic model only for nearly linear (small-signal)

operation of a very efficient (low-loss) iron-core trans-

former. An ideal transformer is a poor model for air-

core transformers, whose coupling coefficients are

much smaller than unity. Nonetheless, as noted

above, the ideal transformer relations (9.84) provide

a starting point for specifying transformers and a basis

for understanding why and how transformers are used.

Some applications follow.

i1 i2

+

–

+

–

v1 v2 load

Fig. 9.40 Power transfer in an ideal transformer (see (9.81))

+

–

+

–

v1 v2

i2i1 N1 N2

Fig. 9.41 Conventional current directions and voltage polari-

ties for an ideal transformer. See (9.84)

14Some define the turns ratio as N1=N2.
15In certain configurations, a special kind of transformer, called

an autotransformer, can pass dc. See Problems P 9.93 and P 9.94

at the end of the chapter.
16As a practical matter, there is little reason to do otherwise.
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9.16 Applications of Transformers

9.16.1 Source and Load Transformations:
Matching Transformers

Recall from Chapter 6 that maximum power is trans-

ferred from a fixed source to a resistive load if the

resistance of the load equals the source resistance.

Matching transformers are used to alter the apparent

resistance presented to a source by a load, or the

apparent output resistance of a source, in order to

achieve maximum power transfer in cases where the

source and load resistance are different and cannot be

changed. Load matching using transformers is based

upon the fact that a transformer alters the apparent

resistance of a load or source, as illustrated by the

following examples and subsequent discussion.

Throughout this section, we use only the ideal model

for a transformer.

Example 9.13. Obtain an expression for the

input resistance of the circuit shown in

Fig. 9.42.

Solution: By definition,

Rin ¼ v1
i1
:

From (9.84)

Rin ¼ n�1 v2
n i2

¼ 1

n2
v2
i2
:

By Ohm’s law, v2=i2 ¼ R. It follows that

Rin ¼ 1

n2
R: (9.85)

Thus the ideal transformer transforms the

load seen by a source (v1) from R to R
�
n2,

where n is the transformer turns ratio. Such

transformation allows maximum power trans-

fer in cases where the load resistance does not

equal the source resistance and the load resis-

tance cannot be changed.

Exercise 9.20. It is required that a fixed resis-

tive load RL draw maximum power from a

source having fixed output resistance RS,

where RS 6¼ RL (Fig. 9.43). A transformer is

to be used to provide the required match.

Obtain an expression for the turns ratio of the

transformer (assumed ideal).

An output transformer usually appears as the last

(output) element in a circuit; e.g., in the output stage of

a multi-stage amplifier. The usual purpose of an output

transformer is to match a load to a source (for maxi-

mum power transfer). The next example shows how

one obtains the Thévenin equivalent for a circuit hav-

ing an ideal transformer as the output element.

Example 9.14. Obtain the Thévenin equiva-

lent at the terminals a–b for the circuit of

Fig. 9.44.

i2

v2 RRin ⇒ v1

i1 n

+

–

+

–

Fig. 9.42 See Example 9.13

Transformer

RS

RLv0
+
–

Fig. 9.43 See Exercise 9.20

nRS

vS

i2i1

v2v1

a

b

+

–

+
–

+

–

Fig. 9.44 See Example 9.14
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Solution: We obtain the open-circuit voltage

and the short-circuit current at the terminals

a–b. With the terminals open, i2 ¼ 0 and

v2 ¼ voc ¼ n v1:

From (9.84), i2 ¼ 0 ) i1 ¼ 0 and v1 ¼ vS.

Thus

voc ¼ n vS:

With the terminals shorted, v2 ¼ 0 )
v1 ¼ 0 and i1 ¼ vS=RS. Thus

isc ¼ vS
n RS

:

The Thévenin voltage and Thévenin resis-

tance are given by

vT ¼ voc ¼ n vS; R ¼ voc
isc

¼ n2 RS:

From the viewpoint of the load, the trans-

former transforms the source resistance from

RS to n2 RS. Here again, a transformer can be

used to achieve maximum power transfer when

the source resistance and load resistance are

different and cannot be changed.

Examples 9.13 and 9.14 illustrate two useful prop-

erties of transformers: A load resistance can be made

to appear smaller (n > 1 ) or larger (n<1 ) by inter-

posing a transformer between a source and the load.

Similarly, a source and source resistance can be made

to appear smaller (n < 1 ) or larger (n > 1 ) by inter-

posing a transformer between a load and the source. In

other words, we can use a transformer to change the

load seen by a source or the source seen by a load, as

shown in Fig. 9.45. Transforming a load as shown in

Fig. 9.45(a) is called reflecting the load to the primary

of the transformer and transforming a source as shown

in Fig. 9.45(b) is called reflecting the source to the

secondary of the transformer. In either case, the trans-

former disappears and the circuit is simplified for

further analysis.

Example 9.15. In Fig. 9.46, the source resis-

tance is RT ¼ 100O and the load resistance is

RL ¼ 1 kO. Specify the transformer turns ratio

n ¼ N2=N1 such that maximum power is deliv-

ered to the load.

Solution: See Fig. 9.45. From the viewpoint of

the source, the load resistance is

R0
L ¼ RL

n2
:

For maximum power transfer, the apparent

load resistance must equal the source resis-

tance. Therefore,

RL

n2
¼ RS ) n ¼

ffiffiffiffiffiffi
RL

RS

r
¼

ffiffiffiffiffi
10

p
¼ 3:16:

Exercise 9.21. A load is connected to a source

through two ideal transformers having turns

ratios n1 and n2, as shown in Fig. 9.47. Under

what condition is maximum power delivered to

the load?

LRvS

nRS

RL

n2

RS

vS

RLnvS

n2 RS

(a) load transformation

a

b

a

b

c

d

RLvS

nRS

(b) source transformation

c

d
+
–
+
–

+
–

+
–

+
–

Fig. 9.45 Source and load transformation using a transformer

RL

RT

vT

N2N1

ideal transformer

+
–

Fig. 9.46 See Example 9.15
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9.16.2 Step-Up and Step-Down
Transformers

A transformer for which n > 1 is called a step-up

transformer because the secondary voltage is higher

than the primary voltage. A transformer for which n<1

is called a step-down transformer. Electric utilities

use step-up transformers at the origins of long-distance

transmission lines and step-down transformers at the

destination. This is done primarily to reduce line cur-

rents and therefore the sizes of the conductors required

to transmit power from a source to a distant load, as

illustrated by the following example.

Example 9.16. Obtain expressions for power

loss in the transmission-line resistance in the

circuits of Fig. 9.48. Assume the transformers

are ideal.

Solution: (a) We transform all resistances to the

primary of the first transformer (see Example

9.13), as illustrated in Fig. 9.49, where

i ¼ v

RL þ 2R=n2

and the power lost in the transmission lines is

given by

Pa ¼ Irms
2 2R

n2
¼ Vrms

RL þ 2R=n2

� �2
2R

n2
: (9.86)

(b) In the circuit of Fig. 9.48b,

i ¼ v

RL þ 2R

and the power loss in the transmission lines is

given by

Pb ¼ Irms
2 2Rð Þ ¼ Vrms

RL þ 2R

� �2

2Rð Þ: (9.87)

The point of this example is the following:

Comparing (9.86) with (9.87) shows that the

effective line resistance is reduced (approxi-

mately by the factor n�2) for the high-voltage

transmission system. As a result, much smaller

wires can be used to transmit power over long

distances, allowing considerable cost savings.

Exercise 9.22. Obtain an expression for the

line current i in the circuit of Fig. 9.48(a)

RS

RL

n1 n2

vS
+
–

Fig. 9.47 See Exercise 9.21

source step up transmission line step down load

R

R
RL

n–1n
v

v
R

R
RL

source transmission line load

(a) high-voltage transmission

(b) low-voltage (transformerless) transmission

i

i

+
–

+
–

Fig. 9.48 See Example 9.16

R

R
n2RL

v+
–

n

RL

R/n2

R/n2
v

i

+
–

(a)

(b)

Fig. 9.49 See Example 9.16
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9.16.3 Isolation Transformers

Often, it is necessary to couple two circuits that have

different ground potentials; for example, two circuits

that are some distance apart, such that their earth

grounds are at different potentials. Equally often, we

might need to connect one circuit whose chassis (or

ground plane) is connected to an earth ground to a

circuit whose chassis is at a potential different from

earth ground. Figure 9.50 shows two such circuits

connected in the “obvious” way, where the chassis of

the first is connected to the chassis of the other and the

source vG represents the potential difference. The

resulting current iG is called a ground-loop current

and can be large enough to do damage or at least

degrade performance of the circuits.

The ground loop in Fig. 9.50 can be avoided by

connecting the circuits as shown in Fig. 9.51, but with

this connection, the load current iL is dependent upon

both the source vS and the ground potential difference

vG. The current produced can also be destructive or

dangerous if the ground potential difference is large.

If ground potential difference between two circuits

is a problem, as illustrated and discussed above, a

transformer can be used to isolate the ground potential

difference so it has no bearing on the current trans-

ferred from one circuit to another or on a measurement

of the voltage across a component in a circuit whose

ground potential is different from that of the measur-

ing instrument. Figure 9.52 shows how a transformer

can isolate the non-zero ground potential from the rest

of the (complete) circuit. The transformer turns ratio is

one-to-one, so the secondary voltage equals the pri-

mary voltage v1. There is no electrical path from the

positive terminal to the negative terminal of the source

vG. Thus the ground potential difference vG produces

no current and in particular has no effect on the current

iL. The ground potential difference vG is effectively

cut off or isolated from the rest of the circuit, as

illustrated by the equivalent circuit shown in

Fig. 9.53. A transformer used to achieve such isolation

is called an isolation transformer. A drawback in

some applications is inability of a transformer to cou-

ple dc; i.e., in Fig. 9.52, the dc component of the

source vS (if any) is not passed to the load RL.

Lightning can cause brief but huge ground potential

differences, as illustrated by Fig. 9.54, which shows

two of perhaps several buildings making up an indus-

trial facility. The facility has shared power lines and

distributed computing resources connected by various

data lines. If lightning strikes nearer one building

than the other, the temporary difference in ground

vG

RL

RS

vS

iG
+
–

+
–

Fig. 9.50 The boxes represent the metal chassis of two circuits.

The two chassis are at different potentials. Connecting the two

chassis directly gives rise to a ground-loop current iG which is

almost always undesirable and can be destructive or dangerous

RS
vS RL

vG

iL

+
–

+
–

Fig. 9.51 Connecting the circuits without connecting the two

chassis17 leads to unpredictable results, because the ground-

potential difference vG might be unknown, or to undesirable

results, because we do not want the load current to depend

upon the ground potential difference

vS

RS
RL

vG

1:1

iL
v1 v1

+ +

– –

+
–

+
–

Fig. 9.52 Using a transformer allows connecting the circuits

without providing a current path for the ground potential

difference

17Yes, the plural of chassis is chassis: Spelled the same, but

pronounced differently.
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potentials can be several thousand volts or more. Some

form of protective isolation (and surge protection) is

mandatory in such cases.

Isolation transformers also are used to attenuate

electrical noise; for example, to prevent noise riding

on power lines from reaching sensitive equipment.

Transformers intended for such use are designed and

constructed specifically for that purpose, and incorpo-

rate metallic shields around the primary and secondary

windings to reduce capacitive coupling between the

windings. The primary shield usually is connected

to the transformer case, which is connected to earth

ground (e.g., via the ground lead on a three-wire power

cord) and the secondary shield usually is connected to

the chassis ground on the equipment being isolated.

Design and application of isolation transformers is a

subject worthy of an entire book, and cannot be treated

to depth here. Interested readers can find numerous

references on the web and in libraries.

9.16.4 Center-Tapped Transformers and
Balanced Power

Refer to Fig. 9.55(a) and focus your attention first on

the transformer and the load RL. The transformer sec-

ondary and the load share a common ground, and that

ground is the reference point for all voltages in the

circuit. That is, the voltage vG always equals zero. We

assume the transformer secondary voltage is sinusoi-

dal, given by

vS ¼ V0 cos 2p f tð Þ (9.88)

The bottom of the secondary is pinned at zero volts

and the upper (dotted) end is alternately positive and

negative, which means there is alternately an excess

and deficiency of charge at the upper end of the load.

Because the voltage at the upper end of the load varies

and the voltage at the lower end is fixed (at zero, here),

the circuit (or the load) is said to be unbalanced.

Regard Fig. 9.55(a) as a snapshot of the circuit at an

instant when the secondary voltage and the excess

positive charge at the upper end of the load have

their maximum values. The vertical line to the right

of the load represents a grounded conductor (or metal-

lic surface, such as a section of a chassis) near the

load. The load and the conductor comprise a stray

capacitance. The positively charged (by vS ) upper

end of the load induces an equal and opposite negative

charge on the upper end of the nearby conductor, as

indicated in the figure. When the secondary voltage

reaches its minimum value, as shown in Fig. 9.55(b),

the induced charge on the nearby conductor is

reversed. Thus there is a non-zero current iG to ground

ground potential 
= 10kV

ground potential
= 50kV

ground potential 
= 1kV

Fig. 9.54 Ground potentials at geographically separated points

can be quite different, especially if lightning strikes nearer one

point than the other

RL

vG

RS

vS
iL

+
–

+
–

Fig. 9.53 Equivalent circuit for the circuit shown in Fig. 9.52

(assuming the transformer is ideal and the source has no dc

component)

iG ≠ 0 iG ≠ 0RL
vG = 0

RL

vG = 0

vS = V0 vS = –V0

+
+

+
+

+ + +
+

+
+

+ +– – –
–

–
–

–––
–

–
–

(a) (b)Fig. 9.55 Unbalanced load
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from the load, which is manifested as a shunt capaci-

tance to ground, as shown in Fig. 9.56.

Now refer to Fig. 9.57. In Fig. 9.57, the transformer

secondary has a grounded center tap. As a result, the

voltages at both ends of the secondary (and the load)

are alternately positive and negative, and the charge

distributions on the load and the nearby conductor are

always equal in magnitude and opposite in sign

(assuming the center tap on the secondary is perfect).

The charges (electrons) in the nearby conductor sim-

ply move back and forth along the conductor as the

load voltage alternates. No charges are brought up

from (or sent down to) the shared ground, so the

ground current equals zero. The load (or circuit) in

Fig. 9.57 is said to be balanced.

In practice, ground currents are common and prob-

lematic. They can cause hum and hiss in home and

studio audio systems and sound bars or other disrup-

tive effects in video. They can cause erroneous mea-

surements in instrumentation and control systems. If

the potential difference between the chassis of two

circuits is large and the chassis are connected, the

result can be a destructive and even dangerous current.

One purpose of this and the previous section is to make

you aware of such phenomena and of methods used to

counter them.

There are available balanced power systems for use

in audio and video studio environments. These systems

are essentially equivalent to ideal center-tapped isola-

tion transformers and provide balanced power to loads,

as illustrated by Fig. 9.57. Using balanced power

sources can eliminate or greatly reduce effects of ground

loops and parasitic coupling. The downside of a bal-

anced power system is that both ends of a load are hot.

Consequently, a balanced power system is inherently

more dangerous than a single-sided system (Fig. 9.55),

where one end of the load is at ground potential.

It often is necessary to convert a balanced signal to

an unbalanced one, or vice-versa. A device (or circuit)

used to accomplish such a conversion is called a

balun.18 In most such applications, the balanced and

unbalanced sides have different apparent resistances,

and the balun must also provide source-load matching.

Figure 9.58 shows a balun of a kind you probably

used if you ever connected a rooftop TV antenna to a

coaxial cable that carries the received signal inside to

a TV set. The wires would connect to the antenna and

the coaxial cable would connect to the fitting on the

lower right. A typical rooftop TV antenna provides a

balanced output. One side (the shield) of the coaxial

cable is connected to ground at the TV set, so the

signal provided to the TV set is unbalanced. The

apparent source resistance for the antenna is 300O
and the apparent load presented by the coaxial cable

and TV input is 75O. Baluns for this application

convert the balanced output from an antenna to an

unbalanced input for a TV set and also provide

source-load matching.

A balun can consist of a transformer with one

center-tapped winding, as illustrated by Fig. 9.59. If

the apparent output resistance of the balanced source is

RS, the effective source resistance seen by the unbal-

anced load is given by

R0
S ¼

N2

N1

� �2

RS;

where N2=N1 is the turns ratio. For example, a balun

used between a rooftop antenna and a coaxial connection

to a TV would have a turns ratio of 1=2, which would

match the 300O antenna to the 75O coaxial cable.

9.17 Concluding Remarks

Let us distinguish between inductance, which is a

physical phenomenon, and expressions of the form

v tð Þ ¼ L
di tð Þ
dt

; i tð Þ ¼ 1

L

ðt
�1

v t0ð Þdt0; (9.89)

where L is a constant having the unit of VsA�1. Equa-

tions (9.89) are mathematical relations between mathe-
matical models for physical signals. Any device or circuit

whose terminal characteristics are of the forms given by

(9.89) is equivalent to an inductor, whether or not mag-

netic fields are involved. Various circuits that simulate

RL

vG = 0

vS iG

C

Fig. 9.56 Equivalent circuit for the circuit in Fig. 9.55

18Balun is a contraction of balanced-to-unbalanced.
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inductance have been devised. For example, for sinusoi-

dal inputs having frequencies between about 3 and 800

Hz, the terminal characteristic of the circuit shown in

Fig. 9.60 is approximately that of a 1 kH inductor.19,20

A coil having that inductance would be huge.

The point of the remarks above is that inductive

effects can be achieved without using inductors.

Indeed, inductive effects are usually achieved that

way in active linear signal-processing and transmis-

sion systems at frequencies below 100 MHz or so.

Believe it or not, circuits such as the one shown in

Fig. 9.60 can be cheaper and much smaller than coils.

Regardless of how they are achieved, inductive

effects are important in virtually all linear electrical

and electronic circuits. They are important in electric

power systems and in machinery, where they arise

naturally in the windings of transformers and motors.

They are important in radio and television transmitters

and receivers and in almost all high frequency – high

power applications, where inductive effects cannot be

achieved by electronic mimicry. They are important

wherever unintentional inductive coupling can be sig-

nificant; for example, in long conductors near power

lines or in electronic systems where a power supply is

on the same board or chassis as other circuitry.

If you intend to engage in circuit design, or towork in

the power generation and distribution field, or towork as

a plant engineer in a plant using electrical machinery, or

to work in any field involving radio transmission and

reception, or in a host of other disciplines, you need to

know about inductance and its effects.

9.18 Problems

Section 9.4 is prerequisite for the following

problems.

P 9.1 The inductance of a long, tightlywound air-core

coil having N turns, length l, and diameter d is given by

Fig. 9.58 A simple balun

balanced
input

unbalanced
output

N1 N2

Fig. 9.59 Circuit diagram for a balun

+
–

v
+

–

100nF

1kΩ

10kΩ

10MΩ

i

Fig. 9.60 A circuit (gyrator) whose terminal characteristic is

that of an inductor

iG = 0

vS = V0 /2

–vS = –V0 /2

RL RL

+
+
+

+
+

– – –
– –

–

+

–––
––

–

+
+
+

+
++

iG = 0

vS = –V0 /2

–vS = V0 /2

– – –
– –

–

–––
––

–

+
+
++ ++

+
+
+++ +

(a) (b)Fig. 9.57 Balanced load

19Paul Horowitz and Winfield Hill, The Art of Electronics,
Cambridge University Press, New York, 1989, p 304.
20You will be able to show this after studying Chapter 12.
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L ¼ p m0 N
2 d2

4l
:

The meter and Henry are inconvenient (too-large)

units for specification and design of air-core inductors.

Modify the relation above such that the diameter and

length of the coil are expressed in centimeters and the

inductance is given in microhenries.

P 9.2 Wheeler’s formula21 for the inductance of a

single-layer air-core coil is

L ¼ N2d2

18d þ 40l
;

where the coil diameter d and length l are expressed in
inches and the inductance is expressed in microhenries.

Rewrite this formula such that the quantities involved

are expressed in SI units.

P 9.3 Modify the relation (9.8) in the text for the

inductance of an air-core coil such that the diameter

and length of the coil are expressed in millimeters.

P 9.4 A tightly wound, single-layer coil is stretched

(like a spring). Does the inductance of the coil increase

or decrease? Why?

P 9.5 If you need a specific inductance from an air-

core coil and you want the coil to occupy the least

volume possible, would you make a short, fat coil or a

long, thin one? Or does it matter? Assume the relation

(9.8) in the text is valid.

P 9.6 If M turns are removed from a long, tightly

wound, single-layer air-core inductor having N turns,

by what percentage is the inductance reduced?

Section 9.5 is prerequisite for the following

problems.

P 9.7 The current through an inductor having

inductance L ¼ 5mH is given by

iðtÞ ¼ 0; t � 0;
I0 1� e�t=t
� 

; t > 0;

�

with I0 ¼ 20mA and t ¼ 100 ms. Obtain an expres-

sion for the voltage across the inductor and compute

the value of the voltage for t ¼ t. What is the maxi-

mum magnitude of the voltage and when does it

occur?

P 9.8 Repeat Problem P 9.7 assuming that the

winding (equivalent series) resistance of the inductor

is 1O.
P 9.9 The current through a 50-mH inductor is

given graphically in Fig. P 9.1. Draw a graph of the

voltage across the inductor for 0 � t � 15ms.

P 9.10 Repeat Problem P 9.9 assuming that the

winding (equivalent series) resistance of the inductor

is 1O.
P 9.11 The current through an inductor having

inductance L ¼ 500 mH is given graphically in

Fig. P 9.2. Draw a graph of the voltage across the

inductor for t > 0.

P 9.12 Repeat Problem P 9.11 assuming that the

winding (equivalent series) resistance of the inductor

is 1O.
P 9.13 In Fig. P 9.3, R ¼ 10 kO; L ¼ 1mH. The

voltage across the resistor is given by

vR ¼ V0 1þ 0:5 cos 2 p f tð Þ þ 0:05 cos 20 p f tð Þ½ �;
V0 ¼ 5V; f ¼ 5MHz:

(a) Obtain an expression for the voltage vL across

the inductor. (b) Assuming the source voltage vS
remains the same, obtain an expression for the voltage

across the resistor if the inductor is replaced by a short

circuit.

i (mA)

t (ms)

10

–10

6 10

Fig. P 9.1 See Problem P 9.9

i  (mA)

t (μs)

100

50

Fig. P 9.2 See Problem P 9.11

21Wheeler, H.A., Simple Inductance Formulas for Radio Coils,
Proc. IRE, vol 16, p 1398 (Oct. 1928).
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(b) P 9.14 Refer to Fig. P 9.4. The current through

the inductor is given by

iL tð Þ ¼ IL cos 2p f tð Þ:

Obtain an expression for the current through the

capacitor, the current through the resistor, and the total

current i(t). Use trigonometric identities to express the

total current as a single sinusoid of the form

i tð Þ ¼ I cos 2p f tþ yð Þ:

P 9.15 In Fig. P 9.5, the fuse will melt if the current

through the fuse exceeds 25 A. The switch is closed at

t ¼ 0. At what time does the fuse begin to melt?

P 9.16 In Fig. P 9.6, the source voltage is

given by vS tð Þ ¼ VS cos 2p f tð Þ, with VS ¼ 25V and

f ¼ 10 kHz. It is known that the voltage across the

resistor has the form vR tð Þ ¼ VR cos 2p f tþ yð Þ. Find
VR and y.

P 9.17 Refer to Fig. P 9.7. Under what condition is

the output approximately proportional to the integral

of the input?

P 9.18 Refer to Fig. P 9.8. Obtain an expression for

the load voltage vL tð Þ.
P 9.19 The turns in an inductor are conductors sepa-

rated by a dielectric (air or some insulating material).

Thus an inductor exhibits stray shunt capacitance. In

Fig. P 9.9, C represents stray capacitance and

vS ¼ VS cos 2p f tð Þ. Assume that the current through

the inductor equals zero for t¼ 0. Obtain an expression

for the frequency f for which the rms amplitude of the

current through the capacitor equals the rms amplitude

of the current through the inductor.

Section 9.6 is prerequisite for the following

problems.

P 9.20 Refer to Fig. P 9.10. Obtain an expression

for the indicated current i(t) (i) assuming the switch

has been open for a very long time and is closed at

t¼ 0 and (ii) assuming the switch has been closed for a

very long time and is opened at t ¼ 0.

P 9.21 In Fig. P 9.11, the diode is ideal. The switch

is opened at t ¼ 0, having been closed for a very long

R C L

iLiC
i

Fig. P 9.4 See Problem

P 9.14

+

–

R1

R2 LV0

V0 = 100V, R1 = 2 Ω, R2 = 100 Ω, L = 100mH

fuse

Fig. P 9.5 See Problem P 9.15

vS

vR+

L
R R = 2.2 kΩ

L = 75mH
vL

+

+
–

–

–

Fig. P 9.6 See Problem P 9.16

S
v L

R vL

vR

+

–

+ –

+
–Fig. P 9.3 See Problem

P 9.13

vS L C+
–

Fig. P 9.9 See Problem P 9.19

+

–

+
–

R

L

RL

vL

vS

Fig. P 9.8 See Problem P 9.18

R
L

vin

+

–

vout

+

–

Fig. P 9.7 See Problem P 9.17
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time. Obtain an expression for the current i(t) though

the diode for t 	 0.

P 9.22 In Fig. P 9.12, the switch is closed at t ¼ 0,

having been open for a very long time before. Obtain

an expression for the voltage vL tð Þ.

Section 9.7 is prerequisite for the following

problems. Problems in this section assume

that coils connected in series or in parallel

are connected in such a way that there are no

magnetic flux linkages between the coils.

P 9.23 Show that the equivalent inductance of a

parallel connection of N identical ideal inductors, each

having inductance L, is given by Leq ¼ L=N.

P 9.24 Two identical inductors, each having induc-

tance L and winding resistance R, are connected in

parallel. Find an equivalent single inductor (equivalent

inductance and equivalent winding resistance).

P 9.25 Suppose you are building a prototype circuit

that requires a precision 10 mH air-core inductor. You

have on hand a selection of precision 5 mH air-core

inductors, having various lengths and diameters. You

intend to obtain a 10 mH inductor by connecting two

5 mH inductors in series. Should you use the shortest or

the longest of the 5 mH inductors you have on hand?

Justify your answer.

P 9.26 In Fig. P 9.13, the switch is open for t < 0

and closed at t ¼ 0. Obtain expressions for the voltage

vðtÞ and the currents i1ðtÞ; i2 tð Þ for t > 0.

P 9.27 Two inductors having equal winding

resistances and time constants t1 and t2 ¼ 2t1 are

connected in series. What is the time constant of the

series connection? Assume the inductances add.

P 9.28 Two inductors having equal inductances and

time constants t1 and t2 ¼ 2t1 are connected in series.
What is the time constant of the series connection?

Assume the inductances add.

P 9.29 An inductor having time constant t1 is

connected in series with one having time constant t2.
Express the time constant of the series connection in

terms of (a) the winding resistances and (b) the induc-

tances of the individual inductors. Assume the induc-

tances add.

+
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+
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+

–
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+
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+

–
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(c)
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Fig. P 9.10 See Problem P 9.20
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R
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Fig. P 9.13 See Problem P 9.26

+
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R L
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Fig. P 9.11 See Problem P 9.21
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–
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R1 R2
L vL

+

–

Fig. P 9.12 See Problem P 9.22
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P 9.30 A long, tightly wound, single-layer, N-turn,

air-core inductor having length l, diameter d, and

inductance L given by

L ¼ pm0 N
2 d2

4l

is cut into two pieces of equal length. Assume each

piece is also a long coil. What is the inductance of each

piece? Is the sum of the inductances equal to the

inductance of the original coil?

P 9.31 A short, tightly wound, single-layer, N-turn,

air-core inductor having length l, diameter d, and

inductance L given by

L ¼ m0 N
2 d2

0:579 d þ 1:273 l

is cut into two pieces of equal length. (a) If the same

formula applies, what is the inductance of each of the

two coils? (b) Is the sum of the inductances equal to

the inductance of the original coil? If not, why not? (c)

Are inductors in series necessarily additive?

Section 9.8 is prerequisite for the following

problems.

P 9.32 In Fig. P 9.14, the switch is closed for t < 0,

opened at t ¼ 0, and closed at t ¼ 5ms. Sketch neatly

and label fully graphs of the current i(t), the voltage

vL tð Þ, and the energy w tð Þ stored in the inductor for the
times during which they are changing. Use the same

time scale for all three graphs and identify the times

during which the inductor is absorbing energy and

the times during which it is delivering energy to the

circuit.

P 9.33 Refer to Fig. P 9.15, where vS ¼ Vs cos o tð Þ.
Assume the current through the inductor is given by

iL tð Þ ¼ 1

L

ðt
0

vS t0ð Þdt0

and obtain an expression for the total stored energy

as a function of time. Show that the total stored energy

is independent of time if

C ¼ 1

o2L
:

P 9.34 Refer to Fig. P 9.16, where vS ¼ Vs cos o tð Þ
and C ¼ o2Lð Þ�1

. (a) Obtain an expression for the

instantaneous total energy stored in the electric

and magnetic fields associated with the capacitor and

inductor. (b) Obtain an expression for the energy

dissipated per cycle (period) of the source vS. (c) The

quality factor Q for a circuit in sinusoidal steady state

is defined as

Q ¼ 2p� maximum of instantaneous stored energy

energy dissipated per period of the source
:

Show that the quality factor of the circuit in

Fig. P 9.16 is given by Q ¼ R= oLð Þ.
P 9.35 In Fig. P 9.17, iS ¼ Is cos o0tð Þ, with

o0 ¼ 1
� ffiffiffiffiffiffi

LC
p

. Find the instantaneous voltage across

the source. (This is an example of what is called series

resonance. You will learn more about resonance in

Chapter 12).

P 9.36 In Fig. P 9.18, vS ¼ Vs cos o0tð Þ, with

o0 ¼ 1
� ffiffiffiffiffiffi

LC
p

. Find the instantaneous current iS.

(This is an example of what is called parallel

resonance. You will learn more about resonance in

Chapter 12).

vS 

L C

iCiL+
–

Fig. P 9.15 See Problem

P 9.33

+

–
V0

L

R

vL

i

+

–R

V0 = 25V
R = 10 Ω
L = 50mH

Fig. P 9.14 See Problem P 9.32

vS

L C

C
iiLiR

R

+
–

Fig. P 9.16 See Problem P 9.34
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Section 9.9 is prerequisite for the following

problems.

P 9.37 A sinusoidal current having frequency f and

peak amplitude I passes through an axial-lead capaci-

tor having capacitance C and series self-inductance L.

Assuming a lumped-constant model is applicable,

obtain an expression for the frequency at which the

rms voltage drop across the self-inductance equals

1% of the rms voltage drop across the capacitance.

Assume the voltage across the capacitance equals zero

for t ¼ 0.

P 9.38 For some purposes, a coil can be modeled as

an inductance in parallel with a parasitic capacitance,

the latter arising from the fact that the turns of the

coil are charge-carrying conductors separated by an

insulating medium. A sinusoidal voltage having fre-

quency f and peak amplitude V0 is impressed on a coil

having inductance L and parallel parasitic capacitance

C. Obtain an expression for the frequency at which the

rms amplitude of the current through the capacitance

equals 1% of that through the inductance. Assume the

current through the inductance equals zero for t ¼ 0.

P 9.39: The circuit in Fig. P 9.19 is a simplified

high-frequency model for an axial-lead film resistor,

where R is the nominal resistance, L is equivalent series

inductance arising mainly from the internal (spiral)

structure of the resistor, and C is the end-to-end capac-

itance. Let R ¼ 1 kO, L ¼ 800 nH, C ¼ 0:4 pF, and

v ¼ VS cos 2p f tð Þ, with VS ¼
ffiffiffi
2

p
V. Simulate the

circuit and plot the ratio Vrms=Irms versus the frequency
f of the source, for 10MHz � f � 1GHz. For what

range of frequencies does the resistor behave like an

ideal resistor?

Section 9.10 is prerequisite for the following

problems.

P 9.40: The dc output of a certain power supply is

5 V. For a 0:5O resistive load, the ripple factor of the

load voltage is g ¼ 0:002. (a) What is the rms ampli-

tude of the ac component of the load voltage? (b)

Assuming the ripple is a 120 Hz sinusoid, what is the

ripple factor for the load voltage if a 500 mH inductor

is connected in series with the load? (c) : Simulate the

circuit to check your answer.

P 9.41: The voltage across a 1O resistive load is

given by

v ¼ Vdc þ Vac cos 2 p f tð Þ;

with f ¼ 5 kHz, Vdc ¼ 25V, and Vac ¼ 25mV. (a)

What is the ripple factor? (b) Specify a series choke

such that the rms ripple is reduced by the factor

2� 10�4. (c) Use a simulation to check your answer.

P 9.42 In Fig. P 9.20, R ¼ 0:5O and vS ¼ Vdcþ
Vac cos o0tþ yð Þ with Vdc ¼ 50V, Vac ¼ 5

ffiffiffi
2

p
mV,

and f0 ¼ 120Hz. The required ripple factor is 10�6.

Specify the inductance L.

Section 9.11 is prerequisite for the following

problems.

P 9.43 The 20 A current through a 2 H inductor is

reduced to zero in 20 ms by a circuit breaker. Estimate

the magnitude of the average voltage across the induc-

tor during that time.

P 9.44 In Fig. P 9.21, the fuse will melt if the

current through the fuse exceeds 2.5 A. The current

iS equals zero for t � 0 and is given by

vS

L C

iS

iL iC
+
–

Fig. P 9.18 See Problem

P 9.36

v

i

R L

C

+
–

Fig. P 9.19 See Problem P 9.39

iS
L

C

vL

vC

+

–

+ –

vS

+

–
Fig. P 9.17 See Problem

P 9.35
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iS ¼ I0 1� exp �t=tð Þ½ �; I0 ¼ 5A; t ¼ 100ms

for t > 0. At what time will the fuse begin to melt?

Assume the fuse opens completely in 15 ms and esti-

mate the magnitude of the average voltage across the

fuse body during that time.

P 9.45 Refer to Fig. P 9.22, where the switch is

moved from a to b at t ¼ 0, having been at a for t < 0.

Assume a make-before-break switch, so there is no

arcing. (a) Obtain an expression for the voltage v tð Þ
across the resistor R2. (b) Let V0 ¼ 3V, R1 ¼ 100O,
R2 ¼ 100 kO, and L ¼ 500mH. Construct a graph of

the voltage v tð Þ versus t for 0 � t � 5t, where t is the
time constant for t > 0. (c) For the parameter values

given in part (b), how much energy is eventually

dissipated by the resistor R2?

P 9.46 Refer to Fig. P 9.23, where the switch

is opened at t ¼ 0, having been closed for t < 0.

(a) Obtain an expression for the voltage v tð Þ across

the resistor R2. (b) Let V0 ¼ 9V; R1 ¼ 10O;
R2 ¼ 10 kO; L ¼ 1H . Construct a graph of the volt-

age v tð Þ versus t for 0 � t � 5t, where t is the time

constant for t > 0.

Section 9.12 is prerequisite for the following

problems.

P 9.47 Figure P 9.24 depicts coils wound on a

shared magnetic core. Assign dots to the terminals of

the coupled coils.

P 9.48 Obtain the equivalent inductance at the

terminals a–b of the circuit shown in Fig. P 9.25.

P 9.49 Two air-core coils having inductances 25 mH
and 50 mH are arranged such that the mutual induc-

tance between them is 7:1 mH. What is the coupling

coefficient for the arrangement?

P 9.50 Two air-core coils having inductances 25 mH
and 50 mH are connected in series, whereupon it is

found that the total inductance is 90mH. (a) What is

the mutual inductance between the coils? (b) What

would the total inductance become if the leads of one

of the coils were reversed but the relative positions of

the coils were unchanged?

+

–
V0 L

R1

R2

v+ –

Fig. P 9.23 See Problem

P 9.46

R
LiS vL

+

–

R = 5 Ω, L = 2H

Fig. P 9.21 See Problem P 9.44
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Fig. P 9.22 See Problem P 9.45
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v
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Fig. P 9.25 See Problem P 9.48

Fig. P 9.24 See Problem P 9.47

i
vS vR

L
R
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–
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Fig. P 9.20 See Problem

P 9.42
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P 9.51 You are given two air-core coils having

inductances L1 and L2. If you intend to obtain an

inductance L ¼ L1 þ L2 by connecting the coils in

series, should you place them end to end, with the

windings in the same direction, or side by side, or far

apart, or how, otherwise?

P 9.52 You are given two air-core coils, each hav-

ing equal inductance L. If you intend to obtain an

inductance L=2 by connecting the coils in parallel,

should you place them end to end, with the windings

in the same direction, or side by side, or far apart, or

how, otherwise?

P 9.53 In Fig. P 9.26,

vS ¼ 0; t � 0;
VS; t > 0:

�

(a) Obtain an expression for the voltage v tð Þ for

t> 0. (b) Move the dot on one inductor to the other end

of the inductor (reverse the leads on one inductor) and

repeat part (a).

Section 9.13 is prerequisite for the following

problems.

P 9.54 A pessimistic estimate for the inductance per

unit length of a long straight wire distant from other

conductors is 50 nHm�1. Each of the two leads on

a certain 10 kO axial-lead resistor is approximately

2.5 cm long and the current through the resistor is

sinusoidal. Find the frequency for which the rms volt-

age due to lead inductance equals 1% of the total rms

voltage across the resistor.

P 9.55 Axial and disc capacitors have relatively

long leads and exhibit stray (parasitic) inductance.

Inductors exhibit stray (parasitic) capacitance because

the windings are neighboring current-carrying conduc-

tors. Thus, at sufficiently high frequencies, it might

be necessary to model capacitors and inductors as

shown in Fig. P 9.27. (1) For the model of a capacitor

in Fig. P 9.27(a), assume i tð Þ ¼ I0 cos 2p f tð Þ and

vC 0ð Þ ¼ 0 and obtain an expression for the frequency

at which the voltage across the parasitic inductance LP
equals 1% of the voltage across the capacitance C.

(2) For the model of an inductor in Fig. P 9.27(b),

assume v tð Þ ¼ V0 cos 2pf tð Þ and iL 0ð Þ ¼ 0 and obtain

an expression for the frequency at which the current

through the parasitic capacitance Cp equals 1% of the

current through the inductance L.

P 9.56 Refer to Fig. P 9.28. Let k denote the cou-

pling coefficient for two coils in different branches of

a certain circuit. The currents through the coils are

sinusoidal, given by

i1 tð Þ ¼ I1 cos 2p f1 tð Þ; i2 tð Þ ¼ I2 cos 2p f2 tð Þ:

(a) Obtain expressions for the voltages v1 tð Þ and v2 tð Þ
across the coils, assuming both currents enter dot-

ted terminals.

(b) Let I1 ¼ I2 ¼ I, L1 ¼ L2 ¼ L, f2 ¼ a f1. Obtain a

relation between k and a for which the rms ampli-

tude of the voltage induced in coil 1 by the current

in coil 2 equals the rms amplitude of the voltage

induced in coil 1 by the current in coil 1.

(c) Let I2 ¼ b I1, L1 ¼ L2, f2 ¼ f1. Obtain a relation

between k and b for which the rms amplitude of

the voltage induced in coil 1 by the current in coil

2 equals the rms amplitude of the voltage induced

in coil 1 by the current in coil 1.

(d) Comment on the implications of the solutions to

parts (b) and (c).

R

L1

L2

MvS v

+
+
–

–

Fig. P 9.26 See Problem P 9.53

C LP

CP

L

i
v+ –

(a) (b)

Fig. P 9.27 See Problem P 9.55

L1 L2

i1 i2

M

+ –v1 v2+ –

Fig. P 9.28 See Problem P 9.56
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Section 9.14 is prerequisite for the following

problems.

P 9.57 Obtain an expression for the equivalent

inductance seen at the primary winding of a trans-

former whose secondary is open. Ignore winding resis-

tance.

P 9.58 Figure P 9.29 shows a transformer whose

primary and secondary are connected in parallel.

Obtain an expression for the equivalent inductance at

the terminals a–b.

P 9.59 Refer to Fig. P 9.30, where L1 ¼ 25mH,

L2 ¼ 400mH, the coupling coefficient between the

primary and secondary coils is 0.9, and v tð Þ ¼
V0 cos 2p f tð Þ, with V0 ¼ 10V and f ¼ 100Hz. Find

the rms amplitude of the current i(t), given that i(0)¼ 0.

P 9.60 In Fig. P 9.31, the switch is opened at t ¼ 0,

having been closed for a very long time. Assume the

transformer coupling coefficient is nearly unity, such

that v2 ffi n v1, where n is the transformer turns ratio.

Obtain an expression for the voltage v2 for t > 0.

Calculate the maximum magnitude of v2 if

V0 ¼ 12V, R2 ¼ 40R1, and n ¼ 50.

Section 9.15 is prerequisite for the following

problems.

P 9.61 What is the equivalent resistance at the

primary of an ideal transformer whose secondary is

open?

P 9.62 What is the equivalent resistance at the

primary of an ideal transformer whose secondary is

shorted?

P 9.63 Obtain the Thévenin and Norton equivalent

circuits at the terminals a–b for the circuit shown in

Fig. P 9.32. The transformers are ideal.

P 9.64 The output resistance for a source that is to

drive a 2 kO resistive load is RS ¼ 50O. Specify the

turns ratio for an ideal transformer which, if inserted

between the source and the load, will ensure maximum

power transfer.

P 9.65 In Fig. P 9.33, the transformer is ideal

and the voltage across the resistor is given by

vR ¼ V0 cos 2 p f tð Þ. Obtain an expression for the

source voltage v.

P 9.66 An inductor having inductance L is

connected to the secondary of an ideal transformer

having turns ratio n ¼ N2=N1. Obtain an expression

for the inductance seen at the primary terminals.

P 9.67 A capacitor having capacitance C is con-

nected to the secondary of an ideal transformer having

v
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Fig. P 9.30 See Problem P 9.59
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turns ratio n ¼ N2=N1. Obtain an expression for the

capacitance seen at the primary terminals.

P 9.68 Suppose you wish to use an ideal model for a

certain very efficient physical transformer whose

coupling coefficient is near unity. You know from

measurements that the effective turns ratio of the

transformer for a 1 kHz sinusoidal primary voltage is

n ¼ 10, what would you use for the turns ratio in the

model if the voltage is a 10 kHz sinusoid?

Section 9.16 is prerequisite for the following

problems.

P 9.69 A source whose output resistance is 50O
must be matched for maximum power transfer to a

200O load. What turns ratio is required of a matching

transformer?

P 9.70 The output resistance of a certain audio

amplifier is 150O and voltage is the output of interest.

The load resistance is 3:2O. Specify the turns ratio for
a transformer that will match the amplifier to the load

(for maximum power transfer).

P 9.71 The output resistance of a certain micro-

phone element is 2 kO. The input resistance of an

amplifier is 20 kO. Should a transformer be used to

match the microphone to the amplifier to maximize

power transfer? Justify your answer.

P 9.72 A woodworker friend of yours just bought

an industrial power tool having a 20 hp, 480 V (rms),

60 Hz motor. He has a 240 V outlet in his basement

workshop. The outlet is protected by a 30 A circuit

breaker. He intends to use a transformer to boost the

240 V to the 480 V required by the tool. Is that a good

idea? Explain why or why not.

P 9.73 You are asked to specify the wire size for

winding the secondary of a high-efficiency transformer

whose coupling coefficient is close to unity. The num-

bers of primary and secondary turns in are N1 ¼ 500

and N2 ¼ 50, respectively. AWG 28 wire will be used

for the primary. Copper wire is required for both wind-

ings. Is it a good idea to use the wire size that makes the

primary and secondary dc resistances equal? If so, why?

If not, why not, and what might be a better objective?

P 9.74 Outputs of power-plant generators are

stepped up in stages to the very high voltages used

for long-distance transmission to avoid excessive

voltage differences and possible arcing between the

primary and secondary windings of any one trans-

former. The output VGrms ¼ 24 kV of a certain power-

plant generator must be stepped up to V 1 rms ¼ 648 kV

for transmission. If the maximum allowable rms volt-

age between the primary and secondary windings of

any one transformer is 220 kV, how many transformers

are required and what are their turns ratios?

P 9.75 In Fig. P 9.34, VGrms ¼ 24 kV;

V1rms ¼ 648 kV; VL rms ¼ 440V, and the load is

RL ¼ 500mO. The numbers of turns ðN1;N2Þ are the

same for each transformer except the last. The overall

efficiency of the system is 94%, which means that 94%

of the power produced by the generator is delivered to

the load. Assume that each transformer is ideal and

calculate the turns ratio n of the final step-down trans-

former and the resistance of the transmission line.

P 9.76 You want to put a speaker by your swim-

ming pool, 50 m from your amplifier. You plan to use

step-up and step-down audio transformers to allow use

of small wire from the amplifier to the speaker. The

effective resistance of the speaker is 8O and the output

resistance of the amplifier is 1O. The amplifier can

deliver 200 W to an 8O load. You have decided that

the maximum loss in the wire should be no more than

5% of the power that would be delivered to the speaker

if the wire resistance were zero. You have also decided

to use AWG 24 copper wire to run from the amplifier

to each speaker because you have that wire on hand.

Specify the turns ratios for the step-up and step-down

transformers. (Assume the transformers are ideal).

P 9.77 Refer to Fig. P 9.35, where the ground

symbol represents earth ground. The source vS is sinu-

soidal with frequency greater than zero. Suppose you

wish to observe the source voltages vS tð Þ and vL tð Þ
simultaneously, using a two-channel oscilloscope.

generator vG

+

–

v1

+

–

v2

+

–

vL

+

–

RT /2

RT /2

RL

nN2 N1N2 N1N2N2N1N2N1N2N1 N1

Fig. P 9.34 See Problem

P 9.75
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The oscilloscope is properly grounded through the

three-conductor power cord and each probe has a

center (positive) point and a ground clip. Describe

why and how you would use an isolation transformer

to perform this measurement.

P 9.78 You and a co-worker wish to test circuits you

have designed for transmitting and receiving data over a

long coaxial cable. You put the transmitter in one

outbuilding on your industrial campus and the receiver

in another, about 1 km distant, and run a coaxial cable

between them. The transmitter and receiver chassis are

connected to earth ground at their locations. If you

connect the coaxial cable directly to both circuits, the

shield on the cable will connect the chassis. Why might

that be a problem? How could you use an isolation

transformer to avoid a ground loop current?

P 9.79 Figure P 9.36 shows a balun consisting of a

center-tapped autotransformer. The balanced input in

Fig. P 9.36 is from a source having output resistance

RS ¼ 300O. Assume the balun can be modeled as an

ideal transformer. What is the effective source resis-

tance seen at the (unbalanced) output terminals?

unbalanced
line out

balanced
line in N

N

Fig. P 9.36 See Problem P 9.79

vLRLC
L
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–

–
+

Fig. P 9.35 See Problem P 9.77
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Chapter 10

Complex Arithmetic and Algebra

In the remainder of the book, we make extensive

use of complex arithmetic and algebra. This short

chapter gives a brief review that subject and estab-

lishes a consistent notation. Working knowledge of the

basic definitions, procedures, and relations reviewed

here is essential to mastering material presented in

subsequent chapters. Also, the terminology and nota-

tion associated with engineering applications of com-

plex mathematics have not been standardized, and the

terminology and notation introduced here are those

used in this book.

Even if your mastery of complex arithmetic and

algebra is such that you need only lightly skim

this chapter, give special attention to the definition

of the four-quadrant inverse tangent in Section 10.6

and the definitions of the symbols ff and ∡ in

Section 10.8.

10.1 Complex Numbers

A complex number is a number of the form aþ jb,

where a and b are real numbers and j is the imaginary

unit1 defined by

j ¼
ffiffiffiffiffiffiffi
�1

p
: (10.1)

The number a is the real part of the complex

number and the number b is the imaginary part.

The real part of a complex number z is denoted by

Re zf g and the imaginary part by Im zf g; i.e.,
Re zf g ¼ real part of z;

Im zf g ¼ imaginary part of z:
(10.2)

Conversely,

z ¼ Re zf g þ j Im zf g (10.3)

Both the real part and the imaginary part of a
complex number are real. For example, if z ¼ 3� j4

then Re zf g ¼ 3 and Im zf g ¼ �4. Do not make the

common mistake of including j in the imaginary part

of a complex number.

In applications, complex numbers and expressions

often are dimensioned, in which case the real part and
the imaginary part must have the same dimension.

10.2 Complex Arithmetic

The rules and results of complex arithmetic are gener-

ally consistent with those of real arithmetic; for exam-

ple, the sum, difference, product, and quotient of two

complex numbers (defined below) reduce to the sum,

difference, product, and quotient, respectively, of the

real parts of the numbers if the numbers are real (if

their imaginary parts are equal to zero). But a few

generalizations are necessary:

• Two complex numbers are equal if and only if the

real parts are equal and the imaginary parts are equal.

• A complex number equals zero if and only if the

real part and the imaginary part of the number are

both equal to zero.

1Mathematicians, physicists, and others use i to denote the

imaginary unit. Electrical engineers use j because they use i to
denote electric current.

T.H. Glisson, Introduction to Circuit Analysis and Design,
DOI 10.1007/978-90-481-9443-8_10, # Springer ScienceþBusiness Media B.V. 2011
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• The negative of aþ j b is � a� j b.

• The magnitude of aþ j b is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
(see Section

10.4).

• The sum of two (or more) complex numbers is

obtained by adding the real parts and (separately)

the imaginary parts; for example, ð3þ j4Þþ
ð2� j6Þ ¼ 5� j2. In general,

a1 þ j b1ð Þ � a2 þ j b2ð Þ
¼ a1 � a2ð Þ þ j b1 � b2ð Þ: (10.4)

• The product of two complex numbers is obtained by

treating each number as a binomial; for exam-

ple, ð3þ j4Þð2� j6Þ ¼ 6� j18þ j8� j224, which,

because j2 ¼ �1, reduces to 30� j10. In general,

a1 þ j b1ð Þ a2 þ j b2ð Þ ¼ a1a2 � b1b2ð Þ
þ j a1b2 þ a2b1ð Þ: (10.5)

• The reciprocal of a complex number z ¼ aþ j b is

the number z�1 ¼ xþ j y such that z z�1 ¼ 1. To

determine x and y in terms of a and b, we must

solve the equation aþ j bð Þ xþ j yð Þ ¼ 1: This gives

aþ j bð Þ xþ j yð Þ ¼ ða x� b yÞ þ j ðb xþ a yÞ
¼ 1þ j 0:

Equating the real parts and imaginary parts (sepa-

rately) and solving the resulting simultaneous equa-

tions yields

x ¼ a

a2 þ b2
; y ¼ � b

a2 þ b2
:

Thus the reciprocal of a complex number aþ j b is

given by

aþ j bð Þ�1¼ 1

aþ j b
¼ a� j b

a2 þ b2
: (10.6)

• Using (10.6), the quotient of two complex numbers

can be expressed as

z1
z2

¼ a1 þ j b1
a2 þ j b2

¼ a2 þ j b2ð Þ�1 a1 þ j b1ð Þ

¼ a1 þ j b1ð Þ a2 � j b2ð Þ
a22 þ b22

(10.7)

Example 10.1.

3þ j4

2� j6
¼ ð3þ j4Þð2þ j6Þ

22 þ 62
¼ �18þ j26

40

¼ � 18

40
þ j

26

40
¼ �0:45þ j 0:65:

Complex arithmetic differs from real arithmetic in

another significant respect: Whereas a set of distinct

real numbers can be ordered (e.g., listed from smallest

to largest), a set of complex numbers cannot be

ordered. As a result, one cannot say whether one

complex number is larger or smaller than another; in

other words, inequalities of the form z1 < z2 are

undefined if z1 or z2 is complex. Otherwise, the rules

of basic arithmetic for complex numbers are the same

as those for real numbers. If z1, z2, and z3 denote

complex numbers, then

• Addition and multiplication are commutative, such

that z1 þ z2 ¼ z2 þ z1 and z1z2 ¼ z2z1
• Addition and multiplication are associative, such

that z1 þ ðz2 þ z3Þ ¼ ðz1 þ z2Þ þ z3 and z1ðz2z3Þ ¼
ðz1z2Þz3; and

• Multiplication is distributive over addition, such

that z1ðz2 þ z3Þ ¼ z1z2 þ z1z3.

Exercise 10.1. Given z1¼3þ j4; z2¼1� j2;
z3¼ j5; z4¼�5þ j, verify each of the following:

ðaÞ z1þ z2� z3þ z4 ¼�1� j2; ðbÞ z1 ð1� z2Þ
¼�8þ j6; ðcÞ 6 z1þ 4ðz2� z4Þ ¼ 42þ j12;

ðdÞ z1 z2 ¼ 11� j2; ðeÞ z3 z4 ¼�5� j25;

ðf Þ z1 z3 ¼�20þ j15; ðgÞ z2
z3
¼�0:4� j0:2;

ðhÞ z1 z�1
2 ¼�1þ j2; ðiÞ z1 z3

z4
¼ 4:42� j2:12:

10.3 Conjugate of a Complex Number

The conjugate of a complex number z is obtained by

changing the sign of the imaginary part of the number.

For example, the conjugate of 3þ j4 is 3� j4. The
conjugate of a complex number z is denoted by z�:
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conjugate of z ¼ z� ¼ Re zf g � j Im zf g: (10.8)

The conjugate of a real number is the number itself.

Conjugation is distributive over addition, multipli-

cation, and division:

z1 þ z2ð Þ�¼ z1
� þ z2

�; z1z2ð Þ�

¼ z1
� z2�;

z1
z2

� ��
¼ z1

�

z2�
: (10.9)

As a result, it is unnecessary to reduce an expres-

sion to the form aþ jb in order to obtain the conjugate.
All that is necessary is to replace j by –j wherever it

appears in the expression. For example, the conjugate

of jð Þ3ð3þ j4Þ=ð2� j6Þ2 is �jð Þ3ð3� j4Þ=ð2þ j6Þ2.
Note that this approach requires that all of the imagi-

nary units (js) in the expression be visible; for exam-

ple, the conjugate of j z is � j z�, not simply� j z, if z
is complex.

The sum and difference of a complex number and

its conjugate are of special importance because

zþ z� ¼ 2Re zf g; z� z� ¼ 2j Im zf g: (10.10)

10.4 Magnitude of a Complex Number

The magnitude of a complex number z is denoted by

zj j and is defined by

zj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Re2fzg þ Im2fzg;

q
(10.11)

that is, if z ¼ aþ j b, then zj j ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
:

Exercise 10.2. Show that if z is real, the

right side of (10.11) reduces to the absolute

value of z. (Recall that
ffiffip
denotes positive

square root.)

The magnitude of a complex number is a non-

negative real number. Therefore, the magnitudes of

complex numbers can be ordered and expressions of

the form z1j j< z2j j are meaningful. An important exam-

ple is the (generalized) triangle inequality

z1 þ z2 þ � � � þ znj j � z1j j þ z2j j þ � � �
þ znj j: (10.12)

The magnitude of the product or quotient of two

complex numbers is the product or quotient of the

magnitudes:

z1z2j j ¼ z1j j z2j j; z1
z2

����
���� ¼ z1j j

z2j j : (10.13)

The product of a complex number and its conjugate

is of special importance because it equals the square of

the magnitude of the number. From (10.11),

z z� ¼ ðaþ jbÞða� jbÞ ¼ a2 þ b2 ¼ zj j2: (10.14)

This result can be used to rationalize the quotient

of two complex numbers or expressions prior to

performing the indicated division. From (10.14),

z1
z2

¼ z1z2
�

z2z2�
¼ z1z2

�

z2j j2 : (10.15)

It is easier to remember and apply the process

expressed by (10.15) than it is to remember and use

the formula (10.6).

Exercise 10.3. Let z1 ¼ 3þ j 4; z2 ¼ 1� j 2;

z3 ¼ j 5; z4 ¼ �5þ j: Verify each of the

following:

ðaÞ z1 z2� ¼�5þ j10; ðbÞ z1� z3j j ¼ 3:16;

ðcÞ z1
z1�

¼�0:28þ j0:96;ðdÞ z1
z2

����
����¼ 2:24;

ðeÞ z2j j2
z1 z4�

¼�0:085þ j0:177;ð f Þ z1 z2
z1 z2ð Þ�

����
����¼ 1:

10.5 Arithmetic in a Complex Plane

Complex numbers can be placed in correspondence

with points in a Cartesian plane called a complex

plane. The coordinates (abscissa and ordinate) of a

point in the plane are the real and imaginary parts,

respectively, of the number represented by the point.

The horizontal axis is called the real axis, often

labeled Re zf g and the vertical axis is called the imag-

inary axis, often labeled Im zf g: Figure 10.1. shows

a complex plane in which several complex numbers

10.5 Arithmetic in a Complex Plane 347



(including one real number and one imaginary num-

ber) are represented.

The complex number represented by a point is

often written next to the point, as in Fig. 10.1; how-

ever, a point in a complex plane is a representation of

the number, not the number itself. Again, both the

abscissa and ordinate of a point representing a com-

plex number are real numbers.
Often, it is helpful to refer to graphical descriptions

of arithmetic operations using a complex plane, as illu-

strated in Fig. 10.2. Figure 10.2(a) shows addition of two

complex numbers, illustrating that complex numbers

add like vectors (because the real and imaginary parts

add separately, as do the components of a vector). Figure

10.2(b) shows negation and conjugation of a single

complex number. Negation reflects a number through

the origin and conjugation reflects a number in the

horizontal (real) axis. Figure 10.2(c) shows multiplica-

tion of a complex number by various powers of the

imaginary unit j, illustrating that multiplication by j
rotates the number 90� counter-clockwise about the

origin.

10.6 Polar Form of a Complex Number

A complex number, when written as z ¼ aþ j b; is

said to be expressed in rectangular form because the

components of the number (real and imaginary parts)

are the coordinates of the corresponding point (a, b)
expressed in rectangular coordinates.2 A complex

number also may be expressed in polar form as rffy
as illustrated in Fig. 10.3, where

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
; y ¼ Tan�1 a; bð Þ: (10.16)

The function Tan�1ð Þ in (10.16) is the four-

quadrant inverse tangent, defined by

Tan�1 ða;bÞ ¼

tan�1 ðb=aÞ; if a>0;

ðp=2Þ sign bð Þ; if a¼ 0 and b 6¼ 0;

0; if b¼ 0 and a¼ 0;

pþ tan�1ðb=aÞ; if a<0:

8>>><
>>>:

(10.17)

where tan�1 ð Þ is the two-quadrant inverse tangent,

defined as follows: If a ¼ tan yð Þ and � p=2<y � p=2;
then tan�1 að Þ ¼ y: The two-quadrant inverse tangent
takes a single argument and returns a value in either

quadrant I or quadrant IV, depending upon the sign

of the argument. The four-quadrant inverse tangent

takes two arguments and returns an angle in the correct

one of the four quadrants.

In computer languages and mathematical software,

the two-quadrant inverse tangent is usually denoted

by atan and the four-quadrant inverse tangent by

atan2. Also, different software packages order the

arguments x ¼ ReðzÞ; y ¼ ImðzÞ of atan2 differently.

For example, Matlab uses atan2ðy; xÞ and Mathcad

uses atan2ðx; yÞ. The definition (10.17) is consistent

with Mathcad’s atan2 function. Fortunately, Matlab

and Mathcad both provide functions that return the

angle of a complex argument: In Matlab, angleðzÞ ¼
atan 2½ImðzÞ;ReðzÞ	 and in Mathcad, argðzÞ ¼ atan 2

½ReðzÞ; ImðzÞ	. If you use the angle( ) function in

Matlab or the arg( ) function in Mathcad when calcu-

lating angles of complex quantities, you need not

remember the order of the arguments in the atan2

function.

For pocket calculators, the key labeled atan or

tan�1 computes the two-quadrant inverse tangent,

whereas the angle computed by the rectangular-to-

polar conversion function is the four-quadrant inverse

tangent. The two-quadrant inverse tangent function

returns the correct angle of a complex number only if

the number lies in the first or fourth quadrants. For an

example, refer to Fig. 10.4. For z ¼ �1þ j; the four-

quadrant inverse tangent gives

Im (z)

Re (z)

−3 + j 3

−3 − j 3

3 + j4

3 − j2

j2

−4

Fig. 10.1 Complex numbers represented by points in a plane

2What we call rectangular coordinates also are called cartesian
coordinates and the rectangular form of a complex number also

is called the cartesian form of the number.

348 10 Complex Arithmetic and Algebra



y¼Tan�1 �1;1ð Þ¼pþ tan�1 �1ð Þ¼pþ �p
4

� �
¼ 3p

4
;

which is correct, whereas the ordinary (two-quadrant)

inverse tangent gives

tan�1 1

�1

� �
¼ tan�1 �1ð Þ ¼ � p

4
;

which is incorrect.

From (10.16), the radial coordinate r of a complex

number is just the magnitude of the number (defined

above). The angular coordinate y is called the angle of

the number; e.g., the magnitude and angle of 3 + j4 are

5 and 0.927, respectively.3,4 The symbol rffy is read

as “r angle y.” The complex-plane representation of a

complex number can be shown either as a point, as in

Fig. 10.2, or as a vector (an arrow from the origin to the

point), as in Fig. 10.3. Usually points are used to display

numbers expressed in rectangular form and vectors are

used to display numbers expressed in polar form.

The relationships between the rectangular form a +

jb and the polar form rffy of a complex number are

summarized below:

aþ jb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
ffTan�1 a; bð Þ ¼ rffy (10.18)

and

rffy ¼ r cosðyÞ þ j r sinðyÞ: (10.19)

Example 10.2. Express the number � 3þ j 4

in polar form.

Solution: From (10.19),ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32 þ 42

p
¼ 5; Tan�1 �3; 4ð Þ ¼ 2:214

) �3þ j 4 ¼ 5ff2:214:

Exercise 10.4. Given z1¼3þ j4; z2¼1� j2;

z3¼ j5; z4¼�5þ j; verify each of the following:

ðaÞ z1 ¼ 5:00ff 0:93; ðbÞ z2 ¼ 2:24ff � 1:11;

ðcÞ z3 ¼ 5:00ff 1:57; ðdÞ z4 ¼ 5:10ff 2:94;
ðeÞ z1� ¼ 5:00ff � 0:93;

ð f Þ z2
�ð Þ�1¼ 0:45ff � 1:11:

10.7 Eulers Identity and Polar
Arithmetic

Replacing cosðyÞ and sinðyÞ by their series expansions
on the right side of (10.20) and comparing the resultwith

the series expansion for ejy leads to Eulers identity

r ejy 
 r cosðyÞ þ j r sinðyÞ: (10.20)

Im (z)

Re (z)

θ

z = a + jb = r∠q

r

b

a

Fig. 10.3 Polar representation of a complex number in a com-

plex plane

Re(z)

Im (z)
z1 + z2

z1

z2

Im(z)
Im(z)

Re (z) Re (z)

z

−z z*

z

θ

θθ

z

j2z = −z
j3z = −jz

j z

2
π

2
π

2
π

2
π

(a) (b) (c)

Fig. 10.2 Depiction of various operations in a complex plane

3Because we use radian measures exclusively, we do not attach

the dimensionless unit rad to numerical values for angles.
4Mathematicians refer to the magnitude as the modulus and to

the angle as the argument.
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Thus,

rff y 
 r e j y: (10.21)

Equation (10.22) tells us how a polar representation

rffy can be manipulated mathematically (e.g., in pro-

ducts and quotients) using the rules of ordinary arith-

metic and algebra. It follows from (10.20), (10.21),

and the law of exponents that

r1ffy1ð Þ r2ffy2ð Þ ¼ r1e
jy1r2e

jy2 ¼ r1r2e
j y1þy2ð Þ

¼ r1r2ff y1 þ y2ð Þ: (10.22)

In words, the magnitude of the product is the prod-

uct of the magnitudes and the angle of the product is

the sum of the angles.

It also follows from (10.20), (10.21), and the law of

exponents that

r1ffy1
r2ffy2 ¼

r1e
jy1

r2ejy2
¼ r1

r2
e j y1�y2ð Þ

¼ r1
r2
ff y1 � y2ð Þ: (10.23)

In words, the magnitude of the quotient is the

quotient of the magnitudes and the angle of the quo-

tient is the angle of the numerator minus the angle of

the denominator.

Example 10.3. Obtain the product z1 z2 and

the quotient z1=z2; where z1 ¼ 2ffp=6 and

z2 ¼ 4ffp=4:
Solution: From (10.23) and (10.24)

z1 z2 ¼ 2ffp=6ð Þ 4ffp=4ð Þ ¼ ð2Þð4Þff p
6
þ p

4

� �
¼ 8ff 5p

12
;

z1
z2

¼ 2ffp=6
4ffp=4 ¼ 2

4
ff p

6
� p

4

� �
¼ 0:5ff � p

12
:

If the angle of a complex number is known exactly

as the product of p and a rational number, the angle is

often expressed that way, as in Example 10.3, above.

Otherwise, angles are expressed using decimal num-

bers, as in Example 10.4, below.

Example 10.4. Perform the indicated opera-

tions and express the result (z) in both polar

and rectangular form.

z ¼ ð3þ j 4Þ þ ð6þ j 8Þ
5þ j 10

:

Solution:

z¼ ð3þ j4Þþ ð6þ j8Þ
5þ j10

¼ 9þ j12

5þ j10

ffi 15ff 0:927
11:2ff1:11

ffi 1:34ff� 0:180

ffi 1:34 cosð�0:180Þþ j1:34 sinð�0:180Þ
ffi 1:32� j0:24:

Im (z) Im (z)

Re (z) Re (z)
−1 −1

1 1

θ

θ

z = −1 + j z = −1 + j

(a) correct angle: q  = Tan−1(−1, 1) = 3p
4

?
(b) incorrect angle: q = tan−1 = tan−1 (–1)1

–1 )( – p
4

=

Fig. 10.4 In (a), the angle y is given correctly by the four-quadrant inverse tangent, in (b) the angle y is given incorrectly by the

two-quadrant inverse tangent
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Exercise 10.5. Let z1 ¼ 3þ j 4; z2 ¼ 1� j 2;
z3 ¼ j 5; z4 ¼ �5þ j: Verify each of the

following:

ðaÞ z1 z2 ¼ 11:2ff�0:180; ðbÞ z2
z3

¼ 0:447ff�2:68;

ðcÞ z1 z3�z4�1 ¼ 4:90ff2:70;

ðdÞ z2 z4
z4� z2�

¼ 1ff�2:61; ðeÞ z3j j2
z1 z4�

¼ 0:981ff2:02:

Nowadays, all but the simplest computations usu-

ally are done using a calculator (or computer) capable

of doing complex arithmetic. When using such a cal-

culator or computer for computations, it makes little

difference whether we express complex numbers in

rectangular or polar form. The choice often is dictated

by ease of data entry or by the form in which the data

are available. But when performing pencil-and-paper

computations or symbolic manipulations of complex

expressions, the rectangular form is generally most

convenient for addition and subtraction and the polar

form is best for multiplication and division. Further-

more, in a number of applications, the polar form is

preferred for interpretative reasons.

10.8 The Symbols ∠ and ∡

The symbol ff denotes that the number (or expression)

following is an angle; e.g., when expressing a number

in polar form. In that context, the symbol ff serves as a
separator between the magnitude and angle of a num-

ber denoted by r∠y, just as the comma serves as a

separator between the x- and y-coordinates of a point

denoted by (x, y).

The symbol ∡ is an operator that means the angle
of the number or expression that follows. For example,

ff p=2 denotes an angle equal to p=2 radians (90�)
whereas ∡p=2 means the angle of the real number

p=2; which equals zero. For z ¼ xþ j y;

∡z ¼ ∡ xþ j yð Þ ¼ Tan�1 x; yð Þ: (10.24)

A value or expression following the symbol ff is a

real angle expressed in radians. A value or expression

following the operator ∡ is in general complex and

can be dimensionless or dimensioned.

Example 10.5.

(a) ∡ 1þ jð Þ ¼ p=4 (b) ∡ 4ff0:6ð Þ ¼ 0:6

(c) 3ff∡j¼ 3ffp=2 (d) ∡10e�j0:8 ¼�0:8;

ðeÞ 3� j4

2þ j

����
����∡ 3� j4

2þ j

� �
¼ 3� j4j j

2þ jj j
� ½∡ 3� j4ð Þ�∡ð2þ jÞ	

¼
ffiffiffi
5

p
ff�1:39:

Exercise 10.6. Let z1 ¼ 3þ j4; z2 ¼ 1� j2;

z3 ¼ j5; z4 ¼�5þ j: Verify each of the

following:

ðaÞ∡ z1 z2
z3�

� �
¼ 1:39; ðbÞ∡ z2

�ð Þ�2¼�2:21;

ðcÞ∡ z1ð Þ4¼ 4∡z1 ðdraw a pictureÞ;
ðdÞ∡ z1 z2 z3 z4ð Þ ¼�1:95;

ðeÞ∡z1þ∡z1
� ¼ 0; ðf Þ∡ z2

z2�

� �
¼ 2∡z2;

ðgÞ z1 z2j jff ∡z3ð Þ ¼ 11:2ff1:57:

10.9 Problems

Section 10.5 is prerequisite to the following

problems.

P 10.1 Find the real and imaginary parts, the mag-

nitude, the conjugate, and the reciprocal of each of the

following numbers.

(a) � j, (b) 3� j 2; (c)
ffiffiffiffiffiffiffi�4

p
, (d) 5 j2; (e) j3;

(f) 2 jð Þ�1; (g) 1� j 3; (h) 3jþ 12� ffiffiffiffiffiffiffiffiffi�16
p

;

(i) j 2� j5ð Þ;
(j) 1þ 2j� 3j2 þ 4j3 � 6j4; (k)

6

2j
� 8:
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P 10.2 Reduce each of the following to the

form aþ j b: Represent each result as a point in a

complex plane.

(a) 3þ j 2ð Þ 5� j 6ð Þ; (b) 2� j 3ð Þ3; (c) 120� j 240

3þ j 4
;

(d) 1� jð Þ 4þ j 2

1þ j
þ 3þ j 4

� 	
:

P 10.3 Let z1 ¼ 1� j; z2 ¼ 2þ j 3; z3 ¼ 6j:

Reduce each of the following to the form aþ j b:
Represent each result as a point in a complex plane.

(a)
z1
z2j j ; (b)

z1z2
�

10
; (c)

z1z2z3ð Þ�
10

; (d)
z3z1
z2�

����
����;

(e)
z1z2 þ z1

�z2�

10
; (f)

z1z2 � z1
�z2�

z3
; (g) z2

�1;

(h)
z1 þ z3

�ð Þz2
10

; (i)
z1 þ z3

�

z2 � z1
; (j)

z3
z1 þ z2�

;

(k)
z1 � z3

�ð Þ z1 þ z3ð Þ
3z2 � z1�

; (l)
z1 þ z2 þ z3
z1 þ z2 þ z3ð Þ� :

P 10.4 Let z1 ¼ 1� j; z2 ¼ 1þ j; z3 ¼ 2j:
Depict each of the following operations in a complex

plane.

(a) z1 þ z2; (b) z1 � z2; (c) z1 þ z3; (d) z2 þ z3;

(e) z1 þ z2 þ z3; (f) z1z3; (g) z2z3; (h) z3
3;

(i) z1 þ z2ð Þz3; (j) z2 � z1
z3

:

Section 10.7 is prerequisite to the following

problems.

P 10.5 Refer to Problem P 10.1. Express each

number given there in polar form.

P 10.6 Under what conditions on a and b do the four-
quadrant inverse tangent and the two-quadrant inverse

tangent give the same number for the angle of aþ j b?

P 10.7 Use both the four-quadrant inverse tangent

and the two-quadrant inverse tangent to obtain

the angle of each of the numbers given in Problem

P 10.1 If the angles differ, explain why.

P 10.8 Let z1 ¼ 1� j; z2 ¼ 2þ j 3; z3 ¼ 6j: Con-
vert each to polar form. Then perform each of the

following operations using polar arithmetic and con-

vert the result back to rectangular form.

(a)
z1
z2j j (b) z1z2

� (c) z1z2z3ð Þ� (d) z3z1
z2�

����
���� (e) z2�1 (f) z1

5

(g)
z2
z1

� �3
z3

� (h)
z1z3

2

z12z2z3ð Þ�
P 10.9 Refer to Problem P 10.1. Express each

number given there in the form r ej y:

Section 10.8 is prerequisite to the following

problems.

P 10.10 Let z1 ¼ 1� j; z2 ¼ 2þ j 3; z3 ¼ 6j: Find
each of the following, doing as little arithmetic as

possible.

(a) ∡
z1
z2

� �
; (b) ∡ z1z3ð Þ; (c) ∡ z2z3ð Þ; (d) ∡ z3

3ð Þ;

(e) ∡ z1z2z3ð Þ; (f) ∡
z2z1

�

z3

� ��� 	
; (g) ∡z2ð Þ þ ∡z1ð Þ;

(h) ∡z3ð Þ2:
P 10.11 Let z1 ¼ 1� j; z2 ¼ 2þ j 3; z3 ¼ 6j: Find

each of the following, doing as little arithmetic as

possible.

(a)
z1
z2

����
����; (b) z1z3j j; (c) z2z3j j; (d) z33

�� ��; (e) z1z2z3j j;

(f)
z2z1

�

z3

����
����; (g) z2j j þ z3j j; (h) z2

2
�� ��:
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Chapter 11

Transient Analysis

Transient analysis examines the transition of a current

or voltage in a circuit from one steady state to another

after an abrupt change in excitation or circuit structure.
Questions addressed by transient analysis include:

• How long does the transition take? Is the response

quick or sluggish?

• What is the new steady state after the transition is

complete?

• Is the transition smooth, or are there overshoots and

undershoots before steady state is achieved?

• If there are overshoots or undershoots, how large are

they?Might they damage some sensitive component?

• What circuit parameters influence the transition and

new steady state, and in what ways?

In circuits terminology, the order of a differential

equation relating a response (output) to an excitation

(input) is the order of the highest derivative of the

response, and the order of a circuit is the order of

the differential equation relating the excitation and

response of interest. In this chapter, we limit our

discussion to circuits for which excitations and

responses are related by first-order or second-order

differential equations.

As noted above, transient analysis deals in part with

responses to excitations that change abruptly from one

value to another. The unit step function defined in the

next section facilitates describing such excitations.

11.1 Unit Step Function

Sudden changes (jump discontinuities) in a current or

voltage can be described compactly using the unit

step function, defined by

u tð Þ ¼ 0; t � 0;

1; t> 0:

(
(11.1)

Example 11.1. A voltage given by

v tð Þ ¼ 0; t � 0;

V0; t > 0;

(

can be expressed compactly as v tð Þ ¼ V0 u tð Þ:

Example 11.2. The voltage

v tð Þ ¼ V1; t � 0;

V2; t> 0;

(

can be expressed compactly as

v tð Þ ¼ V1 þ V2 � V1ð Þ u tð Þ:

Exercise 11.1. Use unit step functions to

express

i tð Þ ¼
I0; t � t0;

I1; t0 < t � t1;

I2; t> t1

8><
>:

T.H. Glisson, Introduction to Circuit Analysis and Design,
DOI 10.1007/978-90-481-9443-8_11, # Springer ScienceþBusiness Media B.V. 2011
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11.2 Notation

In transient analysis, it is often necessary to specify

times that differ only infinitesimally from each other;

e.g., at instants just before and just after an abrupt

change in excitation. As a reminder, we denote the

instants infinitesimally before and after a time t ¼ t0
by t ¼ t�0 and t ¼ tþ0 , respectively. For example, if a

voltage v is defined by v tð Þ ¼ V1 u tð Þ; then

v 0�ð Þ ¼ 0; v 0þð Þ ¼ V1:

For any time t0, the instants t ¼ t�0 , t ¼ t0, and

t ¼ tþ0 are only infinitesimally different, so any contin-

uous function has the same value at all three times. For

example,

exp �t�0
t

� �
¼ exp � t0

t

� �
¼ exp � tþ0

t

� �

and

sin o t�0
� � ¼ sin o t0ð Þ ¼ sin o tþ0

� �
:

We attach units only to non-zero, finite times, e.g.,

t ¼ 5ms, but t ¼ 0 (no unit) and t ! 1 (no unit). If

t ¼ 0 or t ! 1, then t is zero or infinite whether

expressed in seconds, microseconds, minutes, or

years, so in those cases units are irrelevant. For the

same reason, there is no need to associate a unit with

t ¼ 0� or t ¼ 0þ. Similarly, we do not attach units to

any current, voltage, power, energy, or charge that

equals zero, is infinitesimal, or approaches infinity.

For example, if a voltage v tð Þ equals zero at time t0,
we write v t0ð Þ ¼ 0, not v t0ð Þ ¼ 0V.1

We often use a prime to denote the first derivative

with respect to time of a current or voltage y tð Þ, as in

y0 ¼ y0 tð Þ ¼ dy

dt
:

Thus y0 t0ð Þ denotes the first derivative with respect

to time of a current or voltage y tð Þ, evaluated at t ¼ t0:

y0 t0ð Þ ¼ dy

dt

����
t¼t0

: (11.2)

The notation in (11.2) means differentiate first, then
replace t with t0 . If you do the reverse, the result will

always be zero.

We also need a concise notation for the value of a

current or voltage in the distant future; for example, a

long time after an abrupt change in excitation. We use

the notation v 1ð Þ and i 1ð Þ as shorthand for the

associated limits; i.e.,

v 1ð Þ ¼ lim
t!1 v tð Þ; i 1ð Þ ¼ lim

t!1 i tð Þ;
v0 1ð Þ ¼ lim

t!1 v0 tð Þ; i0 1ð Þ ¼ lim
t!1 i0 tð Þ: (11.3)

Mathematicians might object to this notation

because infinity is not a specific value that can be

substituted for a variable in a function. Nonetheless,

the notation is compact and serves us well.

11.3 Initial Conditions

For the present, we limit our attention to obtaining and

interpreting responses of stable first-order and second-

order linear circuits to step excitations – excitations

that change abruptly at t¼0. Solving the differential

equations governing such responses requires knowing

the response and (for second-order circuits) the first

derivative of the response at t¼0þ. Such initial condi-

tions are obtained using Kirchhoff’s laws and the fact

that currents through inductors and voltages across

capacitors are continuous.

A step excitation, such as vS tð Þ ¼ VS u tð Þ, is zero

for all t< 0 and equals a non-zero constant VS for all
t> 0. A circuit is in dc steady state if all currents and

voltages in the circuit are constant. In particular, vol-

tages across capacitors and currents through inductors

are constant in dc steady state. Generally, a circuit

excited by a step current or voltage is in dc steady

state before t ¼ 0.

1Software packages that provide for dimensioned variables

require consistent use of units (if used at all), even for zero

values. Also, note that we require a unit for zero temperature,

because zero Celsius, zero Fahrenheit, and zero Kelvin are all

different.
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It follows from the terminal characteristics

i ¼ C
dv

dt
¼ Cv0; v ¼ L

di

dt
¼ Li0;

that if a circuit is in dc steady state, the current through

each capacitor and the voltage across each inductor

equals zero. Before finding currents and voltages in

a circuit in dc steady state, we may replace each

capacitor by an open circuit and each inductor by a

short circuit. A circuit in dc steady state is essentially

resistive.

Example 11.3. The circuit in Fig. 11.1(a) is in

dc steady state. Obtain expressions for the cur-

rent i and the voltage vC.

Solution: Because the circuit is in dc steady

state, we may replace the capacitor by an open

circuit and the inductor by a short circuit. This

gives the circuit in Fig. 11.1(b), where

iL ¼ i ¼ VS

RS þ R
; vC ¼ R iL ¼ RVS

RS þ R
:

Exercise 11.2. The circuit in Fig. 11.2 is in dc

steady state. (a) Obtain expressions for the

current I and the voltage V. (b) Obtain expres-

sions for the voltages across the capacitors

and the current through the inductor. Indicate

assumed current directions and voltage polari-

ties on the circuit diagram.

Response to a step excitation, called a step response,

often is used to describe or specify performance, espe-

cially in applications where excitations exhibit repeated

abrupt changes in amplitude. The response of a linear

stable circuit to a step excitation consists of a transient

component, which eventually vanishes, and a steady-

state component, which remains after the transient has

vanished. A step response might be described in terms

of attributes such as rise time, overshoot, settling time,

and steady-state amplitude. In short, step response is

often used to address questions such as those posed at

the beginning of this chapter. The next two sections

describe step responses of first- and second-order

circuits.

11.4 First-Order Circuits

A first-order circuit is one for which excitation and

response are related by a first-order differential equa-

tion expressed in standard form as

t
dy

dt
þ y ¼ b0xþ b1

dx

dt
; (11.4)

where x tð Þ is an excitation and y tð Þ is the

corresponding response. For a step excitation

x tð Þ ¼ X0 u tð Þ and for t> 0, the differential equation

(11.4) becomes

t
dy

dt
þ y ¼ b0X0; t> 0: (11.5)

The coefficient of the response y in (11.5) is unity, so

every term in the standard-form differential equation

has the dimension of the response. It follows that

SI tð Þ ¼ s; SI b0ð Þ ¼ SI yð Þ
SI X0ð Þ : (11.6)

We treated such circuits in Chapters 8 and 9, where

we showed that the response is given (for t > 0) by

+

–

R1 R2 R2

V0

C1

C2L

I

+

–

V

Fig. 11.2 See Exercise 11.2

+

–

RS RS

VS
vC VS vC

iL iL

C L

Ri

+

–

Ri

+

–

+

–

(a) (b)

Fig. 11.1 See Example 11.3
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y tð Þ ¼ y 1ð Þ � y 1ð Þ � y 0þð Þ½ � exp � t

t

� �
: (11.7)

Example 11.4. Refer to Fig. 11.3, where

vS ¼ V0 u tð Þ.
(a) Obtain a standard-form differential equa-

tion relating the voltage vC (the response) to

the excitation for t> 0. (b) Obtain expressions

for vC 0�ð Þ and vC 0þð Þ. (c) Obtain an expres-

sion for vC tð Þ.
Solution: (a) Applying Kirchhoff’s current law to

the circuit gives

vC � V0

R
þ C

dvC
dt

¼ 0; t> 0: (11.8)

Multiplying by the resistance R (to make the

coefficient of vC equal to unity) and rearran-

ging terms gives the standard-form differen-

tial equation

t
dvC
dt

þ vC ¼ V0; t> 0; t ¼ RC: (11.9)

(b) The source vS is essentially a short circuit

for t< 0, so vC 0�ð Þ ¼ 0. The voltage

across a capacitor cannot change instanta-

neously, so vC 0þð Þ ¼ vC 0�ð Þ ¼ 0. For

t> 5t, the circuit is once again in dc steady
state, with vC 1ð Þ ¼ V0.

(c) Thus, vC tð Þ ¼ 0 for t< 0 and

vC tð Þ ¼ vC 1ð Þ � vC 1ð Þ � vC 0þð Þ½ � exp � t

t

� �
¼ V0 1� exp � t

t

� �h i
; t> 0; t ¼ RC:

Although we know the form of the response of a

first-order circuit to a step excitation, we wish to

derive that solution again, but by a different method;

one that is applicable to second- and higher-order

differential equations. If you have had or are taking a

course in differential equations, you might be familiar

with this method, called the method of undetermined
coefficients, which proceeds as follows:

The complete solution to (11.5) is called the com-

plete response or simply the response of the asso-

ciated circuit. The response is the sum of the forced

response yf and the unforced response yu:
2

y ¼ yf þ yu: (11.10)

The forced response of a stable linear circuit has
the form of the excitation. For step excitation, the

forced response is a constant because the excitation

is a constant (for t> 0). Thus yf ¼ Y0, where Y0 is a

constant. Substituting this solution for y in (11.5) gives

Y0 ¼ b0X0; (11.11)

so the forced response is given by

yf ¼ b0X0 (11.12)

The unforced response is the general solution to

the homogeneous equation

t
dyu
dt

þ yu ¼ 0: (11.13)

The unforced response must contain one arbitrary

constant that cannot be determined from (11.13) alone.

As we show below, the arbitrary constant can be

determined from the initial value of the response,

denoted by y 0þð Þ.
According to (11.13), a linear combination of the

unforced response and its derivative (with respect to

time) have the same time dependence. Otherwise the

left side could not be zero for all time. The exponential

function has this property, so we are led to try

yu ¼ Yes t in (11.13), where Y and s are constants, as

yet unknown.3 We obtain

vS vC

R

C

+
+
–

–Fig. 11.3 See Example 11.4

2Mathematicians call the forced response the particular integral
and the unforced response the complementary solution (or func-
tion). The names used here are more appropriate (and sugges-

tive) for physical problems.
3Note that s (italic) is a variable and s (roman) is a unit (second).

In written work, you might want to distinguish the unit s from

the variable s by underlining the former.
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t
d Yes tð Þ

dt
þ Yes t ¼ tYses t þ Yes t

¼ Yes t tsþ 1ð Þ ¼ 0: (11.14)

The exponential es t cannot be zero for any finite

value of s. We require Y 6¼ 0 because Y ¼ 0 gives the

trivial solution yu ¼ 0, which contains no arbitrary

constants and can be ignored. Thus the function Y es t

satisfies the differential equation (11.31) if the con-

stant s satisfies the characteristic equation

tsþ 1 ¼ 0; (11.15)

whose solution is the characteristic root

s ¼ � 1

t
: (11.16)

The parameter t is the time constant for the

response.

The unforced response is given by

yu ¼ Yes t ¼ Ye�t=t; (11.17)

where Y is an arbitrary constant having the dimension

of the response and t is the time constant. From

(11.10), (11.12), and (11.17), the complete response

is given by

y tð Þ ¼ b0X0 þ Yest; t> 0; (11.18)

where

y 0þð Þ ¼ b0X0 þ Y ) Y ¼ y 0þð Þ � b0X0: (11.19)

Thus (compare with (11.7))

y tð Þ ¼ b0X0 þ y 0þð Þ � b0X0½ �e�t=t; t> 0: (11.20)

A response given by (11.20) consists of an unforced

component y 0þð Þ � b0X0½ �e�t=t and a forced compo-

nent b0X0 . In a stable circuit, the unforced component

eventually vanishes, and only the forced component

remains. Thus the forced component is the steady-state

response and the unforced component is the transient

response, called the transient, for short.

Example 11.5. Refer to Fig. 11.4, where the

op amp is ideal and v0 tð Þ ¼ V0 u tð Þ. Obtain an

expression for the voltage vo tð Þ. Identify the

transient and steady-state components of the

response.

Solution: No current enters the n terminal.

Kirchhoff’s current law gives (for t> 0)

vn�V0

R1

þ vn� vo
R2

þC
d vn� voð Þ

dt
¼ 0: (11.21)

From the circuit diagram vp ¼ 0. The op

amp is ideal, so vn ¼ vp ) vn ¼ 0. Equation

(11.21) reduces to

R2C
dvo
dt

þ vo¼�R2V0

R1

; t> 0; (11.22)

which is (11.5), with y ¼ vo, X0 ¼ V0,

b0 ¼ �R2=R1, and t ¼ R2C. The excitation

equals zero for all t � 0, and the capacitor is

shunted by a resistor, so vo 0�ð Þ ¼ 0. Because

vn ¼ 0, the voltage vo is the voltage across the
capacitor, so vo must be continuous. It follows

that

vo 0þð Þ ¼ vo 0�ð Þ ¼ 0: (11.23)

From (11.20)

R1

R2

C

v0
+

– vo

RL

n

p

o

+
–

Fig. 11.4 See Example 11.5
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v¼

0; t<0;

�R2

R1

V0 1�e�t=t� �
; t>0

8><
>:

9>=
>;;

t¼R2C: (11.24)

The steady-state component is the forced

response vf and the transient component is

the unforced response vu:

vf ¼�R2

R1

V0 ; vu¼R2

R1

V0e
�t=t; t> 0:

The time constant of a first-order circuit is dis-

cussed at length in Chapters 8 and 9. As a reminder,

the time constant t is a measure of the time required

for the transient component to vanish (for steady state

to be achieved). For t ¼ 5t, e�5 ffi 0:00674 and the

magnitude of the transient component is less than 1%

of its initial value. Often, 5t is taken as the duration of

the transient (as the time required for steady state to

be achieved). For t > 0, a step excitation x ¼ X0 u tð Þ
is a constant (dc) current or voltage given by x ¼ X0.

After the transient vanishes (for practical purposes),

the response of a linear stable circuit to such a step

excitation is also a constant (dc) current or voltage,

given by y ¼ b0X0. Thus the magnitude of the param-

eter b0 is called the dc gain of the circuit. The time

constant t and dc gain b0j j are constant functions of

circuit parameters.

Two distinct procedures are treated in the discus-

sion above: One addresses how to obtain an expres-

sion for the response of a first-order circuit to a step

excitation. If that is the objective (11.7) usually pro-

vides the most direct approach. The other addresses

how one can solve a differential equation using

the assumed solution Y expðs tÞ. That procedure is

generalized to second-order differential equations in

the sequel.

Equation (11.7) can be applied to any of the

responses labeled in either of the circuits in Fig. 11.5.

Example 11.6. Obtain an expression for the

current i tð Þ in Fig. 11.5(b).

Solution: The excitation (the independent

source) is zero for t < 0, so i 0�ð Þ ¼ 0. The

current though an inductor must be continuous,

so i 0þð Þ ¼ i 0�ð Þ ¼ 0. The time constant is

t ¼ L=R. For t � t, the circuit is in dc steady

state, the inductor is effectively a short circuit,

so i 1ð Þ ¼ V0=R. Thus, from (11.7), i tð Þ ¼ 0

for t < 0 and

i tð Þ ¼ i 1ð Þ � i 1ð Þ � i 0þð Þ½ � exp � t

t

� �
¼ V0

R
1� exp � t

t

� �h i
; t > 0:

The complete response would normally be

written using a unit step function as

i tð Þ ¼ V0

R
1� exp � t

t

� �h i
u tð Þ; t ¼ L

R
:

Example 11.7. Obtain an expression for the

voltage vR tð Þ in Fig. 11.5(a).

Solution: The voltage vR tð Þ appears across a

resistor (not a capacitor), and need not be con-

tinuous. But the voltage vC tð Þ must be continu-

ous, so vC 0þð Þ ¼ 0. Kirchhoff’s current law

gives, for t ¼ 0þ,

vR 0þð Þ þ vC 0þð Þ ¼ V0 ) vR 0þð Þ ¼ V0:

The time constant is t ¼ RC. For t � t, the
circuit is in dc steady state, the capacitor is

effectively an open circuit, so i 1ð Þ ¼ 0,

which implies (Ohm’s law) vR 1ð Þ ¼ 0. From

(11.7)

vR tð Þ ¼ vR 1ð Þ � vR 1ð Þ � vR 0þð Þ½ � exp � t

t

� �
¼ V0 exp � t

t

� �
; t> 0:

V0u(t) V0u (t)
R

C
R

L

(a) RC circuit (b) RL circuit

vC

+

–

vL

+

–i i

vR+

+
–

+
–

– vR+ –

Fig. 11.5 First-order RC and RL series circuits
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Thus

i tð Þ ¼ V0 exp � t

t

� �
u tð Þ; t ¼ RC:

Any (non-pathological) circuit comprising only

resistors and one capacitor or one inductor can be

reduced using Thévenin’s theorem to one of the cir-

cuits in Fig. 11.5. A circuit equivalent to the circuit in

Fig. 11.5(a) at the terminals of the capacitor is called a

first-order RC circuit. One equivalent to the circuit in

Fig. 11.5(b) at the terminals of the inductor is called a

first-order RL circuit.

Example 11.8. Refer to Fig. 11.6(a). Obtain

an expression for the current i tð Þ.
Solution: We first obtain an expression for

the voltage vC tð Þ and subsequently use Ohm’s

law to obtain an expression for the current i tð Þ.
We apply a source transformation to obtain

the circuit in Fig. 11.6(b), where VS ¼ ISRS.

The Thévenin equivalent for the rest of the

circuit at the terminals of the capacitor

has the form of the circuit in Fig. 11.5(a),

where R ¼ RS þ R1ð Þ R2k . The time constant

is given by

t ¼ RC ¼ RS þ R1ð Þ R2k½ �C:

By inspection, vC 0þð Þ ¼ 0 and

vC 1ð Þ ¼ R2VS

R1 þ R2 þ RS

From (11.7)

vC tð Þ¼ vC 1ð Þ� vC 1ð Þ�vC 0þð Þ½ �exp � t

t

� �
¼ R2VS

R1þR2þRS
1�exp � t

t

� �h i
; t> 0

or

vC tð Þ ¼ R2RSIS
R1 þ R2 þ RS

1� exp � t

t

� �h i
u tð Þ;

so

i tð Þ ¼ vC tð Þ
R2

¼ RSIS
R1 þ R2 þ RS

1� exp � t

t

� �h i
u tð Þ:

Example 11.9. See Fig. 11.7. (a) Obtain an

expression for the voltage vL tð Þ, where

vS ¼ V0 u tð Þ. (b) Let RS ¼ 50 O, C ¼ 22nF,

Ri ¼ 1MO, g ¼ 1mS, Ro ¼ 10kO, RL ¼ 5kO,
and vS ¼ V0 u tð Þ, with V0 ¼ 5V. Construct a

graph of the voltage vL versus time for

� t � t � 5t.
Solution: (a) The output subcircuit is resis-

tive and has no effect on currents and voltages

in the input subcircuit, so the time constant is

determined by the elements in the input sub-

circuit. The Thévenin equivalent resistance at

the terminals of the capacitor is RT ¼ RS kRi,

so the time constant is given by

t ¼ RS Rikð ÞC:

By inspection,

vL tð Þ ¼ �g v1 tð Þ Ro RLkð Þ: (11.25)

The voltage vS equals zero for t � 0 (the

source is a short circuit for t � 0), so

v1 tð Þ ¼ 0 for t< 0. The voltage v1 tð Þ appears
across a capacitor and must be continuous.

Thus v1 0þð Þ ¼ 0. For t � t, the circuit is in

dc steady state, the capacitor is effectively an

open circuit, and

vC

R1

R2 R2C
+

–
vC

+

–

i i

CRS

RS + R1

ISu(t) VSu(t)+
–

(a) (b)

Fig. 11.6 See Example 11.8

+

–

CvS

RS
Ri Ro RL vLv1

+
+
–

–
gv1

Fig. 11.7 See Example 11.9
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v1 1ð Þ ¼ RiV0

Ri þ RS
:

From (11.7)

v1 tð Þ¼ v1 1ð Þ� v1 1ð Þ�v1 0þð Þ½ �exp � t

t

� �
¼ RiV0

RiþRS
1�exp � t

t

� �h i
; t>0:

Thus, from (11.25), and incorporating a unit

step to express the voltage for all time, we have

vL tð Þ ¼ � gRiV0

Ri þ RS

RoRL

Ro þ RL

� 1� exp � t

t

� �h i
u tð Þ:

(b) For the given parameter values, we find

gRiV0

Ri þ RS

RoRL

Ro þ RL
ffi 16:7V;

t ¼ RSRi

RS þ Ri
C ffi 1:10 ms:

Figure 11.8 shows a graph of the response.

Exercise 11.3. In Fig. 11.9, vS ¼ V0 u tð Þ and
the response of interest is the voltage vL.

(a) Obtain an expression for the voltage

vL tð Þ. (b) Let RS ¼ 50O, C ¼ 15 nF,

R1¼R3¼1MO, m1¼15, m2¼25, RL¼2:2kO,

R2¼R4¼10kO, and V0¼5V. Construct a

graph of the voltage vL versus time for

�t� t�5t, where t is the circuit time

constant.

11.5 Second-Order Circuits

A second-order circuit is one for which excitation

and response are related by a second-order differential

equation expressed in standard form as

a2
d2y

dt2
þ a1

dy

dt
þ y ¼ b0xþ b1

dx

dt
þ b2

d2x

dt2
; (11.26)

where x tð Þ is an excitation and y tð Þ is the corres-

ponding response. For a step excitation x tð Þ ¼ X0 u tð Þ
and for t > 0, (11.26) becomes

a2
d2y

dt2
þ a1

dy

dt
þ y ¼ b0X0; t > 0: (11.27)

The coefficients a1; a2; b0 are constant functions

of circuit parameters. The coefficient of y is unity, so

every term in (11.27) has the dimension of the

response. It follows that

SI a2ð Þ ¼ s2; SI a1ð Þ ¼ s; SI b0ð Þ ¼ SI yð Þ
SI X0ð Þ : (11.28)

Example 11.10. In Fig. 11.10, vS tð Þ ¼
V0 u tð Þ. Obtain the standard-form differential

vL (V)

t (μs)
2 1 0 1 2 3 4 5 6

–20

–15

–10

–5

0

5

Fig. 11.8 See Example 11.9

iR

L
C

vS
+
–

Fig. 11.10 See Example 11.10

vS C

RS

R1 v1

R2 R4R3 v2
m1v1 m2v2

RL vL

+
+
–

–

+

–

+

–

+
–

+
–

Fig. 11.9 See Exercise 11.3
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equation relating the current i to the voltage vS
for t > 0.

Solution: By Kirchhoff’s voltage law

Riþ L
di

dt
þ 1

C

ðt
�1

i t0ð Þdt0 ¼ V0; t > 0:

Differentiating once with respect to time

and rearranging terms gives

LC
d2i

dt2
þ RC

di

dt
þ i ¼ 0; t > 0;

which has the form (11.26) with y ¼ i,

a2 ¼ LC, a1 ¼ RC, and b0 ¼ 0. As an exercise,

show that the SI units of the coefficients a1; a2
are as specified by (11.28).

Exercise 11.4. In Fig. 11.11, vS tð Þ ¼ V0 u tð Þ.
Obtain the standard-form differential equation

relating the voltage vC to the voltage vS for

t > 0. Show that the SI units of the coefficients

a1; a2; b0 are as specified by (11.28).

We use the method of undetermined coefficients to

obtain the solution to (11.27). The complete solution

y tð Þ to (11.27) is the complete response, and is the

sum of the forced response yf tð Þ and the unforced

response yu tð Þ. Thus

y tð Þ ¼ yf tð Þ þ yu tð Þ: (11.29)

The forced response has the form of the excitation,

so the forced response is constant. If we let y tð Þ ¼ Y0
(a constant) in (11.27), we obtain Y0 ¼ b0X0. There-

fore the forced response is given by

yf tð Þ ¼ b0X0 u tð Þ: (11.30)

The unforced response yu tð Þ is the solution to the

homogeneous equation

a2
d2yu
dt2

þ a1
dyu
dt

þ yu ¼ 0 (11.31)

obtained from (11.27) by setting the excitation X0 to

zero. Any solution to (11.31) is also a solution to

(11.27) because b0X0 þ 0 ¼ b0X0.

If yu1 and yu2 are any two solutions to (11.31), then

yu ¼ Y
1
yu1 þ Y

2
yu2 , where Y1 and Y2 are arbitrary con-

stants, is also a solution, as you can show by substitu-

tion. The general solution to (11.31) must reduce

(11.31) to an identity and must contain exactly two

independent arbitrary constants. (The trivial solution

yu ¼ 0 meets the first requirement, but not the second.)

In this context, arbitrarymeans that yu ¼ Y
1
yu1þ Y

2
yu2

satisfies (11.31) for any values whatever of the con-

stants Y1; Y2 and independent means that yu ¼ Y
1
yu1þ

Y
2
yu2 cannot be reduced to the form yu ¼ Y yu, where

the two arbitrary constants are reduced to a single

constant.

According to (11.31), a linear combination of the

unforced response yu tð Þ and its first two time deriva-

tives is identically zero (for all time). That can be true

only if yu tð Þ and its first two time derivatives have

exactly the same time dependence.4 A function having

that property is the exponential function Y es t, where Y
and s are constants. Substituting Y es t for yu in (11.31)

yields

a2s
2Y es t þ a1 s Y es t þ Y es t

¼ a2s
2 þ a1 sþ 1

� �
Y es t ¼ 0: (11.32)

The exponential es t cannot be zero for any finite

value of s.We assume Y 6¼ 0 because Y ¼ 0 yields the

trivial solution, which contains no arbitrary constants

and can be ignored. Thus the function Y es t satisfies the

differential equation (11.31) if the constant s satisfies

the characteristic equation

a2s
2 þ a1 sþ 1 ¼ 0: (11.33)

L C vC

+

–

R
vS

+
–

Fig. 11.11 See Exercise 11.4

4The sum of functions having different time dependences cannot

be identically zero (cannot equal zero for all time); e.g., a

sinusoidal function of time cannot cancel a real exponential

function of time.
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The characteristic roots are given by

s1 ¼ �a1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21 � 4a2

p
2a2

;

s2 ¼ �a1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21 � 4a2

p
2a2

: (11.34)

The SI units of the differential equation coeffi-

cients are SI a2ð Þ ¼ s2 and SI a1ð Þ ¼ s, so SI s1ð Þ ¼
SI s2ð Þ ¼ s�1.5

Because (11.33) is satisfied by either characteristic

root, the differential equation (11.31) is satisfied by

Y1 e
s1t and by Y2 e

s2t, where the constants Y1; Y2 are

arbitrary. Thus

yuðtÞ ¼ Y1e
s1t þ Y2e

s2t (11.35)

also satisfies (11.31).

If the arbitrary constants Y1 and Y2 are independent,

then (11.35) is the general solution to (11.31). But if

a21 � 4a2 ¼ 0, then from (11.34),

s1 ¼ s2 ¼ �a1
2a2

; (11.36)

and the right side of (11.35) reduces to

Y1e
s1t þ Y2e

s2t ¼ Y1 þ Y2ð Þes1t ¼ Yes1t;

which contains only one arbitrary constant Yð Þ and

cannot be the general solution. In that case, the general

solution has the form yu tð Þ ¼ Y1 þ Y2tð Þes1t as you can
show by substitution.

The general solution to (11.31) (the unforced

response) is given by

yuðtÞ ¼ u tð Þ Y1e
s1t þ Y2e

s2t; a21 � 4a2 6¼ 0;

Y1 þ Y2tð Þes1t; a21 � 4a2 ¼ 0;

(
(11.37)

where s1 and s2 are given by (11.34) and Y1 and Y2 are

arbitrary constants. If a21 � 4a2 6¼ 0, the SI unit of both

Y1 and Y2 is that of the response (current or voltage). If

a21 � 4a2 ¼ 0, the SI unit of Y1 is that of the response

(current or voltage) and the SI unit of Y2 is that of the

response divided by time; e.g. Vs�1 or As�1.

The complete response is the sum of the forced

response given by (11.30) and the unforced response

given by (11.35):

yðtÞ ¼ u tð Þ
b0X0 þ Y1e

s1t þ Y2e
s2t; a21 � 4a2 6¼ 0;

b0X0 þ Y1 þ Y2tð Þes1t; a21 � 4a2 ¼ 0:

(

(11.38)

A response given by (11.38) consists of an unforced

component and a forced component b0X0 u tð Þ. In a

stable circuit, the unforced component eventually

vanishes, and only the forced component remains.

Thus the forced component is the steady-state

response and the unforced component is the transient

response, called the transient, for short.

After t ¼ 0, a step excitation x ¼ X0 u tð Þ is a con-

stant (dc) current or voltage given by x ¼ X0. After the

transient vanishes (for practical purposes), the asso-

ciated circuit is in dc steady state, with y ¼ b0X0. The

magnitude of the parameter b0 is called the dc gain of

the circuit.

The function y given by (11.38) satisfies the differ-

ential equation (11.26), regardless of the values of the

constants Y1; Y2. In any particular physical problem,

the values of the constants Y1; Y2 are determined by

the initial values denoted by y0 and y00, given by

y0 ¼ y 0þð Þ; y00 ¼ y0 0þð Þ ¼ dy tð Þ
dt

����
t¼0þ

: (11.39)

The initial values are obtained from the initial state

of the circuit as follows. From (11.38),

y0 ¼ y 0þð Þ ¼
b0X0 þ Y1 þ Y2; a

2
1 � 4a2 6¼ 0;

b0X0 þ Y1; a
2
1 � 4a2 ¼ 0;

(

(11.40)

and

y00 ¼ y0 0þð Þ

¼ s1Y1 þ s2Y2; a
2
1 � 4a2 6¼ 0;

s1Y1 þ Y2; a
2
1 � 4a2 ¼ 0:

(
(11.41)

5Be aware that s (italic) is a variable and s (roman) is a unit. This

usage, which is almost universal, is doubly unfortunate because

the unit of s is s. In written work, you should underline the unit

s to avoid confusion.
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Equations (11.40) and (11.41) yield

Y1¼
s2 y0�b0X0ð Þ�y00

s2� s1
; a21�4a2 6¼0 ðs1 6¼ s2Þ;

y0�b0X0; a21�4a2¼0 ðs1¼ s2Þ;

8<
:

Y2¼
�s1ðy0�b0X0Þ�y00

s2�s1;
; a21�4a2 6¼0 ðs1 6¼ s2Þ;

y00�s1ðy0�b0X0Þ; a21�4a2¼0 ðs1¼ s2Þ:

8<
:

(11.42)

Example 11.11. Figure 11.12 shows a series

RLC circuit, where vS tð Þ ¼ V0 u tð Þ.
(c) Obtain an expression for the current i tð Þ.

(b) Let R ¼ 600O, L ¼ 100mH, C ¼ 2mF,
and V0 ¼ 1V. Draw a graph of the current

versus time.

Solution: (a) By Kirchhoff’s voltage law,

we have for t > 0 that

R iþ L
di

dt
þ 1

C

ðt
�1

iðt0Þ dt0 ¼ V0: (11.43)

Differentiating (11.43) once with respect to

time gives

R
di

dt
þ L

d2i

dt2
þ 1

C
i ¼ 0 (11.44)

or

LC
d2i

dt2
þ RC

di

dt
þ i ¼ 0; (11.45)

which is in standard form, with

a2 ¼ LC; a1 ¼ RC; b0 ¼ 0. From (11.30) the

forced response equals zero.

From (11.34), the characteristic roots are

given by

s1; s2 ¼ �a1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21 � 4a2

p
2a2

¼
�RC�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RCð Þ2�4LC

q
2LC

: (11.46)

The voltage source is equivalent to a short

circuit for t � 0; i.e., no energy is provided to

the circuit until t > 0. It follows that

i 0þð Þ ¼ 0: (11.47)

The relation i 0þð Þ ¼ 0 is one initial value:

i 0þð Þ ¼ i0 ¼ 0: (11.48)

We obtain the other from (11.48) and

(11.43). For t ¼ 0þ, (11.43) becomes

R i 0þð Þ þ L i0 0þð Þ

þ 1

C

ð0þ
�1

iðt0Þ dt0 ¼ V0:

The first term vanishes because i 0þð Þ ¼ 0.

The integral vanishes because i tð Þ ¼ 0 for

t< 0. Thus we have the second initial value

i0 0þð Þ ¼ i00 ¼
V0

L
: (11.49)

From (11.38) with b0 ¼ 0, the complete

response is given by

i tð Þ ¼ I1e
s1t þ I2e

s2tð Þu tð Þ; (11.50)

where, from (11.42)

I1¼ s2 i0�b0X0ð Þ� i00
s2�s1

¼� i00
s2� s1

¼� 1

s2� s1

V0

L
¼ V0Cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

RCð Þ2�4LC
q ;

I2¼�s1 i0�b0X0ð Þ� i00
s2�s1

¼ i00
s2�s1

¼ 1

s2�s1

V0

L
¼� V0Cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

RCð Þ2�4LC
q : (11.51)

C

L

Ri

vS

a

b

+
–

Fig. 11.12 See Example 11.11
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(b) We are given R ¼ 600O; L ¼ 100mH;

C ¼ 2 mF; V0 ¼ 1V. For these values, the

characteristic roots are

s1 ¼ �1� 103s�1; s2 ¼ �5� 103s�1:

The initial values are

i0 ¼ 0; i00 ¼
V0

L
¼ 10As�1:

From (11.51)

I1 ¼ 2:5mA; I2 ¼ �2:5mA:

The response is given by

iðtÞ ¼ 2:5 es1t � es2tð Þu tð ÞmA: (11.52)

Figure 11.13 shows a graph of the response.

We can express the unforced responses given by

(11.37) in more convenient forms.

If the characteristic roots are equal, it is convenient

to express the unforced response as

yuðtÞ ¼ Y1 þ Y2tð Þe�t=t u tð Þ;
t ¼ � 1

s1
; a21 � 4a2 ¼ 0; ð11:53Þ

where t is the time constant for the transient

response.

If the characteristic roots are real and distinct, it is

convenient to define

t1 ¼ � 1

s1
; t2 ¼ � 1

s2
; (11.54)

and write the unforced response as

yuðtÞ ¼ ðY1e�t=t1 þ Y2e
�t=t2Þu tð Þ;

a21 � 4a2 > 0; (11.55)

where t1; t2 are the time constants for the transient

response.

if the characteristic roots are complex conjugates

(if a21 � 4a2 < 0), the expression

yuðtÞ ¼ Y1e
s1t þ Y2e

s2tð Þu tð Þ;
a21 � 4a2 6¼ 0

(11.56)

is correct but inconvenient because the exponential

functions are complex. We can obtain a more conve-

nient (and more easily interpreted) expression by

writing the characteristic roots as

s; s	 ¼ �a1 � j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a2 � a21

p
2a2

¼ � 1

t
� jo0; (11.57)

where the time constant t and the ring frequency f0
are given by

t ¼ � 1

Re sð Þ ¼
2a2
a1

; f0 ¼ o0

2p
;

o0 ¼ Im sð Þ ¼ 1

2a2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a2 � a21

q
: (11.58)

From (11.42), the coefficients in (11.56) are

given by

Y1 ¼ s	 y0 � b0X0ð Þ � y00
s	 � s

;

Y2 ¼ s y0 � b0X0ð Þ � y00
s� s	

¼ Y	
1 :

(11.59)

1.5

1.0

0.5

0
0 1 2 3 4 5

i (mA)

t (ms)

Fig. 11.13 See Example 11.11
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The coefficients Y1; Y2 are a conjugate pair, so we can

simplify notation further by defining

Y1 ¼ Y; Y2 ¼ Y	 (11.60)

and expressing Y in polar form as

Y ¼ Yj jexp ðjyYÞ; yY ¼ ∡Y (11.61)

With the definitions above, (11.56) can be written

yuðtÞ ¼ Y expðstÞ þ Y	expðs	t½ Þ�u tð Þ
¼ Y expðstÞ þ Y	expðstð Þ	½ �u tð Þ
¼ 2Re Y expðst½ Þ�u tð Þ
¼ 2Re Yj j exp ðjyÞ exp½ð�t=tþ jo0Þt�½ �u tð Þ
¼ 2 Yj jexp ð�t=t ÞRe exp ðjo0tþ jyY½ �u tð Þ;

(11.62)

and finally, as

yuðtÞ ¼ 2 Yj jexpð�t=tÞ cos o0tþ yYð Þu tð Þ;
a21 � 4a2 < 0; (11.63)

where

Y ¼ s	 y0 � b0X0ð Þ � y00
s	 � s

; (11.64)

s ¼ �a1 þ j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a2 � a21

p
2a2

; (11.65)

and

t ¼ � 1

Re sð Þ ¼
2a2
a1

;

o0 ¼ Im sð Þ ¼ 1

2a2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a2 � a21

q
:

(11.66)

As always, you should express the quantities above

in terms of symbols for circuit parameters before using

any numerical values. Otherwise, if you use numerical

values from the outset, you will be unable (without

many repeated calculations) to determine how any

particular circuit parameter affects the response,

which is a principal reason for doing such analyses.

11.5.1 Summary: Second-Order Circuits

The standard form of the differential equation govern-

ing a current or voltage in a second-order linear circuit

subjected to a step excitation is

a2
d2y

dt2
þ a1

dy

dt
þ y ¼ b0X0: (11.67)

The complete response is given by

y ¼ b0X0 þ yu; t> 0; (11.68)

where

X0 ¼ theðconstantÞ excitation for t > 0;

b0X0 ¼ forced response ¼ steady�state response;

b0j j ¼ the dc gain of the circuit;

yu ¼ unforced response ¼ transient response:

(11.69)

To obtain an expression for the response, proceed

as follows:

Determine the state of the circuit at t ¼ 0�. Then
use Kirchhoff’s laws and continuity of state to deter-

mine the initial values

y0 ¼ y 0þð Þ; y00 ¼ y0 0þð Þ: (11.70)

The form of the transient response depends upon

the nature of the characteristic roots. Calculate

a21 � 4a2: (11.71)

If a21 � 4a2> 0, the circuit is overdamped, the

characteristic roots are real and distinct, and the com-

plete response is given by

y tð Þ ¼ b0X0 þ Y1e
�t=t1 þ Y2e

�t=t2

 �

u tð Þ; (11.72)

with

s1 ¼ �a1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21 � 4a2

p
2a2

;

s2 ¼ �a1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21 � 4a2

p
2a2

; (11.73)
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t1 ¼ � 1

s1
; t2 ¼ � 1

s2
; (11.74)

and

Y1 ¼ s2 y0 � b0X0ð Þ � y00
s2 � s1

;

Y2 ¼ � s1 y0 � b0X0ð Þ � y00
s2 � s1

: (11.75)

If a21 � 4a2 ¼ 0, the circuit is critically damped,

the characteristic roots are real and equal, and the

complete response is given by

y tð Þ ¼ b0X0 þ Y1 þ Y2tð Þe�t=t
 �
u tð Þ; (11.76)

with

t ¼ 2a2
a1

; (11.77)

and

Y1 ¼ y0 � b0X0;

Y2 ¼ y00 þ
a1
2a2

y0 � b0X0ð Þ: (11.78)

If a21 � 4a2 < 0, the circuit is underdamped, the

characteristic roots are complex conjugates, and the

complete response is given by

yðtÞ ¼ b0X0 þ 2 Yj je�t=t cos o0tþ yYð Þ
 �
u tð Þ; (11.79)

where yY ¼ ∡Y and

s ¼ �a1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21 � 4a2

p
2a2

; (11.80)

Y ¼ s	 y0 � b0X0ð Þ � y00
s	 � s

; (11.81)

and

t ¼ � 1

Re sð Þ ¼
2a2
a1

; o0 ¼ Im sð Þ

¼ 1

2a2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a2 � a21

q
: (11.82)

Example 11.12. In Fig. 11.14, C ¼ 50 pF,

L ¼ 1mH, and iS tð Þ ¼ I0 1� u tð Þ½ �, with

I0 ¼ 5mA. The response of interest is the volt-

age vL tð Þ. Give values of R and plot the

corresponding responses versus time for

which the response is (a) underdamped, (b)

critically damped, and (c) overdamped.

Solution: For t<0, the circuit is in dc steady

state. Thus

vL 0þð Þ ¼ vL 0�ð Þ ¼ 0;

iL 0þð Þ ¼ iL 0�ð Þ ¼ I0:

Applying Kirchhoff0s current law gives

vL
R
þ C

dvL
dt

þ 1

L

ðt
�1

vL t0ð Þdt0

¼ 0; t > 0; (11.83)

which yields

vL 0þð Þ
R

þ Cv0L 0þð Þ þ iL 0þð Þ ¼ 0

) v0L 0þð Þ ¼ � 1

C
iL 0þð Þ � vL 0þð Þ

R

� 

¼ � I0
C
ffi �108 V s�1:

Differentiating (11.83) once with respect to

time and rearranging terms yields the standard-

form differential equation

LC
d2vL
dt2

þ L

R

dvL
dt

þ vL ¼ 0:

The characteristic roots are given by

iS

vL iL

R LC

Fig. 11.14 See Example

11.12
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s1; s2 ¼ 1

2LC
� L

R
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L

R

� �2

�4LC

s0
@

1
A:

The characteristic roots are real and equal

(the response is critically damped) if R ¼ R0,

given by

L

R0

� �2

�4LC¼ 0)R0 ¼ 1

2

ffiffiffiffi
L

C

r
ffi 2:24kO:

The response is underdamped if R>R0

and overdamped if R<R0. We choose (arbi-

trarily) (a) R ¼ 5R0, (b) R ¼ R0, and (c)

R ¼ R0=5.

(a) R ¼ 5R0 (underdamped):

sffi �8:94þ j43:82ð Þ� 105 s�1;

t¼� 1

Re sð Þ ffi 1:12ms;

o¼ ImðsÞ ffi 43:82� 106 s�1;

V ¼ s	 v0� b0X0ð Þ� v00
s	 � s

¼� v00
s	 � s

ffi j11:41V; 2 Vj j ¼ 22:82V; yV ¼ p
2
;

vL tð Þ ¼ 2 V1j jexp � t

t

� �
cos o tþ yVð Þu tð Þ:

Figure 11.15(a) shows a graph of the response.

(b) R ¼ R0 (critically damped):

s ffi �4:47� 106 s�1;

t ¼ � 1

s
ffi 223:61 ns;

V1 ¼ vL 0þð Þ ¼ 0;

V2 ¼ v0L 0þð Þ ¼ �108 V s�1;

vL tð Þ ¼ V2t exp � t

t

� �
u tð Þ:

Figure 11.15(b) shows a graph of the

response.

(c) R ¼ R0=5 (overdamped):

s1 ffi�4:52� 105 s�1;

t1 ¼� 1

s1
ffi 2:21ms;

s2 ffi�4:43� 107 s�1;

t2 ¼� 1

s2
ffi 22:59ns;

V1 ¼�v0L 0þð Þ
s2� s1

ffi�2:28V;

V2 ¼�V1 ffi 2:28V;

vL tð Þ ¼ V1 exp � t

t2

� �
� exp � t

t1

� �� 
u tð Þ:

Figure 11.15(c) shows a graph of the

response.

Exercise 11.5. In Fig. 11.16, L ¼ 25 mH,

C ¼ 1pF, and vS tð Þ ¼ V0 u tð Þ with V0 ¼ 5V.

(a) Find the value R0 of the resistance R for

which the response vC tð Þ is critically damped.

If R < R0, is the response underdamped or

overdamped? (b) Obtain expressions for the

response vC tð Þ for R ¼ 10R0, R ¼ R0, and

R ¼ 0:1R0:

A critically damped response is the boundary

between overdamped and underdamped responses.

Like any other mathematically specified response, an

exactly critically damped response cannot be

achieved. However, a physical circuit can be almost

critically damped, meaning that the characteristic

roots are almost equal. In such a case, (11.76) can

be superior to either the overdamped or underdamped

expressions for either computation or design. For

example, if the characteristic roots of a circuit model

are real and very nearly equal, using either the over-

damped or underdamped models can require comput-

ing differences of nearly equal numbers, which can be

troublesome for a computer (or pocket calculator).

Moreover, if a circuit model believed to be accurate

enough for design turns out to be critically damped,

there is no reason to complicate the model just

to obtain a more realistic slightly underdamped or

overdamped response, when the critically damped

response is close enough.
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The characteristic roots for a passive circuit consist-

ing entirely of resistors and capacitors (no sources) must

all be real, which means that such a circuit cannot be

underdamped. To see why, first realize that damping

increases with losses, or, conversely, the unforced

response of an underdamped circuit becomes more

oscillatory and lasts longer as losses diminish, because

less energy is lost during each energy exchange. Losses

approach zero if resistances in parallel with energy-

storage elements approach infinity and resistors in series

with energy-storage elements approach zero. Now

imagine a passive circuit containing only resistors and

capacitors. Replace every resistor that is in parallel with

a capacitor with an open circuit (infinite resistance) and

every resistor that is in series with a capacitor with a

short circuit. If that is done, what remains is a lossless

circuit that is equivalent to a single capacitor. Such a

circuit is first order and cannot possibly be under-

damped. Similarly, the characteristic roots for a passive
circuit consisting entirely of resistors and inductors (no

sources)must all be real, whichmeans that such a circuit

cannot be underdamped. If you obtain an underdamped

response (or complex characteristic roots) for a passive

circuit consisting of only resistors and capacitors or only

of resistors and inductors, you have made an error.6

Often, it is unnecessary to determine a complete

response, being sufficient to determine only the initial

and final states and the characteristic roots. For the

overdamped case, the characteristic roots are real and

distinct, and the smallest characteristic root (the largest

time constant) largely determines the duration of the

transient response. For the critically damped case, the

characteristic roots are equal, and either root determines

the duration of the transient. For the underdamped case,

the characteristic roots are a conjugate pair. The real

part determines the duration of the transient and the

imaginary part determines the frequency (or period) of

the oscillations. If the characteristic roots of an under-

damped circuit are expressed as s� jo, then the num-

ber of oscillations undergone before the transient dies

out is approximately three to five times the ratio of the

time constant t ¼ �1=s to the period T ¼ 2p=o; i.e.,

Number of oscillations ffi 5t
T

¼ � 5o
2ps

:
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Fig. 11.15 See Example 11.12

L C vC

+

–

R
vS

+
–

Fig. 11.16 See Exercise 11.5

6A circuit containing only resistors, capacitors, and dependent
sources (active devices) can be underdamped, as can a circuit

containing only resistors, inductors, and dependent sources.
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11.5.2 Dominant Time Constant
(or Characteristic Root)

From Section 11.5.1, the unforced response of an over-

damped second-order circuit to a step excitation

X0 u tð Þ is given by

y tð Þ ¼ Y1e
�t=t1 þ Y2e

�t=t2
� �

u tð Þ; (11.84)

where

Y1 ¼ s2 y0 � b0X0ð Þ � y00
s2 � s1

;

Y2 ¼ � s1 y0 � b0X0ð Þ � y00
s2 � s1

; (11.85)

s1 ¼ �a1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21 � 4a2

p
2a2

;

s2 ¼ �a1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21 � 4a2

p
2a2

; (11.86)

and

t1 ¼ � 1

s1
; t2 ¼ � 1

s2
;

Wewish to show that the duration of the transient is

determined mainly by the larger of the two time con-

stants. From (11.85) and (11.84), the transient is given

for t>0 by

yu tð Þ ¼ s2 y0 � b0X0ð Þ � y00
s2 � s1

e�t=t1

� s1 y0 � b0X0ð Þ � y00
s2 � s1

e�t=t2

¼ y0 � b0X0

s2 � s1

"
s2e

�t=t1 � s1e
�t=t2

� �

� y00 e�t=t1 � e�t=t2
� �
y0 � b0X0

#

¼ y0 � b0X0

s2 � s1

"
� 1

t2
e�t=t1 þ 1

t1
e�t=t2

� �

� y00 e�t=t1 � e�t=t2
� �
y0 � b0X0

#
: (11.87)

The initial amplitude of the second pair of expo-

nentials in the brackets is zero because e0 � e0 ¼ 0.

We may assume without loss of generality that t2>t1,
in which case both the initial magnitude and the dura-

tion of the term t�1
1 e�t=t2 exceed those of the term

t�1
2 e�t=t1 . It follows that the duration of the transient

component of the step response of an overdamped

second-order circuit is approximately five times the

larger time constant. If one time constant is much

larger than the other, we call the larger one the domi-

nant time constant. The step response of an over-

damped second-order circuit having a dominant time

constant approximates that of a first-order circuit for

all but a brief time at the beginning of the response.

Example 11.13. The response vL of a certain

circuit to an excitation vS is governed by the

differential equation

a2
d2vL
dt2

þ a1
dvL
dt

þ vL ¼ vS;

where a2 ¼ 7ms2 and a1 ¼ 11ms. It is known

that for a step excitation vS ¼ V0 u tð Þ with

V0 ¼ 1V, the initial conditions are

vL 0þð Þ ¼ 0; v0L 0þð Þ ¼ 10V s�1:

We wish to show that the response is char-

acterized by a dominant time constant.

From (11.86), the characteristic roots are

s1 ¼ �a1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21 � 4a2

p
2a2

ffi �96:88 s�1;

s2 ¼ �a1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21 � 4a2

p
2a2

ffi �1:475� 103 s�1;

and the time constants are

t1 ¼ � 1

s1
ffi 10:3ms; t2 ¼ � 1

s2
ffi 678 ms:

Because t1>10t2, we expect the exponen-

tial having time constant t1 to be dominant.

From (11.85), with b0 ¼ 1,

11.5 Second-Order Circuits 369



Y1 ¼ s2 y0 � V0ð Þ � y00
s2 � s1

¼ �1:063V;

Y2 ¼ � s1 y0 � V0ð Þ � y00
s2 � s1

¼ 63mV:

Thus the response is given by

vL tð Þ ¼ b0V0 þ Y1e
�t=t1 þ Y2e

�t=t2
� �

u tð Þ:

Figure 11.17 shows (solid line) a graph of

the step response and (dotted line) a graph of

only the steady-state component and first expo-

nential, given by

v̂L tð Þ ¼ b0V0 þ Y1e
�t=t1

� �
u tð Þ:

The graphs are indistinguishable for times

greater than about 2 ms.

11.5.3 Damping Factor

The response of an underdamped second-order circuit

has the form

yðtÞ¼ b0X0þ2 Yj je�t=tcos o0tþyYð Þ
 �
u tð Þ; (11.88)

where

Y ¼ s	 y0 � b0X0ð Þ � y00
s	 � s

;

s ¼ �a1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21 � 4a2

p
2a2

; (11.89)

and

t ¼ � 1

Re sð Þ ¼
2a2
a1

; o0 ¼ Im sð Þ

¼ 1

2a2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a2 � a21

q
: (11.90)

The steady-state (forced) component yf and tran-

sient (unforced) component yu of the response are

given by

yf ðtÞ ¼ b0X0 u tð Þ;
yu tð Þ ¼ 2 Yj je�t=t cos o0tþ yYð Þu tð Þ: (11.91)

The duration of the transient component is deter-

mined by the time constant t. Also of interest are the

maximum amplitude and the number of oscillations

the transient undergoes (if any) before vanishing

(before becoming insignificant). A useful measure in

that regard is the dimensionless damping factor

d ¼ 1

o0t
¼ 1

2pf0 t
¼ T

2pt
; (11.92)

which, except for the factor 2pð Þ�1
, is the ratio

of the period T ¼ 2p=o0 of the sinusoidal factor

cos o0tþ yYð Þ to the time constant t of the exponential
factor e�t=t. From (11.92), the number of cycles exe-

cuted by the sinusoidal factor in (11.91) before the

transient vanishes (during 0 � t< 5t) is given approxi-
mately by

5t
T

¼ 5

2pd
ffi 0:8

d
: (11.93)

If d is large, the period of the sinusoidal factor is

larger than the time constant of the exponential factor,

there are few or no oscillations before the transient

vanishes, and the circuit is relatively heavily damped.

If d is small, the period of the sinusoidal factor is smaller

than the time constant of the exponential factor, there are

a few or perhaps many oscillations before the transient

vanishes, and the circuit is relatively lightly damped.
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Fig. 11.17 See Example 11.13
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Figure 11.18 shows graphs of an unforced

response for four values of the damping factor d. As
the damping factor decreases, the number of oscilla-

tions and the maximum amplitude of the transient

both increase.

Exercise 11.6. Use (11.93) to estimate the

number of cycles executed before the transient

vanishes for d ¼ 0:8; 0:5; 0:2; 0:1. Are your

answers in approximate agreement with

Fig. 11.18?

Exercise 11.7. Show that the damping factor

d for an underdamped response is the magni-

tude of the ratio of the real part to the imagi-

nary part of either characteristic root.

Exercise 11.8. What is the damping factor for

a critically damped circuit?

11.5.4 Extrema of the Unforced
Component of an Underdamped
Response

The unforced component yu of an underdamped

response is given by:

yu tð Þ ¼ 2 Yj je�t=t cos o0tþ yYð Þ; t> 0: (11.94)

The extrema of the unforced response are of inter-

est. Differentiating the right side of (11.94) once with

respect to time and setting the result to zero gives

1

t
cos o0tþ yYð Þ þ o0 sin o0tþ yYð Þ

� 
¼ 0

where we have used the fact that

2 Yj j exp � t

t

� �
6¼ 0

It follows that

cos o0tþ yYð Þ þ o0 sin o0tþ yYð Þ ¼ 0

) sin o0tþ yY þ tan�1 1

o0 t

� �� 
¼ 0

) sin o0tþ yY þ tan�1 dð Þ
 � ¼ 0

) o0tþ yY þ tan�1 dð Þ ¼ kp; k ¼ 0;�1;�2; 
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Fig. 11.18 Unforced (transient) response of a second-order circuit for various damping factors
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The solutions are the times tk given by

tk ¼ kp� yY � tan�1 dð Þ
o0

;

k ¼ k0; k0 þ 1; k0 þ 2; 
 
 
 ;
(11.95)

where k0 is the smallest nonnegative integer for which

tk0 � 0þ. The corresponding extrema are given by

yu tkð Þ ¼ 2 Yj je�tk=t cos o0 tk þ yYð Þ;
k ¼ k0; k0 þ 1; k0 þ 2; 
 
 
 : (11.96)

If the steady-state response is non-negative,

extrema given by (11.96) are called undershoots if

they are below the steady-state response and are called

overshoots if they are above the steady-state response.

The terminology is reversed if the steady-state

response is negative.

Equation (11.95) is derived by solving for times at

which the time derivative of the associated current or

voltage equals zero. If the maximum magnitude of a

current or voltage occurs at a jump discontinuity,

(11.95) can give an incorrect result. For example, if

yY ¼ 0 in (11.94), the maximum magnitude of yu tð Þ
occurs at t ¼ 0þ, and not at any of the values given by
(11.95). Thus, always evaluate (11.94) for t ¼ 0þ to

see if yu 0þð Þj j is larger than the largest of the values

given by (11.95). If not, the maximum magnitude of

the transient is given by (11.96) for k ¼ k0:

Exercise 11.9. Show that

yu tkð Þ ¼ 2 Yj je�tk=t cos o0 tk þ yYð Þ;
k ¼ k0; k0 þ 1; k0 þ 2; 
 
 


can be expressed

yu tkð Þ ¼ 2 �1ð Þk Yj jffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ d2

p exp � tk
t

� �
;

k ¼ k0; k0 þ 1; k0 þ 2; 
 
 


Example 11.14. In Fig. 11.19, R ¼ 1 kO,
C ¼ 100 nF, L ¼ 25mH, and vS ¼ V0 u tð Þ,
with V0 ¼ 5V.

(a) Obtain an expression for the response

vC tð Þ, assuming the response is under-

damped.

(b) Find the times at which the first two

extrema of the unforced response occur

and the amplitudes of those extrema.

(c) Plot the response versus time for the circuit

parameters given in part (b).

Solution: (a) Kirchhoff0s current law gives

C
dvC
dt

þ 1

R
vCþ1

L

ðt
�1

vC t0ð Þ�vS t0ð Þ½ �dt0 ¼0:

(11.97)

Differentiating once with respect to time

and rearranging terms gives, for t> 0

LC
d2vC
dt2

þ L

R

dvC
dt

þ vC ¼ vS ¼ V0; t> 0:

The dc gain is unity. The steady-state

response is

vC ss ¼ V0 ¼ 5V:

The characteristic roots are

s; s	 ¼ � 1

2RC
� 1

2LC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L

R

� �2

�4LC

s

ffi �5:00þ j19:36ð Þ � 103 s�1:

The source appears as a short circuit for

t< 0, so no energy is stored in the inductor

or capacitor at t ¼ 0þ. Thus, vC 0þð Þ ¼ 0

and iL 0þð Þ ¼ 0. From (11.97) we find, for

t ¼ 0þ

vS C
L

R vC

+
+
–

–

Fig. 11.19 See Example 11.14
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C
dvC
dt

����
t¼0þ

þ 1

R
vC 0þð Þ

þ 1

L

ð0þ
�1

vC t0ð Þ � vS t0ð Þ½ �dt0

¼ C
dvC
dt

����
t¼0þ

þ0þ 0 ¼ 0

) dvC
dt

����
t¼0þ

¼ v0C 0þð Þ ¼ 0:

From (11.81)

V ¼ s	 vC 0þð Þ � V0½ � � v0C 0þð Þ
s	 � sð Þ

¼ � s	V0

s	 � sð Þ ;

which gives

2 V1j j ffi 5:16V; yV ffi 2:89: (11.98)

The complete response is given by

vC tð Þ ¼
�
V0 þ 2 Vj j exp � t

t

� �

� cos o0 tþ yVð Þ

u tð Þ: (11.99)

where

t ¼ � 1

Re sð Þ ffi 200 ms;

o0 ¼ Im sð Þ ffi 19:36� 103 s�1:

(11.100)

(b) The damping factor is

d ¼ 1

o0t
ffi 0:258;

From (11.95), the extrema of the unforced

response occur at the times tk given by

tk ¼ kp� RV � tan�1 dð Þ
o0

;

k ¼ k0; k0 þ 1; k0 þ 2; 
 
 
 ;

which are

t2 ¼ 162:2 ms; t3 ¼ 324:5 ms;

at which times

vC t2ð Þ ¼ 7:22V; vC t3ð Þ ¼ 4:013V:

As a check, we compute the initial value of

the unforced response, given by

2 Vj j cos yVð Þ ¼ �5V:

Thus, vC t2ð Þ ¼ 7:22V is the maximum

magnitude of the unforced response. The

steady-state response is vC 1ð Þ ¼ V0 ¼ 5V,

so the first (largest) overshoot is 2.22 V and

the first (largest) undershoot is 987 mV.

(c) Figure 11.20 shows a graph of the step

response.

11.6 Time Invariance, Superposition,
and Pulse Response

A circuit for which the response y tð Þ to an excitation

x tð Þ is governed by a differential equation of the

form

0 1000
0
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8

200 400 600 800

vC (V)

t  (μs)

Fig. 11.20 See Example 11.14
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an
dny

dtn
þ an�1

dn�1y

dtn�1
þ 
 
 
 þ a1

dy

dt
þ y

¼ bn
dnx

dtn
þ bn�1

dn�1x

dtn�1
þ 
 
 
 þ b1

dx

dt
þ b0x

(11.101)

obeys the following principle of time invariance: If

y tð Þ is the response to an excitation x tð Þ, then the

response to x t� t0ð Þ, where t0 is a fixed delay, is

y t� t0ð Þ. What this means is that the mathematical
form of the response does not depend upon the

time at which the excitation is applied. In other

words, delaying the excitation simply delays the

response by the same amount, but does not change

its form.

Figure 11.21 illustrates time-invariance. In

Fig. 11.21a a step excitation vS ¼ V0 u tð Þ is applied

as shown to a series RC circuit. The voltage

across the capacitor (the response) is given by

vC ¼ V0 1� e�t=t
� �

u tð Þ, where t ¼ RC. In

Fig. 11.21b, a step excitation vS ¼ V0 u t� t0ð Þ is

applied to an identical circuit and the response is

given by vC ¼ V0 1� e� t�t0ð Þ=t
 �
u t� t0ð Þ.

Were it not for time-invariance, life would be a

mess. A CD you played on your audio system would

sound different each time you played it. Circuits

laboratories would be frustrating, because identical

experiments performed at different times on identical

circuits would yield different results.

A two-port circuit whose response y tð Þ to an exci-

tation x tð Þ is governed by an equation of the form

(11.101), being linear, also obeys the following

principle of amplitude scaling: Let y tð Þ denote the

response to an excitation x tð Þ. Then the response to

Kx tð Þ, where K is a constant, is given by Ky tð Þ. The
proof is trivial, as it amounts to multiplying (11.101)

by K.

Example 11.15. Let y tð Þ denote the response

of a certain circuit to an excitation

x tð Þ ¼ X0 u tð Þ. Then the response to

x1 tð Þ ¼ 3X0 u tð Þ is y1 tð Þ ¼ 3y tð Þ:

Example 11.16. Let y tð Þ denote the response

of a certain circuit to excitation x tð Þ. The

response of the circuit to excitation x1 tð Þ ¼
5x tð Þ � 2x t� t0ð Þ þ 10x t� t1ð Þ is given by

y1 tð Þ ¼ 5y tð Þ � 2y t� t0ð Þ þ 10y t� t1ð Þ:

We may use amplitude scaling, time invariance,

and superposition to obtain the response of a linear

circuit to any piecewise constant excitation from the

response of the circuit to a step excitation. A particular

piecewise-constant excitation of interest in many

applications is a rectangular pulse, illustrated by

Fig. 11.22 and described by

vS ¼ V0 u tð Þ � V0 u t� t0ð Þ: (11.102)
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To obtain the response of a linear time-invariant

circuit to such an excitation, we need only obtain the

response to the step V0 u tð Þ and subsequently apply

time-invariance and superposition. Thus if the

response to V0 u tð Þ is given by vL tð Þ, then by time-

invariance, the response to V0 u t� t0ð Þ is given by

vL t� t0ð Þ and by superposition, the response to

vS ¼ V0 u tð Þ � V0 u t� t0ð Þ is given by vL ¼ vL tð Þ�
vL t� t0ð Þ:

Example 11.17. Refer to Example 11.11.

Find the current i2 tð Þ if the applied voltage is

given by v2 tð Þ ¼ V0 u tð Þ � V0 u t� t0ð Þ.
Solution: From Example 11.11, the response to

vS tð Þ ¼ V0 u tð Þ is given by i tð Þ ¼ I

es1t � es2tð Þu tð Þ. By time invariance and super-

position, the response to v2 tð Þ ¼ V0 u tð Þ�
V0 u t� t0ð Þ ¼ vS tð Þ � vS t� t0ð Þ is given by

i2 tð Þ¼ i tð Þ� i t� t0ð Þ¼ I es1t�es2tð Þu tð Þ
� I es1 t�t0ð Þ �es2 t�t0ð Þ

� �
u t� t0ð Þ:

Figure 11.23 shows a graph of the response

(compare with Fig. 11.13).

Exercise 11.10. Refer to Fig. 11.24, where

R ¼ 100 kO and C ¼ 100 pF. Let V0 ¼ 5V

and t0 ¼ 50 ms. Sketch neatly and label fully

a graph of the voltage vR across the resistor if

(a) vS tð Þ ¼ V0 u tð Þ;with V0 ¼ 5V;

(b) vS tð Þ ¼ V0 u tð Þ � V0 u t� t0ð Þ, with
V0 ¼ 5V and t0 ¼ 50 ms; and

(c) vS tð Þ ¼ 2V0 u tð Þ � 3V0 u t� t0ð Þ
þV0 u t� 2t0ð Þ, with V0 ¼ 5V

and t0 ¼ 50 ms:

11.7 Operator Notation

In operator notation, differentiation with respect to

time is indicated by multiplication by the operator s:
Thus

dy

dt
$ s y;

d2y

dt2
$ s2y;

d3y

dt3
$ s3y; 
 
 
 ; (11.103)

where y can be any function of time. The SI unit of the

operator s is s�1, so confusion is possible, especially

where both the operator s and the unit s occur in an

expression. To avoid confusion, underline the unit s in

written work involving the operator s.
We may also use operator notation as shorthand for

integration. Thusðt
�1

v t0ð Þdt0 $ 1

s
v tð Þ: (11.104)

tt0
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0

Fig. 11.22 Rectangular pulse expressed by (11.102)
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Fig. 11.24 See Exercise 11.10
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Equation (11.104) makes sense: if s denotes differ-

entiation, then 1=s should denote integration, because

sð Þ 1=sð Þ ¼ 1 (which denotes those operations in suc-

cession). When using operator notation in this way, be

sure the limits of integration extend from �1 to t; for
example.

1

L

ðt
�1

vL t0ð Þdt0 $ 1

sL
vL:

Operator notation allows us to manipulate coupled

differential equations algebraically, eliminate unwanted

variables, and obtain a single differential equation relat-

ing excitation and response. There is no magic here.

In this context, operator notation is simply a shorthand

that makes it easier to see what operations must be

performed to obtain a desired (single) differential

equation.

Example 11.18. In Fig. 11.25, vS ¼ V0 u tð Þ.
(a) Obtain a differential equation governing

the voltage vC for t > 0. (b) Obtain expres-

sions for the initial values vC 0þð Þ and v0C 0þð Þ.
Solution: (a) We use Kirchhoff’s current

law to obtain two node equations for t > 0 :

vC � V0

R1

þ C
dvC
dt

þ vC � vL
R2

¼ 0; (11.105)

vL � vC
R2

þ 1

L

ðt
�1

vL t0ð Þdt0 ¼ 0: (11.106)

Equation (11.105) is written using operator

notation as

1

R1

þ 1

R2

þ sC

� �
vC � vL

R2

¼ V0

R1

; (11.107)

which yields

1þ st1ð ÞvC � R1

R1 þ R2

vL

¼ R2

R1 þ R2

V0; t1 ¼ R1 R2kð ÞC: (11.108)

Equation (11.106) is written using operator

notation as

� L

R2

vC þ 1

s
þ L

R2

� �
vL ¼ 0;

which yields

� st2vC þ 1þ st2ð ÞvL ¼ 0

t2 ¼ L

R2

: (11.109)

We are interested only in the voltage vC, so

we eliminate vL. From (11.109)

vL ¼ st2vC
1þ st2

: (11.110)

Using the right side of (11.110) for vL in

(11.108) gives

1þ st1ð ÞvC � R1

R1 þ R2

st2vC
1þ st2

¼ R2

R1 þ R2

V0; (11.111)

which yields

vC ¼ k2 1þ st2ð ÞV0

t1t2s2 þ t1 þ t2 � k1t2ð Þsþ 1
;

or

t1t2s2vCþ t1þ t2� k1t2ð ÞsvCþ vC
¼ k2 1þ st2ð ÞV0; (11.112)

corresponding to the standard-form differential

equation

t1t2
d2vC
dt2

þ t1 þ t2 � k1t2ð Þ dvC
dt

þ vC

¼ k2t2
dV0

dt
þ k2V0 ¼ k2V0;

C L

ref

R1 R2

vS

vC vL

+
–

Fig. 11.25 See Example 11.18

376 11 Transient Analysis



where

t1 ¼ R1 R2kð ÞC; t2 ¼ L

R2

;

k1 ¼ R1

R1 þ R2

; k2 ¼ R2

R1 þ R2

;

and dV0=dt ¼ 0 because V0 is constant.

(b) No energy is supplied to the circuit

before t ¼ 0. Thus there can be no energy

stored in the circuit for t ¼ 0þ,
which means vC 0þð Þ ¼ vC 0�ð Þ ¼ 0 and

iL 0þð Þ¼ iL 0�ð Þ¼ 0. For t¼ 0þ, (11.105)
gives

vC 0þð Þ � V0

R1

þ Cv0C 0þð Þ þ iL 0þð Þ ¼ 0

) Cv0C 0þð Þ ¼ V0

R1

;

because vC 0þð Þ ¼ 0 and iL 0þð Þ ¼ 0. The ini-

tial values are

vC 0þð Þ ¼ 0; v0C 0þð Þ ¼ V0

R1C
:

Exercise 11.11. The circuit in Fig. 11.26 is

called a twin-T. Note that there is no connec-

tion at the apparent intersection labeled x. (a)
Obtain a differential equation in standard form

that relates the output vo to the excitation vS.

(b) Let RC ¼ 10 ms. Find the characteristic

roots and show that the circuit is overdamped.

Why must this circuit be overdamped? (Why

can it not be underdamped?) (c) Find the

approximate duration of the transient response

to an excitation of the form vS ¼ V0 u tð Þ.

11.8 Problems

Section 11.2 is prerequisite for the following

problems.

P 11.1 Use unit step functions to express each of the

functions below. Sketch neatly and label fully a graph

of each.

ðaÞv¼ �V0; t � 0;

2V0; t>0;

(
ðbÞv¼

0; t � 0;

V0; 0< t � t1;

2V0; t1< t � t2;

3V0; t> t2;

8>>>><
>>>>:

ðcÞi¼

0; t � 0;

�I0;0< t � t1;

I0; t1< t � 2t1;

0; t >2t1;

8>>>><
>>>>:

ðdÞv¼
0; t � 0;

V0t

t
; 0< t � t;

V0; t> t;

8>>><
>>>:

ðeÞi¼
0; t � �t1;

I0; �t1< t � t1;

0; t> t1:

8><
>:

P 11.2 The unit step function can be defined in

various ways. Three possible definitions are

ua tð Þ ¼ 0; t � 0;

1; t> 0; :

�

ub tð Þ ¼ 0; t< 0;

1; t � 0;

�

uc tð Þ ¼
0; t< 0;

1=2; t ¼ 0;

1; t> 0:

8>><
>>:

Are there any significant differences among these

three definitions insofar as they are used to describe

(approximately) physical quantities such as current

and voltage? If so, what are they?

+

–
vS

vo
v2

v1C C

2C

R R

2R

x

+
–

Fig. 11.26 See Exercise 11.11

11.8 Problems 377



Section 11.4 is prerequisite for the following

problems.

P 11.3 Refer to Fig. P 11.1, where vS tð Þ ¼ V0 u tð Þ.
Obtain an expression for the current i for t> 0.

P 11.4 Refer to Fig. P 11.2, where vS ¼ V0 u tð Þ.
Obtain an expression for the voltage v tð Þ.

P 11.5 In Fig. P 11.3, i0 tð Þ ¼ 2I0 þ 3I0 u tð Þ. Obtain
an expression for the voltage vL across the inductor

two ways: (1) directly from the given circuit, using

Kirchhoff’s current law, and (2) using a source trans-

formation and Kirchhoff’s voltage law. Identify the

transient and steady-state components. If I0 ¼ 1mA,

L ¼ 10mH, and R ¼ 100kO, what are the duration of

the transient and the maximum voltage (magnitude)

across the inductor?

P 11.6 Refer to Fig. P 11.4, where the op amp is

ideal and iS tð Þ ¼ I0 u tð Þ. Obtain an expression for the

voltage vo tð Þ.
P 11.7 In Fig. P 11.5, the op amp is ideal. Describe

the response vL to a step excitation vS ¼ V0 u tð Þ as

completely as possible, without writing a differential

equation.

P 11.8 In Fig. P 11.6, the op amp is ideal. Describe

the response vL to a step excitation vS ¼ V0 u tð Þ as

completely as possible, without writing a differential

equation.
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–

Fig. P 11.4 See Problem P 11.6
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P 11.9 In Fig. P 11.7, vS ¼ V0 u tð Þ. Without writing a

differential equation, give expressions for the currents

iC, iL.

P 11.10 In Fig. P 11.8, iS ¼ I0 u tð Þ. Without writing

a differential equation, give expressions for the vol-

tages vC, vL.

Section 11.5 is prerequisite for the following

problems.

P 11.11 In Fig. P 11.9, R ¼ 10O, L ¼ 1mH,

C ¼ 100 nF, and i tð Þ ¼ I0 u tð Þ, with I0 ¼ 1A. Obtain

an expression for the voltage v tð Þ.

P 11.12 In Fig. P 11.10, the input is a given by

vin tð Þ ¼ V0 u tð Þ, with V0 ¼ 1V. Sketch neatly and

label fully a graph of the output vout tð Þ versus time.

P 11.13 Refer to Fig. P 11.11, where iS tð Þ ¼ I0 u tð Þ,
I0 ¼ 1mA, R1 ¼ 10 kO, R2 ¼ 100 kO; m0 ¼ 100,

C1 ¼ 10 nF, and C2 ¼ 1 nF. Obtain an expression for

the voltage vC tð Þ for t> 0.

P 11.14 Refer to Fig. P 11.12. Show that the circuit

is overdamped for R ¼ 7:5 kO and underdamped for

R ¼ 22 kO. For each value of R, express the voltages

vR and vC in terms of the amplitude of the step excita-

tion for t> 0.

P 11.15 In Fig. P 11.13, vS ¼ V0 u tð Þ, with

V0 ¼ 1V.

(a) Obtain a standard-form differential equation gov-

erning the voltage vL.
(b) Let

R ¼ 10 kO; C ¼ 1nF;RF ¼ 500O; RQ ¼ 2:5 kO;
andRG ¼ 30 kO. Obtain an expression for the

voltage vL tð Þ.

vCC

vS

L

R iL

vR+

+
–

–

+

–

vS = V0u(t)
V0 = 1V
L = 25mH
C = 100pF

Fig. P 11.12 See Problem P 11.14

L C
R

vin

+

–

vout

+

–

R = 10kΩ, C = 1pF, L = 65mH

Fig. P 11.10 See Problem P 11.12

R L Ci v

+

–Fig. P 11.9 See Problem

P 11.11
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C L

vC
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Fig. P 11.8 See Problem P 11.10
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Fig. P 11.13 See Problem P 11.15
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Fig. P 11.11 See Problem P 11.13
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P 11.16 In Fig. P 11.14, vin ¼ V0 u tð Þ.
(a) Obtain a standard-form differential equation gov-

erning the voltage vout.

(b) Show that the response is underdamped if C1>C2.

P 11.17 In Fig. P 11.15, vin ¼ V0 u tð Þ.
(a) Obtain a standard-form differential equation gov-

erning the voltage vout.

(b) Obtain an expression for the voltage vout tð Þ.
(c) Let V0 = 1 V RC ¼ 1 ms. Construct a graph of the

voltage vout versus time.

P 11.18 In Fig. P 11.16, vin ¼ V0 u tð Þ.
(a) Obtain a standard-form differential equation gov-

erning the voltage vout.

(b) Obtain an expression for the voltage vout tð Þ.
(c) Let V0 = 1 V RC ¼ 1 ms. Construct a graph of the

voltage vout versus time.

Section 11.6 is prerequisite for the following

problems.

P 11.19 The response of a certain circuit to a

step excitation vin 1 tð Þ ¼ V0 u tð Þ is given by

vout1 tð Þ ¼ 5V0 e�t=tu tð Þ. Obtain an expression for the

response to the excitation shown in Fig. P 11.17. The

excitation is zero for times not shown.

P 11.20 The response of a certain circuit to a sinu-

soidal excitation vin1 tð Þ ¼ V0 cos o0 tð Þ is given by

vout1 tð Þ ¼ 100V0 cos o0 t� 0:5ð Þ. Find the response

of the circuit to the excitation

vin2 tð Þ ¼ 2V0 cos o0 tþ 0:2ð Þ þ V0 sin o0 tð Þ:

P 11.21 Let vout1 tð Þ denote the response of a certain
circuit to the excitation vin1 tð Þ shown in Fig. P 11.18 (a).

+

–

C1

C2

R vout

v1

vin

Riin

Fig. P 11.14 See Problem P 11.16

+

–

vin vout

C

C

R R

2R R

Fig. P 11.15 See Problem P 11.17

+

–

vin vout
C C

R

R

2R R

Fig. P 11.16 See Problem P 11.18
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t
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2V0
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T 3T

Fig. P 11.17 See Problem P 11.19

o t
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T
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o

(a) (b)

Fig. P 11.18 See Problem P 11.21
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Give an expression for the response vout2 tð Þ of the

circuit to the excitation shown in Fig. P 11.18(b).

P 11.22 The response of a certain circuit to

a step excitation v0 tð Þ ¼ V0 u tð Þ is given by v1 tð Þ ¼
V0 1� e�t=t

� �
u tð Þ. Give an expression for the response

of the circuit to the excitation shown in Fig. P 11.19,

where vin tð Þ ¼ V0 for all t< T.

P 11.23 Refer to Fig. P 11.20. A rectangular pulse

of voltage is applied to an RC circuit, as shown.

Specify the time constant RC in terms of the duration

T of the pulse such that voutðT�Þ ¼ 0:95voutð0þÞ.
P 11.24 Refer to Fig. P 11.21. A rectangular pulse

of current is applied to an RC circuit, as shown. Spec-

ify the time constant RC in terms of the duration T of

the pulse such voutðT�Þ ¼ 0:95RI0.

P 11.25 Refer to Fig. P 11.21. A rectangular pulse

of current is applied to an RC circuit, as shown.

Specify the time constant RC in terms of the duration

T of the pulse such that no more than 5% of the

total energy dissipated in the resistor is dissipated for

t � T. Hint: Obtain expressions for the energy e1
dissipated for t< T and the energy e2 dissipated for

t> T. Then form the ratio e2= e1 þ e2ð Þ. Simplify the

resulting expression by assuming T � t, as seems

reasonable in view of the specification, and solve

e2= e1 þ e2ð Þ ¼ 0:05 for the time constant.

Section 11.7 is prerequisite for the following

problems.

P 11.26 Refer to Fig. P 11.22, where iS tð Þ ¼ I0 u tð Þ,
I0 ¼ 1mA, R1 ¼ 100O, R ¼ 100 kO, L ¼ 100mH,

and C ¼ 100 nF. Obtain an expression for the voltage

vC tð Þ for t> 0. Use any reasonable approximations.

P 11.27 Refer to Fig. P 11.23, where vS ¼ V0 u tð Þ.
Obtain the standard-form differential equation that

governs the response for t > 0.

P 11.28 In Fig. P 11.24, vS ¼ V0 u tð Þ. Obtain stan-

dard-form differential equations governing the indicated

mesh currents and show that the time constants for the

two mesh currents are the same.

P 11.29 In Fig. P 11.24, vS ¼ V0 u tð Þ. Obtain stan-

dard-form differential equations governing the indicated
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o

Fig. P 11.19 See Problem P 11.22
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Fig. P 11.21 See Problem P 11.24, 25
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Fig. P 11.24 See Problem P 11.28, 29
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node voltages and show that the time constants for the

two node voltages are the same.

P 11.30 Refer to Fig. P 11.25, where vS tð Þ ¼
V0 u tð Þ, with V0 ¼ 5V. Obtain an expression for the

voltage vL.
P 11.31 Refer to Fig. P 11.26. Obtain a standard-

form differential equation relating the voltage vC to the

voltage vS. Express the coefficients of the differential

equation as functions of the circuit parameters.

P 11.32 Refer to Fig. P 11.27. (a) Obtain a standard-

form differential equation relating the voltage vC to the

source voltage vS. (b) Let vS ¼ V0 u tð Þ and show that

the equation for t> 0 may be written as

o�2 d
2vC
dt2

þ t
dvC
dt

þ vC ¼ 0:

Express the parameters o and t in terms of the

circuit parameters. (c) Show that the response is

underdamped if ot< 2.
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Fig. P 11.25 See Problem P 11.30
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Chapter 12

Sinusoids, Phasors, and Impedance

This chapter describes how real sinusoids are repre-

sented using complex quantities called phasors; how

circuits containing resistors, capacitors, and inductors

are represented using complex quantities called impe-

dances and admittances; and how phasors, impe-

dances, and admittances are used for analyzing

sinusoidally excited circuits. This is a long chapter

because it extends methods treated in several previous

chapters to sinusoidally excited circuits.

Ability to obtain the output of a circuit for a

sinusoidal input is important partly because currents

and voltages of interest in many systems are sinusoi-

dal or very nearly so, at least over some time inter-

val. Examples of such systems are electric power

systems and many communication and control sys-

tems. But more important, any current or voltage (or

any other physical quantity) can be expressed as a

sum of sinusoidal currents or voltages using Fourier

analysis.1 Consequently, the response of a linear cir-

cuit to sinusoidal excitation can tell us a great deal

about the response of the circuit to any excitation.

For this reason, tools for analysis of sinusoidally

excited circuits are far more potent and useful than

they might appear to be. They are tools you must

master if you wish to design circuits and systems

for communication, control, signal processing, and

power generation and distribution.

We begin by establishing certain conventions

regarding sinusoidal voltages and currents. For econ-

omy, we use signal to mean current or voltage.

12.1 Sinusoidal Voltages and Currents

The standard form of a sinusoidal signal (a sinusoidal

current or voltage) is

xðtÞ ¼ X cos 2 p f tþ yð Þ ¼ X cos otþ yð Þ; (12.1)

where

xðtÞ is the instantaneous amplitude of the sinusoid

(V or A),

X is the peak amplitude of the sinusoid (V or A),

2 p ftþ y is the instantaneous phase of the sinu-

soid (rad),

f is the frequency of the sinusoid (Hz),

o ¼ 2 p f is the angular frequency of the sinu-

soid2 (rad s�1),

t is time (s), and

y is the initial phase or relative phase of the

sinusoid (rad).

Because cos(0)¼ 1 and sin(0)¼ 0, using the cosine

(rather than the sine) as the standard form allows us

to represent a constant (dc) current or voltage as a

zero-frequency sinusoid, which lends a desirable con-

sistency to certain developments.

By convention, peak amplitude and frequency

are non-negative and initial phase is confined to the

interval � p � y< p. These conventions cause no

loss of generality and are adopted to eliminate ambi-

guity. For reference, the three parameters of the stan-

dard form (12.1) for a sinusoidal signal are constrained

as follows:

peak amplitude X � 0; frequency f � 0;

� p � initial phase y< p: (12.2)

1Chapter 16 introduces Fourier analysis. 2Angular frequency is called radian frequency in some books.

T.H. Glisson, Introduction to Circuit Analysis and Design,
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In practice, initial phase is expressed in both radians

and degrees and preference for one or the other

depends upon the field of application. In this book,

except in Chapter 14, we express angles in radians, in

which case the two terms of an instantaneous phase

2 p ftþ y are expressed in the same unit and the chance

for computational error is reduced.3 When expressing

angles numerically, we omit the dimensionless unit rad

unless confusion is otherwise possible.

In this book, as in virtually all of engineering prac-

tice, specific values for frequency are consistently

expressed in Hertz. We regard angular frequency o ¼
2 p f as convenient shorthand that allows many quan-

tities of interest to be expressed compactly. Although

for economy we may write a sinusoidal signal as

xðtÞ ¼ X cos 2 p ftð Þ; x > 0; f > 0: (12.3)

We normally specify frequency, not angular fre-

quency. When it is necessary or convenient to give

the value of an angular frequency, we give the asso-

ciated unit as s�1, not rad/s; e.g., if we say the fre-

quency of a sinusoid is 60 Hz, we mean f. If we say the

frequency is 377 s�1, we mean o. But we rarely

specify angular frequency.

Example 12.1. A branch current in a particular

circuit is iðtÞ ¼ �25 sin ot� p=6ð Þ mA, with

o> 0. Express the current in standard form.

Solution: We use the identity sin að Þ �
cos a� p=2ð Þ to express the current as

iðtÞ ¼ �25 cos ot� p=6� p=2ð Þ
¼ �25 cos ot� 2p=3ð Þ:

We use the identity cos aþ pð Þ � � cos að Þ
to obtain the standard form

iðtÞ ¼ 25 cos ot� 2p=3þ pð Þ
¼ 25 cos otþ p=3ð Þ mA:

The peak amplitude (25 mA) is positive and

the initial phase (p=3) is between �p and p.

Exercise 12.1. Find the initial phase of

xðtÞ ¼ X sinðot� p=6ÞwhereX> 0 ando> 0.

A sinusoidal signal given by (12.3) can be expressed

in various other ways; for example, as

xðtÞ ¼ X cos 2p f t� tyð Þ½ �; (12.4)

where

ty ¼ � y
2 p f

¼ � y T
2 p

; (12.5)

is the phase delay, or as

xðtÞ ¼ X cos
2p t� tyð Þ

T

� �
; (12.6)

where

T ¼ 1

f
(12.7)

is the period of the sinusoid. In (12.5), initial phase y
must be expressed in radians.

Because initial phase is confined to the interval

� p � y< p, the phase delay of a sinusoid, defined

by (12.5), is confined to the interval

� T

2
� ty<

T

2
; (12.8)

where T is the period of the sinusoid. A phase delay of

�T/2 is indistinguishable from a phase delay of T/2.
Positive phase delay (negative initial phase) corre-

sponds to translating a sinusoid to the right along the

time axis, whereas negative phase delay corresponds

to translating the sinusoid to the left (which is actually

an advance, rather than a delay).

x(t) = X cos(w t + q )

0

X

tq  + T
t

−X

tq

Fig. 12.1 Graph of a sinusoidal signal xðtÞ ¼ X cos otþ yð Þ
3In Chapter 14, we express angles in degrees, as is conventional

in the electric power industry.
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Figure 12.1 shows a graph of a sinusoidal signal. Of

the various expressions given above, (12.6) is most

directly related to a graph of instantaneous amplitude

versus time because peak amplitude X, phase delay ty,

and period T can all be read directly from such a

graph.4 Nonetheless, the expressions most often used

are those given by (12.1) and (12.3).

12.2 Time Origin, Phase Reference,
and Initial Phase

Generally, describing currents and voltages as functions

of time implies a time origin; i.e., a time we designate

t ¼ 0. Choice of a time origin usually is suggested by

some particular event or some unique feature of an

input; for example, a time at which the input suddenly

changes character. Events of interest are then clocked

with reference to the time origin. For example, if we

define the time origin as the instant we connect a resistor

across the terminals of a charged capacitor, we can say

that the voltage across the capacitor has dropped to less

than 1% of its value at t ¼ 5RC, which means five time

constants after the connection was made.

A sinusoidal current or voltage (mathematicalmodel)

is periodic, having neither beginning nor end.Moreover,

as we show in the sequel, all currents and voltages in a

sinusoidally excited stable linear circuit are sinusoids,
and all have the frequency of the input. A sinusoidally

excited stable linear circuit is said to be in sinusoidal

steady state. There is no such thing as a time origin in a

circuit that is in sinusoidal steady state. We need some

otherway to clock currents and voltages in such a circuit.

In a sinusoidally excited circuit, we essentially use

relative phase instead of time as the basis for clocking

currents and voltages. We choose a particular sinusoi-

dal current or voltage (usually, the input) as the phase

reference, we assign zero initial phase to that sinu-

soid, and we specify or determine the initial phase of

all other currents and voltages relative to that of the

reference. For this to work properly (to avoid ambigu-

ity), we must express all sinusoidal currents and vol-

tages in standard form. The standard form for the

sinusoid selected as the phase reference is

xðtÞ ¼ X cos 2 p ftð Þ; X> 0; f > 0: (12.9)

By definition, the phase reference in any particular

problem has zero initial phase. When we express a

current or voltage as x1ðtÞ ¼ X1 cos otþ y1ð Þ, we

mean that the initial phase of x1ðtÞ exceeds that of

the reference by the value y1.
The initial phase of a sinusoid is more properly

called the relative phase of the sinusoid. It is the

phase relative to that of a known reference and the

known reference is assumed to have the form (12.9).

Because cos a� 2pð Þ � cos að Þ, relative phase can

be determined (by measurement) only to within a

whole multiple of 2p.

Example 12.2. The output of a certain circuit

is a delayed version of the input and both are

voltages; that is, the output for input vinðtÞ is

given by voutðtÞ ¼ vinðt� t0Þ. If t0 ¼ 20 ns is

the delay imposed by the circuit on a 100-kHz

sinusoidal voltage applied to the input, and if

the input is the phase reference, (a) What is the

initial phase of the output? (b) What is the

largest delay that could be measured by com-

paring the output to the input? (c) Is this a

reliable means of measuring delay?

Solution: (a) If we write the input voltage (the

phase reference) as vinðtÞ ¼ V0 cos o tð Þ, then
the output voltage is given by

voutðtÞ ¼ vinðt� t0Þ ¼ V0 cos o t� t0ð Þ½ �
¼ V0 cos otþ yð Þ;

where the initial phase is

y¼�ot0¼�2pf t0
¼� 2pð Þ 100kHzð Þ 20nsð Þffi�0:013:

(b) Using a sinusoidal test input, we can-

not measure a delay any larger than that

corresponding to y ¼ �2 p. Thus the largest

delay we could measure is

t0 ¼ � y
2p f

¼ � �2pð Þ
2p	 100 kHz

¼ 10 ms:

(c) No, because the actual delay can be the

measured delay plus any whole multiple of

T ¼ 1=f .4Determining frequency and initial phase from such a graph

requires calculations, albeit simple ones.
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Two sinusoids having the same frequency are said

to be in phase if they have the same initial phase and

out of phase otherwise. Two particular out-of-phase

conditions have special importance: Two sinusoids

having the same frequency are said to be in phase

quadrature if their initial phases differ by � p=2, and
in phase opposition if the difference equals � p.
Thus, for example,

V0 cos otð Þ and I0 cos otð Þ are in phase;

V0 cos ot� p=6ð Þ and I0 cos otð Þ are out of phase;

V0 cos otð Þ and I0 cos ot� p=2ð Þ ¼ 
I0 sin otð Þ
are in phase quadrature;

V0 cos otð Þ and I0 cos ot� pð Þ ¼ �I0 cos otð Þ
are in phase opposition:

If the initial phase of one sinusoid is less than that

of a second sinusoid, we say the first lags the second or

the second leads the first; e.g., V0 cos ot� p=6ð Þ lags
the reference and I1 cos otþ p=3ð Þ leads the reference.
If a particular sinusoid is established as the phase

reference, then any other sinusoid is said to be lagging

or leading according to whether the initial phase rela-

tive to that of the reference is negative or positive,

respectively.

Within any one period,5 a positive peak of a lagging
sinusoid occurs later than (is to the right of) the nearest

positive peak of the reference. Similarly, within any

one period, a positive peak of a leading sinusoid

occurs earlier than (is to the left of) the nearest posi-

tive peak of the reference. From another perspective,

the phase delay t0 ¼ �y= 2pð Þ of a lagging sinusoid

y< 0ð Þ is positive, and the phase delay of a leading

sinusoid y> 0ð Þ is negative. To make the terms

lagging and leading unambiguous, initial phase must

be confined to the range � p � y< p; otherwise, for
example, a phase lag y could just as well be called a

phase lead 2p� y. The terms lagging and leading are

used primarily by those engaged in power system

analysis and design, and there primarily in connection

with certain power calculations.

Figure 12.2 illustrates definitions given above.

The two sinusoidal voltages shown have the same

period T ¼ t2 � t0 and thus have the same frequency

f ¼ 1=T. When two nearest-neighbor peaks are com-

pared, the peak of v2ðtÞ occurs later than the peak of

v1ðtÞ so v2ðtÞ lags v1ðtÞ. If v1ðtÞ is the reference, then
the phase delay ty ¼ t2 � t1 is positive, v2ðtÞ lags v1ðtÞ,
and the initial phase of v2ðtÞ is negative. If v2ðtÞ is the
reference, then the phase delay ty ¼ t1 � t2 is negative,
v1ðtÞ leads v2ðtÞ, and the initial phase of v1ðtÞ is positive.

The terminology defined above is usually applied

only to sinusoids having the same frequency or very

nearly the same frequency over a time interval of

interest.6

Example 12.3. The terminal voltage of a

capacitor is sinusoidal. Does the resulting cur-

rent lead or lag the terminal voltage? By what

angle?

Solution: We choose the terminal voltage as the

phase reference and write

vðtÞ ¼ V0 cos otð Þ:

The current through the capacitor is given by

i¼C
dv

dt
¼C

d V0 cos otð Þ½ �
dt

¼�oCV0 sin otð Þ

¼oCV0 sin otþpð Þ¼oCV0 cos otþp�p
2

� �
¼oCV0 cos otþp

2

� �
:

v1 (t ) v2 (t )

t0 t1 t2

Fig. 12.2 Illustrating phase delay and relative phase for two

same-frequency sinusoidal voltages. A positive peak of v1 tð Þ
occurs at time t1 and the nearest-neighbor peak of v2 tð Þ occurs
later, at time t2, so v2 tð Þ lags v1 tð Þ

5More generally, within any whole number of periods.

6If two sinusoids have different frequencies, then one alter-

nately leads and lags the other. The duration of an interval

during which one leads (or lags) the other depends upon the

frequencies.
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The current leads the voltage by p=2. We

may also write

i ¼ oCV0 cos o t� t0ð Þ½ �; t0 ¼ � y
o

¼ � p
2o

;

where t0 is negative (is an advance), meaning

that each positive peak of the current occurs

earlier than the nearest-neighbor positive peak

of the voltage (the reference).

Exercise 12.2. The current through a certain

inductor is sinusoidal. Does the current lead or

lag the voltage across the inductor?

If two sinusoids have the same reference and dif-

ferent initial phases, we may determine which one

leads the other by comparing their initial phases.

Thus, if

x1 tð Þ ¼ X1 cos otþ y1ð Þ; x2 tð Þ ¼ X2 cos otþ y2ð Þ;

where both are in standard form, then x1 leads x2 if

y1 > y2.

Example 12.4. The voltage across an element

and the current into the positive terminal of the

element are given by

vðtÞ ¼ V0 cos ot�p
3

� �
; iðtÞ ¼ I0 cos o t� t0ð Þ½ �;

where f ¼ 15 kHz and t0 ¼ 430 ms. Does the
current lag or lead the voltage? By what angle?

Solution: The initial phase of the voltage is

yv ¼ �p=3 ¼ �1:047. The initial phase of

the current is

yi ¼ �ot0 ¼ �2p 15 kHzð Þ 430 msð Þ
¼ �2p	 6:45:

After casting out multiples of 2p, we have

yi ¼ �0:45	 2p ¼ �2:83:

Because yv > yi, the voltage leads the cur-

rent by y ¼ yv � yi ¼ 1:78.

Example 12.5. Figure 12.3 shows graphs

of voltage across and current through a two-

terminal element. Express both as sinusoidal

functions of time, using voltage as the phase

reference. State whether the current leads or

lags the voltage and by what angle.

Solution: From the graph, the peak amplitudes

and period of the voltage and current are

V0 ¼ 1 V; I0 ¼ 800 mA; T ¼ 1 ms:

It follows that the frequency is

f ¼ 1

T
¼ 1 kHz:

A positive peak of the current leads (occurs

earlier than) the nearest positive peak of the volt-

age (the reference) by approximately 2.4 ms.

Thus

ty ffi �0:24 ms:

The relative phase of the current is

y ¼ �2p f ty ffi ð�2p f Þð�0:24msÞ ffi 1:51

and the current leads the voltage. We may write

t (ms)

0 0.5 1 1.5 2 2.5 3
–1

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

v (t) (V) i (t) (mA)

Fig. 12.3 Sinusoidal voltage and current considered in Exam-

ple 12.5
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vðtÞ ¼ V0 cos otð Þ; V0 ¼ 1V; f ¼ 1 kHz;

iðtÞ ffi I0 cos otþ 1:51ð Þ; I0 ¼ 800 mA;

f ¼ 1 kHz:

Exercise 12.3. Figure 12.4 shows graphs of

two voltages in a certain circuit. Choose v1 tð Þ
as the phase reference and give the peak ampli-

tude, frequency (Hz) and relative phase of v2 tð Þ.

12.3 Phasors

By definition (Section 12.1), the standard form for a

real sinusoidal signal (current or voltage) is

xðtÞ ¼ X cos otþ yð Þ; (12.10)

where X � 0; o � 0; and� p � y< p. The asso-

ciated complex representation of the sinusoidal sig-

nal xðtÞ above is denoted by ~x and is defined by7

~xðtÞ ¼ X ejðotþyÞ: (12.11)

Using Euler’s identity, we may write (12.11) as

~xðtÞ ¼ X ej otþyð Þ ¼ X cosðotþ yÞ þ j X sinðotþ yÞ;

which shows that a real sinusoid is the real part of the
complex representation of the sinusoid; i.e.,

xðtÞ ¼ Re ~xðtÞ½ �
¼ Re X cosðotþ yÞ þ j X sinðo tþ yÞ½ �
¼ X cosðotþ yÞ: (12.12)

The complex representation of a signal has the

same dimension as the signal and is expressed in the

same unit as the signal.

We may use the law of exponents to write (12.11)

as

~xðtÞ ¼ X ejðotþyÞ ¼ X ej y ejot ¼ ~X ejot: (12.13)

The quantity

~X ¼ X ej y ¼ Xff y (12.14)

is the phasor for the sinusoid whose complex repre-

sentation is ~xðtÞ. The phasor for a sinusoidal current i
or a sinusoidal voltage v is denoted ~I or ~V, respec-
tively. The unit of a phasor is the unit of the associated

current or voltage (A or V). The phasor for a sinusoid

is (in general) complex. From (12.10) and (12.14), the
magnitude and angle of a phasor are the peak ampli-

tude and initial phase, respectively, of the associated

standard-form sinusoid.
Obtaining the phasor for a sinusoidal current or

voltage is a two-step process:

• Express the current or voltage in standard form;

i.e., as a cosine having non-negative peak ampli-

tude, non-negative frequency, and initial phase

between �p and p.
• The magnitude of the phasor is the peak amplitude

of the cosine and the angle of the phasor is the
initial phase of the cosine:

xðtÞ ¼ X cos otþ yð Þ , ~X¼ X ffy¼ Xejy: (12.15)

0

1

0.5

–1

–0.5

0 1 2 3 4
t (ms)

v1(t) (mV) v2(t) (mV)

Fig. 12.4 See Exercise 12.3

7In this book, a tilde (�) denotes a complex representation of a

real quantity; thus, ~xðtÞ denotes the complex representation of a

real signal xðtÞ.
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Example 12.6. Obtain the complex rep-

resentation and the phasor for xðtÞ ¼
X cosðot� p=6Þ, where X> 0 and o> 0.

Solution: From (12.11) and (12.14), the com-

plex representation of the specified signal is

~xðtÞ ¼ ~X ejot where ~X ¼ X e�jp=6 ¼ Xff�p=6
is the phasor.

Exercise 12.4. A current is given by

iðtÞ ¼ 50 cos ot� p
4

� �
mA:

Find the associated phasor.

Exercise 12.5. Obtain the phasor for a sinu-

soidal voltage vðtÞ ¼ V0 sin otþ fð Þ.
Hint: Use the identity sin að Þ � cos a� p=2ð Þ:

A phasor can be expressed in rectangular form

using Euler’s identity. Thus

~V ¼ V0 ffy ¼ V0 e
j y

¼ V0 cos yð Þ þ j V0 sin yð Þ: (12.16)

Example 12.7. Express ~V ¼ 10 ejp=3 V in

rectangular form.

Solution: From (12.16)

~V ¼ 10 ej p=3 ¼ 10 cos p=3ð Þ þ j 10 sin p=3ð Þ
¼ 5þ j 5

ffiffiffi
3

p
V:

Exercise 12.6. Express ~I ¼ 50 ff ðp=3Þ mA in

both exponential and rectangular form.

Does this sinusoid lead or lag the (implied)

reference?

The phasor representation of a sinusoid does not

specify the frequency of the sinusoid. In applications,

the frequency is known from other considerations;

e.g., in a stable linear circuit subjected to sinusoidal

excitation, all currents and voltages in the circuit are

sinusoidal and all have the frequency of the input.

Example 12.8. The phasor for a certain 200

kHz sinusoidal voltage is

~V ¼ 40� j 10 mV:

Express the voltage as a real function of

time.

Solution: The amplitude V and initial phase y
of the voltage are the magnitude and angle,

respectively, of the phasor for the voltage:

V ¼ j ~Vj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
40ð Þ2þ 10ð Þ2

q
mV ffi 41:2 mV;

y ¼ ∡ ~V ¼ tan�1 �10

40

� �
ffi �0:245:

It follows that

vðtÞ ¼ 41:2 cos ot� 0:245ð Þ mV;

f ¼ 200 kHz:

Exercise 12.7. The period of the current

defined in Exercise 12.6 is 250 ns. Express the

current as a real function of time.

The phasor for a current or a voltage is called

the phasor current or the phasor voltage, respec-

tively. For example, if a voltage is given by

vðtÞ ¼ V0 cos otþ yð Þ, the associated phasor voltage

is given by ~V ¼ V0ffy. A phasor is complex (in gen-

eral) and is therefore non-physical; i.e., a phasor

current is not a physical current and a phasor voltage

is not a physical voltage. Nonetheless, for brevity,

textbook authors and practicing engineers usually

refer to phasor currents and phasor voltages simply

as currents and voltages, and we do the same unless

there is need to distinguish between a physical current
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or voltage and its phasor representation. As shown

below, phasor currents and voltages obey Kirchhoff’s
laws, just as do physical currents or voltages. Conse-

quently, calling (e.g.) a phasor current a current is

both economical and harmless.

12.4 Phasor Diagrams

A phasor can be represented graphically as a point in a

complex plane or (more often) as a vector extending

from the origin to the point having the polar coordinate

Xffy, as illustrated by Fig. 12.5. Such a representation

showing one or more phasors is called a phasor dia-

gram. Among other things, a phasor diagram is useful

for displaying or visualizing the relative phases of two

or more sinusoids.

Example 12.9. Draw a phasor diagram for the

quantities

vðtÞ ¼ V0 cos otð Þ; i1ðtÞ ¼ I1 cos ot� p=4ð Þ;
i2ðtÞ ¼ I2 cos otþ p=6ð Þ:

Solution: See Fig. 12.6. The phasors for the

quantities above are

~V ¼ V0ff0; ~I1 ¼ I1ff �p=4ð Þ; ~I2 ¼ I2ff p=6ð Þ:

The voltage vðtÞ has zero initial phase and is
by implication the phase reference. The current

i1ðtÞ lags the reference by p/4 and the current

i2ðtÞ leads the reference by p=6.

Exercise 12.8. Draw a phasor diagram for the

quantities

i tð Þ ¼ I0 cos otþ p=3ð Þ;
v1 tð Þ ¼ V1 cos ot� p=4ð Þ;
v2 tð Þ ¼ V2 cos otð Þ:

As illustrated by Example 12.9, currents and vol-

tages often are displayed in a single phasor diagram. In

such mixed-dimension diagrams, only initial phase

(not magnitude) can be shown to scale unless different

scales are defined for current and voltage. Mixed-

dimension phasor diagrams are useful primarily for

displaying phase relationships among currents and

voltages. In diagrams drawn for this purpose, the pha-

sor for the phase reference, which by definition has

zero initial phase, is coincident with the positive real

axis. For example, Fig. 12.6 makes clear that the

current i2 leads the reference voltage v by p/6 and

that the current i1 lags the reference voltage v by p=4.
8

A single-dimension phasor diagram (current or

voltage, but not both) can provide a quick check on

the correctness of a sum or difference of phasors.

Phasors add like vectors, and the vector representing

the sum of two phasors should look like the vector sum

of the two phasors; that is, the sum should be the

diagonal of the parallelogram whose sides are the

components of the sum.

p / 6

−p / 4

I2
~

I1
~

V
~

Im(I ), Im(V )
~ ~

Re(I ), Re(V )
~ ~

Fig. 12.6 See Example 12.9

θ

|X | sin (q )

Im (X )

|X | cos (q )

|X |

~

Re (X )
~

o

Fig. 12.5 Phasor diagram for a sinusoid xðtÞ ¼ X cos otþ yð Þ
8Recall that the positive direction for an angle is counter-clock-

wise.
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Example 12.10. Draw a phasor diagram illus-

trating the sum of the phasors ~I1 ¼
10ff0:18 mA; ~I2 ¼ 5ff � 0:57 mA.

Solution:

~I1 ¼ 10 cos 0:18ð Þ þ j 10 sin 0:18ð Þ
¼ 9:84þ j 1:79mA;

~I2 ¼ 5 cos �0:57ð Þ þ j 5 sin �0:57ð Þ
¼ 4:21� j 2:70mA:

See Fig. 12.7.

Another way to display a sum of phasors using a

phasor diagram is to draw the terms of the sum in head-

to-tail fashion. For example, Fig. 12.8 depicts a sum

~V ¼ ~V1 þ ~V2 þ ~V3:

The phasor ~V1 originates at the origin, ~V2 originates

at the head of ~V1, and ~V3 originates at the head of ~V2.

The angle of each phasor is measured from the hori-

zontal, as if the phasor originated at the origin. The

sum ~V originates at the origin and ends at the head of

the last term in the head-to-tail sequence.

Example 12.11. Use a phasor diagram to

illustrate that

V0ff0þ V0ff2p=3þ V0ff � 2p=3 ¼ 0:

Solution: Figure 12.9 shows the head-to-tail

diagram. The last term in the sum terminates

at the origin, so the sum equals zero.

12.5 Impedance and Generalized
Ohm’s Law

The impedance of a resistor, a capacitor, an inductor,

or at a terminal pair (port) of a linear circuit is denoted

by Z and is defined by

Z ¼ ~vðtÞ
~iðtÞ ; (12.17)

where ~v is the complex representation of the voltage

across the terminals and ~i is the complex representa-

tion of the current into the positive terminal. The

dimension of impedance is that of resistance and the

SI unit of impedance is the ohm Oð Þ.
It follows from the relations

v ¼ L
di

dt
; i ¼ C

dv

dt

I

1.79

–2.70

4.21 9.84

I2
~

I1
~

Im(I ) mA
~

I1+ 2
~ ~

Re(I ) mA
~

Fig. 12.7 See Example 12.10

V1
~

V2
~

V2
~

V3
~

V1
~

V3
~

Im(V )
~

Im (V )
~

Re(V )
~

Re(V )
~V = V1 + V2 + V3

~ ~ ~ ~

Fig. 12.8 Head-to-tail phasor

diagram for a sum
~V ¼ ~V1 þ ~V2 þ ~V3
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that if either the current through or voltage across an

inductor or a capacitor is sinusoidal, then both the
current and the voltage are sinusoidal and both have

the same frequency. If the complex representation for

the voltage across a capacitor (or an inductor) has the

form ~V ejot, then the complex representation for

the current through the capacitor (or the inductor)

has the form ~I ejot (the frequencies are the same).

Using ~v ¼ ~V ejot and ~i ¼ ~I ejot in (12.17) gives

Z ¼
~V
~I
; (12.18)

where ~V is the phasor voltage across the terminals

and ~I is the phasor current into the positive terminal.

Because phasors are independent of time, impedance,

like resistance, is independent of time. Equation

(12.18) is a generalization of Ohm’s law, according

to which the resistance of a resistor is given by

R ¼ V

I
;

where V and I are the dc voltage across and resulting

current through the resistor, respectively. Equivalently,

impedance is a generalization of resistance.

Example 12.12. Obtain an expression for the

impedance of a capacitor.

First Solution: We use (12.18). The instanta-

neous current through a capacitor is given by

i ¼ C
dv

dt
;

where v is the instantaneous voltage across

the capacitor and C is the capacitance of the

capacitor. We take the voltage v as the phase

reference. Thus vðtÞ ¼ V0 cos otð Þ; whence

i ¼ C
d

dt
V0 cos otð Þ½ � ¼ �oCV0 sin otð Þ:

The phasor voltage is ~V ¼ V0 ff0. Expres-
sing the current given above in standard form

gives

i¼�oCV0 sin otð Þ ¼ oCV0 cos otþp=2ð Þ
) ~I¼oCV0ffp=2:

It follows from the definition (12.18) that

the impedance of a capacitor is given by

ZC ¼ V0 ff 0
oCV0 ffp=2 ¼ 1

oC
ff � p=2; (12.19)

where C is the capacitance of the capacitor and

o ¼ 2 p f is the angular frequency of the

applied voltage or current.

Second Solution: We use (12.17), where we

again take the voltage across the capacitor as

the phase reference, for

~v ¼ ~V e jot

we obtain

~i ¼ C
dv

dt
¼ C

d

dt
~V ejot
	 
 ¼ joC ~V ejot:

From (12.17),

Z ¼ ~v
~i
¼

~V ejot

joC ~V ejot
¼ 1

joC
¼ 1

oC ffp=2

¼ 1

oC
ff � p=2;

as before.

Im(V )
~

Re (V )
~

V0 ∠ 2p / 3
~

V0 ∠ −2p / 3
~

V0 ∠ 0
~

Fig. 12.9 See Example 12.11
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Exercise 12.9. Show that the impedance of an

inductor having inductance L is

ZL ¼ o L ffp=2 ¼ jo L: (12.20)

Exercise 12.10. Show that the impedance of

a resistor having resistance R is

ZR ¼ R ¼ Rff 0: (12.21)

Results obtained above are collected in Table 12.1.

You should commit the entries in Table 12.1 to

memory.

Example 12.13. The current through an

inductor having inductance L ¼ 5 mH is

given by iðtÞ ¼ I0 cos otð Þ with I0 ¼ 5 mA

and f ¼ o=2p ¼ 500 kHz. Use phasors and

impedance to find the voltage vðtÞ across the

inductor. Verify your answer using v ¼ L di=dt.

Solution: From (12.15), the current phasor is

iðtÞ ¼ I0 cos otð Þ ) ~I ¼ I0 ff 0 ¼ 5ff 0 mA:

From Table 12.1, the impedance of the

inductor is

Z ¼ jo L ¼ j 15:71 kO ¼ 15:71ff p=2ð Þ kO:

From (12.18), the voltage phasor is

~V ¼ Z ~I ¼ 5 mAff0ð Þ 15:71 kOff p=2ð Þð Þ
¼ 78:54ff p=2ð Þ V:

It follows from (12.15) that

vðtÞ ¼ 78:54 cos otþ p=2ð Þ V:

Check: The voltage across the inductor is given

by

v¼ L
di

dt
¼ L

d

dt
I0 cos otð Þ½ � ¼ �oLI0 sin otð Þ:

Using the identity sin otð Þ��cos otþp=2ð Þ
to express the voltage in standard form gives

v ¼ o L I0 cos otþ p=2ð Þ
¼ 78:54 cos otþ p=2ð Þ V;

as above.

Exercise 12.11. The voltage across a capaci-

tor having capacitance C ¼ 220 nF is given

by v tð Þ ¼ V0 cos otð Þ with V0 ¼ 150 mV and

f ¼ 100 kHz. Use phasors and impedance to

find the current through the capacitor. Verify

your answer using i ¼ Cdv=dt.

From (12.18),

∡Z ¼ ∡ ~V �∡~I: (12.22)

Thus the angle of an impedance is the angle by

which a voltage across the impedance leads the current

entering the positive terminal of the impedance. If the

angle is negative, the voltage lags the current.

Example 12.14. For an impedance Z ¼
300þ j400ð Þ O, state whether a voltage across
the impedance would lead or lag the current

entering the positive terminal of the imped-

ance, and by what angle. Then assume the

frequency of the applied voltage equals 1

kHz, and give the lead or lag in seconds.

Solution: The impedance Z is in the first

quadrant, so ~V leads ~I by the angle

∡Z ¼ tan�1 400

300

� �
¼ 0:927> 0:

Table 12.1 Impedances of circuit elements

Element i–v
characteristic

Impedance (polar) Impedance

(rectangular)

Resistor v ¼ R i ZR ¼ Rff 0 ZR ¼ R

Capacitor i ¼ C dv
dt ZC ¼ 1

oCff�p=2 ZC ¼ 1
joC

Inductor v ¼ L di
dt

ZL ¼ o L ffp=2 ZL ¼ jo L
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For f0 ¼ 1 kHz,

cos o0 tþ 0:927ð Þ ¼ cos o0 tþ 0:927

o0

� �� �
;

so v tð Þ leads i tð Þ by

0:927

2p	 103 Hz
ffi 148 ms:

Example 12.15. Repeat Example 12.14 for

Z ¼ 400� j300ð ÞO.
Solution: The impedance Z is in the fourth

quadrant, so ~V leads ~I by the angle

∡Z ¼ tan�1 � 300

400

� �
¼ �0:644< 0

or ~V lags ~I by 0.644. For f0 ¼ 1 kHz,

cos o0 t� 0:644ð Þ ¼ cos o0 t� 0:644

o0

� �� �

so v tð Þ lags i tð Þ by

0:644

2p	 103 Hz
ffi 103 ms:

Impedance can be expressed as a function of fre-

quency f (Hz), as a function of angular frequency

o (s�1), or as a function of a variable s (s�1) call-

ed complex frequency introduced in Chapter 18. For

example, the impedance of an inductor can be written

as Z ¼ j2 p f L, Z ¼ joL, or (as shown in Chapter 18)

Z ¼ sL. In practice, frequency is almost always

expressed in Hz. But to achieve a consistent notation,

it is conventional to express impedance as a function

of the variable jo, where o is angular frequency,

expressed in s�1. Thus, for an inductor, Z joð Þ ¼ joL.
An impedance given as Z joð Þ is expressed as a

function of frequency in Hz by replacing o with

2 p f wherever it appears. For example,

Z joð Þ ¼ K
jo=o0

1þ jo=o0

) Z j 2 p fð Þ

¼ K
j 2 p f= 2 p f0ð Þ

1þ j 2 p f= 2 p f0ð Þ ¼ K
j f=f0

1þ j f=f0
:

For economy, we usually omit explicit indication

of frequency dependence unless such is necessary

for clarity. For example, we write Z ¼ joL or

Z ¼ j 2 p f L rather than writing Z joð Þ ¼ joL or

Z j 2 p fð Þ ¼ j 2 p f L. But where we need to express

the impedance of a particular element or circuit at

two or more different frequencies, we use either sub-

scripts or explicit functional notation. For example,

Z jo1ð Þ ¼ jo1L and Z jo2ð Þ ¼ jo2L or Z1 ¼ jo1L and

Z2 ¼ jo2L.

Complex numbers cannot be ordered. We cannot

say whether one complex number is larger or smaller

than another, so inequalities such as Z1 > Z2 are mean-

ingless. But the magnitudes of complex numbers

are real and can be ordered. For example, although

we cannot say 2þ j2> 1þ j, we can say that

2þ j2j j> 1þ jj j. In describing circuits, we must

often compare the magnitudes of various impedances.

In writing or speaking, it is tedious to repeatedly write

or say that (e.g.) the magnitude of one impedance is

larger than the magnitude of another impedance, so we

and most practicing engineers simply say that one

impedance is larger or smaller than another. Because

complex numbers cannot be ordered, we know that

magnitude of is implied in such comparisons, so there

is little chance for misinterpreting such statements.

But in writing mathematical expressions, we must use

precise language; for example, Z1j j> Z2j j, not Z1> Z2.

When first learning how to use phasors and impe-

dances, it is easy to forget that phasors are complex
(non-physical) representations of currents or voltages

and impedances are complex (non-physical) represen-

tations of real elements (R, L, or C) or of a circuit at a
terminal pair. Physical quantities, including current,

voltage, resistance, capacitance, and inductance are

real (mathematical sense). An expression for a physi-
cal current or voltage must be real (must not contain

any j’s). In addition, it is important to keep the follow-

ing limitations on phasor methods in mind:

• A phasor is a complex (non-physical) representa-

tion of a real sinusoidal current or voltage. A
non-sinusoidal current or voltage (other than a

constant) cannot be represented by a phasor.
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• Impedance is the ratio of phasor voltage across

to phasor current through a linear circuit element

(R, L, or C) or the terminals of a linear circuit

(a circuit containing only resistance, capacitance,

inductance, and dependent sources). In general, a

non-linear element such as a diode cannot be fully
characterized by an impedance.

• Impedance is a function of frequency. Two compo-

nents (or circuits) having the same impedance at

one frequency do not necessarily have the same

impedance at any other frequency.

12.6 Admittance

The admittance of an element, denoted by Y, is the

reciprocal of the impedance of the element:

Y ¼ 1

Z
: (12.23)

The dimension of admittance is that of conductance

and the SI unit of admittance is siemens (S). Just

as impedance is a generalization of resistance, admit-

tance is a generalization of conductance. From (12.23)

and (12.18),

~I ¼ Y ~V; (12.24)

which is a generalized form of Ohm’s law. The admit-

tances of a resistor, capacitor, and inductor can

be obtained from the corresponding impedances in

Table 12.1 using (12.23). The results are collected

in Table 12.2. You should memorize the entries in

Table 12.2, which is easy to do if you have memorized

Table 12.1 and the definition (12.23).

Example 12.16. The voltage across a capaci-

tor having capacitance C ¼ 100 pF is given

by vðtÞ ¼ V0 cos 2 p f tð Þ with V0 ¼ 5 V and

f ¼ 500 kHz. Find the current iðtÞ through the

capacitor and draw a phasor diagram depicting

the current and voltage, with the voltage as the

phase reference.

Solution: The phasor ~V for the voltage and the

admittance Y of the capacitor are

~V ¼ V0 ff0 ¼ 5ff0 V;
Y ¼ joC ¼ j 314 mS ¼ 314 mSff p=2ð Þ:

From (12.24), the phasor for the current is

~I ¼ Y ~V ¼ 5 Vff0ð Þ 314 mSff p=2ð Þ½ �
¼ 1:57 mAff p=2ð Þ:

It follows that

iðtÞ ¼ 1:57 cos 2 p f tþ p=2ð Þ mA:

Figure 12.10 shows a phasor diagram for

the current and voltage, where the voltage is

taken as the reference. The current leads the

voltage by p/2. Equivalently, the voltage lags

the current by p/2.

Exercise 12.12. The voltage across a 25 mH

inductor is given by v tð Þ ¼ V0 cos otð Þ, with

V0 ¼ 5 V and f ¼ 5 kHz. Use admittance to

find the current through the inductor and draw

a phasor diagram depicting the current and volt-

age, with the voltage as the phase reference.

For various reasons, it often is necessary to deter-

mine the frequencies or the values of certain circuit

parameters for which an impedance or admittance

Re

Im

~

~

I

VFig. 12.10 See Example

12.16

Table 12.2 Admittances of circuit elements

Element i–v
characteristic

Admittance

(polar)

Admittance

(rectangular)

Resistor v ¼ R i YR ¼ 1
R ff 0 YR ¼ 1

R

Capacitor i ¼ C dv
dt

YC ¼ oCffp=2 YC ¼ joC

Inductor v ¼ L di
dt YL ¼ 1

oL ff�p=2 YL ¼ 1
joL
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is real. If an admittance is real (or imaginary), then so

is the corresponding impedance, and vice versa.

Admittances, like impedances, are functions of

frequency and are expressed as functions of angular

frequency; e.g. for a capacitor, Y joð Þ ¼ joC. An

admittance given as a function of jo is expressed

as a function of frequency f by replacing o by 2p f
wherever it appears. For economy, we usually omit

explicit frequency dependence unless such is neces-

sary for clarity. In other words, we write

Y ¼ joC ¼ j 2 p f C;

rather than writing either Y joð Þ ¼ joC or Y j 2 p fð Þ ¼
j 2 p f C.

Like impedances, admittances are complex and

cannot be ordered. So when we say that one admit-

tance is larger than another, we mean that the magni-

tude of the first is larger than that of the second. But in
writing mathematical expressions, we must use pre-

cise language; for example, Y1j j> Y2j j, not Y1 > Y2.

Also like impedances, admittances are non-physical

representations of real elements (R, L, or C) or of a

circuit at a terminal pair. You should read again the

last paragraph in the preceding section, replacing

impedance with admittance as you read.

12.7 Impedance and Admittance
Ratios in dB

Magnitudes of impedances and admittances can range

over several orders of magnitude as frequency ranges

through values of interest. Consequently, it often is

convenient to express an impedance in dB as

ZdB ¼ 20 log
Z

Z0

����
����; (12.25)

where Z0 is the (0 dB) reference impedance. Similarly,

an admittance is expressed in dB as

YdB ¼ 20 log
Y

Y0

����
����; (12.26)

where Y0 is the (0 dB) reference admittance. Impe-

dances and admittances expressed in dB are dimen-

sionless and are called normalized impedances and

admittances; e.g., the quantity ZdB defined by (12.25)

is the impedance Z normalized to (or relative to) Z0
and expressed in dB.

Example 12.17. Figure 12.11 shows a circuit

and a graph of the magnitude of the impedance

of the circuit normalized to the resistance R,

where

Z

R

����
���� dBð Þ ¼ 20 log

Z

R

����
����:

The impedance is given by

Z ¼ Rþ j2pf L

1� 2 p fð Þ2LCþ j 2 p f RC
) Z

R

����
����

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2 p f L

R

	 
2q
1� 4p2 f 2 LCð Þ2þ 2 p f RCð Þ2 :

Themagnitude of the impedance has a range

of almost 70 dB for the range of frequencies

used for the graph. A 70 dB range corresponds

104

f (Hz)

(dB)
Z
R

R

LCZ ⇒

0

20

40

60

80

R=10Ω, L=318 μH, C=318pF

105 106 107

Fig. 12.11 See Example 12.17
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to a range of more than three orders of magni-

tude. It would be impossible to usefully display

such a range using a linear scale.

Exercise 12.13. The impedance of a certain

two-terminal circuit is normalized to 1 kO and

expressed in dB. The normalized impedance of

the circuit equals 45 dB at 10 kHz. What is

the magnitude of the actual impedance (Ω) at

10 kHz?

The dB is a convenient unit in which to express

impedance and admittance ratios, which are related to

current and voltage ratios. It is useful to keep in mind

that the actual values of two normalized impedances

having the same normalizing impedance that differ by
20 dB differ by a factor of ten. For example, if the

normalized impedance of a certain two-terminal cir-

cuit is given as 10 dB at 100 Hz and 30 dB at 1 kHz, we

know that the impedance (not dB) at 1 kHz is ten times

that at 100 Hz.

Example 12.18. A variable-frequency sinu-

soidal voltage source is connected to the circuit

in Fig. 12.11. The rms amplitude of the source

is held at 10 V and the rms amplitude of the

current entering the circuit is observed as the

frequency of the source is varied from 1 to 500

kHz. What is the ratio of the rms current at 50

kHz to that at 300 kHz?

Solution: The impedance equals 40 dB at 300

kHz and 20 dB at 50 kHz, so the impedance at

300 kHz is 20 dB above or ten times that at 50

kHz. Thus the rms current at 50 kHz is ten

times that at 300 kHz.

Exercise 12.14. The normalized impedance

of a certain two-terminal circuit equals 15 dB

at 5 kHz and 25 dB at 10 kHz. What is the ratio

of the magnitude of the impedance (not dB) at

10 kHz to that at 5 kHz?

12.8 A Fundamental Relation

The following relation is fundamental in applications

of phasors to circuit analysis:

XN
n¼0

Xn cos otþ ynð Þ � 0 ,
XN
n¼0

Xnffyn � 0:

(12.27)

Recall that the double arrow in (12.27) means

implies and is implied by. In words, if a sum of

same-frequency sinusoids is identically zero, then so

is the sum of the associated phasors and, conversely, if

a sum of phasors is identically zero, then so is the sum

of the associated same-frequency sinusoids. Equation

(12.27) shows that if Kirchhof f ’s current law (or

Kirchhof f ’s voltage law) applies to a sum of sinusoi-

dal currents (or voltages), then the law applies to the
phasor representations of those currents (or voltages),

which are complex constants. As you will come to

understand, (12.27) is fundamental because it implies

that analysis of sinusoidally excited linear circuits is

exactly like analysis of dc resistive circuits, except that

the resistances, currents, and voltages are complex.
A proof of (12.27) follows: Assume thatX

n

Xn cos otþ ynð Þ � 0; (12.28)

where the limits of summation are omitted and the

symbol “�” means is identically equal to or equals
for all time, as is the case if (12.28) represents the sum

of all currents leaving a node or the sum of all voltages

around a closed path. If (12.28) is true for any time

t then it must also be true for time t� p= 2oð Þ. Thus
X
n

Xncos o t� p
2o

� �
þyn

h i
�
X
n

Xncos otþyn�p
2

� �
�
X
n

Xn sin otþynð Þ�0:

(12.29)

Adding (12.28) to j times the rightmost sum in

(12.29) and using Euler’s identity gives

X
n

Xn cos otþ ynð Þ þ j
X
n

Xn sin otþ ynð Þ

�
X
n

Xn e
j otþynð Þ � ejot

X
n

Xn e
jyn � 0:
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Because ejot 6¼ 0; it follows that

X
n

Xn e
jyn �

X
n

Xnff yn � 0 (12.30)

which proves the right implication in (12.27). To show

the converse, assume that the right half of (12.27)

holds and multiply that identity by ejot: This gives

X
n

Xnff ynejot � 0 ) Re
X
n

Xn e
j otþynð Þ

( )
� 0

�
X
n

Xn cos otþ ynð Þ:

The left implication in (12.27) follows.

A corollary of (12.27) is that a sum of same-

frequency sinusoids is a sinusoid having that fre-
quency. To show that is the case, it is necessary only

to write the left half of (12.27) as

XN�1

n¼0

Xn cos otþ ynð Þ ¼ �XN cos otþ yNð Þ: (12.31)

Another corollary is that the phasor for a sum of

same-frequency sinusoids is the sum of the individual
phasors.9 To show that is the case, it is necessary only

to write the right half of (12.27) as

XN�1

n¼0

Xnffyn ¼ �XNffyN: (12.32)

Example 12.19. Express iðtÞ ¼ I1 cosðo tÞþ
I2 sinðo tÞ, where I1 ¼ 4 mA and I2 ¼ 3 mA,

in standard form.

Solution: From (12.32), the phasor for the sum

is the sum of the phasors for the individual

terms, which are

~I1 ¼ I1ff 0; ~I2 ¼ I2ff � p=2:

Because we intend to add the phasors, we

express the phasors in rectangular form using

Euler’s identity:

~I1 ¼ I1ff 0 ¼ I1 cos 0ð Þ þ j sin 0ð Þ½ � ¼ I1;

~I2 ¼ I2ff � p=2 ¼ I2 cos
p
2

� �
� j sin

p
2

� �h i
¼ �j I2:

Thus, the phasor for the sum is

~I ¼ ~I1 þ ~I2 ¼ I1 � j I2 ¼ 4� j 3mA:

To obtain the amplitude and phase of the

sum, we express the phasor for the sum in polar

form Iffy:

I ¼ ~I
�� �� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

42 þ 32
p

mA ¼ 5 mA;

y ¼ ∡~I ¼ tan�1 �3

4

� �
¼ �0:644:

It follows that

iðtÞ ¼ 5 cos o t� 0:644ð Þ mA:

Again, such calculations are easy to per-

form using a pocket calculator.

Exercise 12.15. Express v tð Þ ¼ 50cos o tð Þþ
100cos o t�p=6ð Þ mV in standard form.

Exercise 12.16. Find the sum ~I of the phasors
~I1 ¼ 10ff0:18 mA; ~I2 ¼ 5ff � 0:57 mA repre-

senting 100-kHz sinusoidal currents. Express

the current ~I ¼ ~I1 þ ~I2 as a real sinusoidal

function of time.9It is meaningless to add the phasors for sinusoids having differ-

ent frequencies.
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12.9 Circuit Reduction: Elements
in Series and Parallel

Among other things, (12.27) provides a basis for

reducing series and parallel connections of elements

represented by impedances to single, equivalent impe-

dances. Figure 12.12(a) shows a series connection of a

resistor, a capacitor, and an inductor driven by a sinu-

soidal current source. Figure 12.12(b) shows the same

circuit, but with the elements represented by impe-

dances and all currents and voltages represented by

phasors. By Kirchhoff’s voltage law,

v ¼ vR þ vC þ vL:

Because the current through each element is the

same and is sinusoidal, each of vR; vC; vL is sinusoidal

and the frequency of each is that of the current i.
By (12.31) the sum of same-frequency sinusoids is

sinusoidal, so the sum v ¼ vR þ vC þ vL is sinusoidal,

having the same frequency as the components of the

sum. It follows from (12.27) that

~V ¼ ~VR þ ~VC þ ~VL;

where

~VR ¼ ZR~I ¼ R ~I; ~VC ¼ ZC~I ¼
~I

joC
;

~VL ¼ ZL~I ¼ joL ~I:

So

~V ¼ ~VR þ ~VC þ ~VL ¼ Rþ ZC þ ZLð Þ~I:

Thus the equivalent impedance of the series con-

nection is given by

Z ¼
~V
~I
¼ Rþ ZC þ ZL; (12.33)

as shown in Fig. 12.12(c).

The equivalent impedance of a series connection of

resistors, capacitors, and inductors is the sum of the

individual impedances. In other words, a series con-

nection of elements can be replaced (at the terminals)

by an impedance equal to the sum of the impedances

of the elements.

Similarly, we can show that the equivalent admit-

tance of a parallel connection of resistors, capacitors,

and inductors is the sum of the individual admittances.
In other words, a parallel connection of elements can

be replaced (at the terminals) by a single admittance

equal to the sum of the admittances of the elements in

the parallel connection. With reference to Figs. 12.13

and 12.27,

i ¼ iR þ iC þ iL ) ~I ¼ ~IR þ ~IC þ ~IL;

where

~IR ¼ YR ~V ¼ R�1 ~V; ~IC ¼ YC ~V ¼ joC ~V;

~IL ¼ YL ~V ¼ jo Lð Þ�1 ~V:

Thus the equivalent admittance of the parallel con-

nection is given by

Y ¼
~I
~V
¼ YR þ YC þ YL: (12.34)

i I~ I~
ZLZCRR C L

(a) original circuit: i = I cos (wt)

v V~
+

–

(b) transformed circuit: V~ = V– 0

Z

(c) equivalent circuit:
Z = R + ZC + ZL

+  V~R  –   +  V~C  –   +  V~L  –

+

–

+  vR  –     +  vC  –     +  vL  –

Fig. 12.12 Equivalent impedance of a series connection
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The equivalent impedance of the parallel connec-

tion is given by

Z ¼
~V
~I
¼ Y�1 ¼ YR þ YC þ YLð Þ�1

¼ 1

R
þ 1

ZC
þ 1

ZL

� ��1

: (12.35)

Equations (12.33) and (12.34) are easily applied to

any series and parallel connections of arbitrary impe-

dances, as illustrated by Fig. 12.14. An important spe-

cial case is the parallel connection of two impedances,

for which the equivalent impedance is given by

Z ¼ 1

Z1
þ 1

Z2

� ��1

¼ Z1 Z2
Z1 þ Z2

: (12.36)

As for resistances, the double-bar notation

defined by

Z1 Z2k   k ZNk ¼ 1

Z1
þ 1

Z2
þ    þ 1

ZN

� ��1

(12.37)

often is convenient, particularly for two impedances

in parallel, where

Z1 Z2k ¼ Z1 Z2
Z1 þ Z2

: (12.38)

The two examples below illustrate reduction of

series and parallel connections to an equivalent imped-

ance. The solutions are given largely in graphical

form, which is the best way to visualize the procedure.

Example 12.20. Obtain an expression for the

equivalent impedance at the terminals a–b of

the circuit in Fig. 12.15(a). Express the imped-

ance in rectangular form; i.e., as aþ j b, where a

and b are functions of frequency and the circuit

parameters.

Solution: See Fig. 12.15(b)–(d). The equivalent

impedance is

Z¼R1 ZCk þR2þZL¼ R1

1þjoR1C
þR2þjoL

¼R1 1�joR1Cð Þ
1þ oR1Cð Þ2 þR2þjoL

¼ R1

1þ oR1Cð Þ2þR2

" #
þj oL� oR2

1C

1þ oR1Cð Þ2
" #

:

R ZC ZLv R C L

iR iC

i

iL

Z
+
–

+
–

+
–

(a) original circuit: v = V cos(wt) (b) transformed circuit: V
~ 

= V– 0 (c) equivalent circuit:
Z = (R–1+ZC

–1+ZL
–1)–1

I
~

I
~
R I

~
C I

~
L

V
~V

~

Fig. 12.13 Equivalent

impedance of a parallel

connection

Z1 Z2 ZN

Z1 Z2 ZN

Z ⇒

(a) series connection

Z = Z1+Z2+ ... +ZN

(b) parallel connection

Z = (Z1
–1+Z2

–1+ ... +ZN
–1)–1

Z ⇒

Fig. 12.14 Equivalent impedances for series and parallel

connections
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Example 12.21. Obtain an expression for the

equivalent impedance at the terminals a–b of the

circuit in Fig. 12.16(a). Express the impedance in

rectangular form; i.e., as aþ j b, where a and b are
functions of frequency and the circuit parameters.

Solution: See Fig. 12.16(b)–(d). The equivalent

impedance is given by

Z¼ RþZLð Þ ZCk ¼ RþZLð ÞZC
RþZLþZC

¼ RþjoLð Þ= joCð Þ
RþjoLþ1= joCð Þ

¼ RþjoL

1�o2LC
	 
þjoRC

¼ RþjoLð Þ 1�o2LC
	 
�joRC
� 

1�o2LC
	 
2þ oRCð Þ2

¼ R 1�o2LC
	 
þo2RLC

1�o2LC
	 
2þ oRCð Þ2

" #
þj

oL 1�o2LC
	 
�oR2C

1�o2LC
	 
2þ oRCð Þ2

" #
:

Exercise 12.17. Obtain an expression for the

equivalent impedance at the terminals a–b of

the circuit in Fig. 12.17. Express the imped-

ance in rectangular form; i.e., as aþ j b, where

a and b are functions of frequency and the

circuit parameters.

Recall (see (12.27) and the related discussion)

that Kirchhoff’s laws apply to phasor currents and

C L

ZC = ( jwC )–1
Z = R1

ZL = jwL

R1

ZC

(a)

(b)

(c)

(d)

a

b

a

b

a

b

a

b

R2

R1
R2

R1 R2+ZL

ZC + R2 + ZL

Fig. 12.15 See Example

12.20

Fig. 12.16 See Example

12.21

L

R

C

R

ZC

ZC

ZC

a

b

a

b

a

b

a

b
ZC = ( jwC )–1

R+ZL

(R+ZL )

ZL = jwL

(a)

(b)

(c)

(d) Z =(R+ZL )

C

R2
R1

L R3

b

a

Fig. 12.17 See Exercise 12.17
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voltages. If a circuit cannot be reduced to a single,

equivalent impedance at a particular terminal pair by

combining components in series and parallel, we can

apply a known source to the terminals and use the

definition Z ¼ ~V
�
~I, where ~V is the terminal voltage

and ~I is the current entering the positive terminal.

Example 12.22. Obtain an expression for the

impedance Zeq at the terminals a–b of the cir-

cuit shown in Fig. 12.18(a).

Solution: We attach a known source to the

terminals a–b, as shown in Fig. 12.18(b).

Applying Kirchhoff’s current law to nodes x
and y give

~Vx � ~V

Z
þ

~Vx � ~Vy

5 Z
þ

~Vx

4 Z
¼ 0;

~Vy � ~V

2 Z
þ

~Vy � ~Vx

5 Z
þ

~Vy

3 Z
¼ 0;

which yield

~Vy ¼ 111

175
~V; ~Vx ¼ 136

175
~V:

We apply Kirchhoff’s current law to node

a and obtain

~I ¼
~V � ~Vx

Z
þ

~V � ~Vy

2Z
¼ 3 ~V

2Z
� 136

175Z
~V

� 111

175 2Zð Þ
~V ¼ 71 ~V

175 Z
;

which yields

~V
~I
¼ Zeq ¼ 175 Z

71
¼ 2:45 Z:

It follows from (12.27) and Kirchhoff’s laws that

the phasor representing a series connection of same-
frequency sinusoidal voltage sources or a parallel con-

nection of same-frequency sinusoidal current sources

is the sum of the phasors representing the individual

sources, and consequently that same-frequency volt-

age sources in series or same-frequency current

sources in parallel can be collapsed to a single source,

as illustrated by Fig. 12.19; however, such connections

rarely arise in practical problems, so this fact is of little

use other than as a basis for textbook problems.

To summarize: Impedances in series and parallel

reduce to single, equivalent impedances exactly as if

they were complex resistances, and sinusoidal (pha-

sor) voltage sources in series and current sources in

parallel reduce to single, equivalent sources (addi-

tively), exactly as if they were complex dc sources.

12.10 Time Domain and Frequency
Domain

A sinusoidal current or voltage can be described by a

function of time or (if the frequency is recorded sepa-

rately) by the corresponding phasor. We may indicate

the equivalence of these descriptions as follows:

A cos o0 tþ yð Þ , Affy; o ¼ o0: (12.39)

Z 2Z

5Z

4Z 3Z

Zeq ⇒

a

b

Z 2Z

5Z

4Z 3Z

a

b = ref

V
~

I
~

x y
+
–

(a) (b)
Fig. 12.18 See Example

12.22

V
~
1 V

~
2 V

~
N V

~ 
= V

~
1+V

~
2+ ... +V

~
N

I
~ 

= I
~

1+I
~

2+ ... +I
~
NI

~
1 I

~
2 I

~
N

V
~

I
~

+

–

+– +– +–

+
–

Fig. 12.19 Same-frequency sinusoidal voltage sources in series
or current sources in parallel are additive

402 12 Sinusoids, Phasors, and Impedance



The terminal characteristic of a linear element

can be expressed using either time or frequency as

the independent variable. For example, the current

through a capacitor is given by

i tð Þ ¼ C
dv tð Þ
dt

; (12.40)

where v tð Þ is the voltage across the capacitor and time

is the independent variable. If the voltage across the

capacitor is sinusoidal, then the phasor representation

of the current is given by

~I ¼ joC ~V ¼ j 2 p f C ~V; (12.41)

where ~V is the phasor representation of the voltage

and frequency is the independent variable. Equation

(12.40) is a time-domain description of a capacitor

and (12.41) is the corresponding frequency-domain

description. Similarly, the left side of (12.39) is

the time-domain description of a sinusoid and the

right side (phasor) is the corresponding frequency-

domain description. Currents, voltages, linear ele-

ments, and entire linear circuits can be described in

either the time domain or the frequency domain.

Replacing the elements of a sinusoidally excited

linear circuit by their impedances and representing

currents and voltages in the circuit by phasors trans-

forms the circuit from the time domain to the fre-

quency domain.

Analysis using time-domain descriptions of cur-

rents, voltages, and circuit elements is called time-

domain analysis. Analysis using frequency-domain

descriptions of current, voltage, and circuit elements

(e.g., phasors and impedances) is called frequency-

domain analysis. This chapter describes how sinusoi-

dally excited circuits are represented and analyzed in

the frequency domain.

The utility of frequency-domain analysis stems

from three fundamental principles:

• Using a mathematical tool called Fourier analysis,

any physical current or voltage can be expressed

over any finite interval as a sum of sinusoids.10

• Linear circuits obey superposition,11 so we can

obtain the response of a linear circuit to an input

expressed as a sum of sinusoids by treating each

sinusoidal component separately and adding the

results.

• For every important time-domain operation on

a sinusoidal waveform, there is a corresponding

frequency-domain operation on the associated

phasor. For example, differentiation with respect

to time corresponds to multiplication by frequency

joð Þ, as noted above. Effects of many important

operations are easier to visualize and interpret in

the frequency domain than in the time domain.

The time domain is the real-world domain. The

frequency domain is a very useful mathematical

creation. From one point of view, frequency-domain

analysis is simply a computationally advantageous

procedure for solving circuit problems: Whereas

time-domain analysis requires solving differential

equations, frequency-domain analysis requires solv-

ing only algebraic equations. But a far more impor-

tant reason for using frequency-domain analysis is

the insight fostered by frequency-domain relations

among currents and voltages. In many applications,

a frequency-domain description of a circuit is much

more informative than the corresponding time-domain

description. For example, the frequency response of an

audio amplifier is much easier to interpret than would

be a set of time-domain differential equations describ-

ing the same amplifier. Moreover, many real-world

signals, such as currents or voltages representing

speech, music, video, and radar and sonar echoes

cannot be usefully described as functions of time but

can be usefully described as functions of frequency.

We cannot treat such descriptions in this book, so we

must simply ask you to accept on faith that mastering

the frequency-domain methods presented here will

prepare you well for study of more complex and

more general methods treated in more advanced

books (and courses).

As a reminder, when we compare impedances by

writing that one is larger or smaller than another,

magnitudes are implied (because complex numbers

cannot be ordered).

10Fourier analysis is introduced in Chapter 16.

11Section 12.16 treats superposition in the context of sinusoidal

excitation.
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12.11 Sinusoidal and DC Steady State

By definition, a linear circuit is in sinusoidal steady

state if all currents and voltages in the circuit are

sinusoidal and of the same frequency. A linear circuit

in which all currents and voltages are constant is in dc

steady state, which is a special case of sinusoidal

steady state, because we may regard a constant current

or voltage as a sinusoid having frequency zero.12 The

impedance of an inductor, given by joL, equals zero
for o ¼ 0, so an inductor appears as a conductor to dc.

The admittance of a capacitor, given by joC, equals
zero for o ¼ 0, so a capacitor appears as an open

circuit to dc. Thus a linear circuit in dc steady state

reduces to a resistive circuit, all inductors being

replaced by conductors and all capacitors being

replaced by open circuits. Sinusoidal steady-state

analysis consists of describing circuit elements by

their impedances or admittances and sinusoidal cur-

rents and voltages by their phasor representations, and

applying Kirchhoff’s laws to those quantities, the lat-

ter being justified by the fundamental relation (12.27).

Like all mathematical descriptions of physical enti-

ties, sinusoidal currents and voltages and linear cir-

cuits themselves are abstractions having limited

validity. Mathematically, a sinusoid is periodic, hav-

ing neither beginning nor end. Practically, every cur-

rent or voltage has a beginning and (presumably) an

end. Nonetheless, sinusoidal models for currents and

voltages often are realistic and lead to results in agree-

ment with experiment. For example, a practical sinu-

soidal voltage is produced in the laboratory by a

function generator. When energized, the output of

such a function generator undergoes a transition from

zero to sinusoidal. When such a source is connected to

a stable linear circuit, all currents and voltages in the

circuit also undergo transitions from zero to sinusoi-

dal. After all such transients have vanished, the circuit

is for practical purposes in sinusoidal steady state, and

modeling the circuit using phasors and impedances or

admittances leads to correct results. However, there

are a couple of subtle points that should be addressed.

The following discussion serves this purpose.

Consider Fig. 12.20, where a lossless (ideal) induc-

tor is suddenly connected to a sinusoidal source, such

as a function generator on a laboratory bench. Absent

special circuitry, the switching will occur at a random

point on the sinusoidal waveform produced by the

source; e.g., at a peak, a zero-crossing, or halfway

between. Therefore, if the time origin is the time at

which the switch is closed, we must assign an arbitrary

initial phase y to the source voltage to account for our

ignorance of the instantaneous amplitude of the sinu-

soid at that time. Thus

v tð Þ ¼ V0 cos o0 tþ yð Þ;
where y is unknown. The current through the inductor

at any time t is given by

i tð Þ ¼ i 0ð Þ þ 1

L

ðt
0

v t0ð Þdt0

¼ i 0ð Þ þ V0

L

ðt
0

cos o0t
0 þ yð Þdt0; (12.42)

where i 0ð Þ ¼ 0 because the inductor terminals were

open before the switch was closed. It follows that

i tð Þ ¼ V0

o0L
sin o0 tþ yð Þ � V0

o0L
sin yð Þ; t � 0:

(12.43)

We wish to discuss this result from two points of

view:

1. The current given by (12.43) contains a persistent

(not transient) dc component

Idc ¼ � V0

o0L
sin yð Þ; (12.43)

which is in general non-zero and depends upon the

point on the source waveform at which the switch was

closed. The sinusoidal component of the current given

by (12.43) is the forced response. The dc component is

the unforced response. Thus

forced response¼ V0

o0L
sin o0 tþ yð Þ;

unforced response¼� V0

o0L
sin yð Þ:

Lv

i

+
–

Fig. 12.20 Pertaining to

(12.43) and (12.44). See text

12Indeed, this is why the cosine, rather than the sine, is chosen as

the standard form for a sinusoidal current or voltage.
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The forced response is maintained by the source.

The unforced response arises because the current

through the inductor must be continuous and per-

sists because the inductor is lossless. But in a phys-

ical inductor, winding resistance (if nothing else)

would dissipate the unforced response, there being

no dc source to make up the energy lost in the

winding. An unforced response cannot persist in a

sinusoidally excited passive physical circuit. The

persistent unforced response above is essentially a

mathematical artifice that arose because we included

no loss mechanism in the model.

2. The result (12.43) appears to be inconsistent with

that obtained using phasors, which is only the

forced (steady-state) component of the current

obtained above. That is, using sinusoidal steady-

state analysis (phasors and impedances) leads to

~I ¼
~V

Z
¼ V0ffy

jo0L
¼ V0

o0L
ff y� p

2

� �

) V0

o0L
cos o0 tþ y� p

2

� �

¼ V0

o0L
sin o0 tþ yð Þ; (12.44)

which contains no unforced component. Models

such as that shown in Fig. 12.21, where a linear

circuit is driven by a sinusoidal source,13 implicitly

assume that the excitation has been applied in that

form for such a long time that any transient com-

ponents of the currents and voltages in the circuit

have vanished, even if the circuit model is lossless.

Under that condition the circuit is in sinusoidal

steady state, all currents and voltages are sinusoidal

and all have the frequency of the excitation, and

phasor methods can be applied to the circuit. Every

current or voltage differs from every other only in

peak amplitude and initial phase, which are the

very things that phasors keep track of.

Unless there is an explicit statement to the contrary,

we assume henceforth that a sinusoidally excited sta-
ble linear circuit is in sinusoidal steady state, which

means that that all currents and voltages in the circuit

are sinusoidal and have the frequency of the excita-
tion. Keep in mind that a source such as

v tð Þ ¼ 0; t< 0

V0 cos o0 tð Þ; t � 0

(

is not sinusoidal (mathematically). Nor are the cur-

rents and voltages in a circuit driven by such a source,

because they contain both unforced (transient) and

forced components having definite beginnings. Apply-

ing steady-state analysis to such a circuit will yield

only the forced components of the currents and vol-

tages in the circuit (which is ok, if those components

are all you care about)

If a sinusoidally excited circuit contains no explicit

losses, assuming the circuit is in sinusoidal steady

state is equivalent to assuming that losses are present

and are sufficient to ensure that any initial transients

have vanished, but are insignificant for purposes of the

analysis at hand. Such assumptions can simplify anal-

ysis and lead to meaningful results if losses are suffi-

ciently small. Nonetheless, you should be suspicious

of any lossless circuit model until you are convinced

that the model is adequate for a purpose at hand or

unless (in textbook problems) it is implied that the

model is adequate.

12.12 Frequency-Domain Circuit
Analysis

Analysis of a sinusoidally excited linear stable circuit

using phasors and impedances proceeds as follows:

• Transform all currents and voltages of interest
from the time domain to the frequency domain.

Replace the excitation by its phasor representation,

and denote all other currents and voltages in the

circuit by their phasor representations. Usually, the

source serves as the phase reference.

• Transform the circuit elements from the time
domain to the frequency domain. Replace each

capacitor and inductor in the circuit by a symbol

for the impedance of the element; e.g., ZL 3 for the
impedance of inductor L3. Because impedance is

vS
linear
circuit

+
– vS (t) = V0 cos (w0 t +q ) 

Fig. 12.21 Pertaining to the discussion of sinusoidal steady

state. See text

13If there is more than one source, we may use superposition and

consider one at a time.
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essentially complex resistance, the circuit-diagram

symbol for impedance is the same as that for resis-

tance. Because the impedance of a resistor equals

the resistance of the resistor, resistors remain

unchanged; i.e., in frequency-domain representa-

tions, we denote resistance by R, not ZR.
14

• Use Kirchhof f ’s laws to obtain equations whose
solutions are phasor currents and voltages of inter-

est. Treat phasors (symbolically) as if they were dc

currents and voltages and impedances as if they

were resistances.

• Solve the equations. The results are frequency-

domain descriptions of currents and voltages or of

relations among currents and voltages.

• Interpret the results. More often than not, the

results are more easily interpreted in the frequency

domain than in the time domain, but if necessary,

we can transform results of analysis back to the

time domain. In any case, the ultimate purpose of

an analysis is usually to extract some information

relating to design or performance. We cannot delve

too deeply into such interpretations in a first course.

But keep in mind that in order to extract some

answer worth interpreting, you must first be able

to carry out such analyses correctly.

Example 12.23. Refer to Fig. 12.22(a), where

the excitation is the phase reference and

is expressed (in standard form) as

v0ðtÞ ¼ V0 cos otð Þ.
(a) Obtain an expression for the phasor

response ~VC.

(b) Find the peak amplitude and the relative

phase of the response forV0 ¼ 5 V; f ¼ 1 kHz;

R ¼ 1 kO; C ¼ 200 nF.

(c) Express the response in the time domain.

Solution: (a) We replace the voltages v0; vC by

their phasor representations and we replace the

capacitor by its impedance as shown in

Fig. 12.22(b), where

~V0 ¼ V0ff0; ZC ¼ 1

joC
:

The circuit is a voltage divider. Thus

~VC ¼ ZC
Rþ ZC

~V0 ¼ 1= joCð Þ
Rþ 1= joCð Þ

~V0

¼
~V0

1þ joRC
; oRC ffi 1:257:

(b) The peak amplitude (magnitude) VC and

relative phase yC of the response are

VC ¼ ~VC

�� ��¼ ~V0

1þ joRC

����
����¼ V0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ð joRCÞ2
q

ffi 5ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1:257ð Þ2

q ffi 3:11 V;

yC ¼∡ ~VC ¼∡ ~V0 �∡ 1þ joRCð Þ
¼ � tan�1 oRCð Þ ffi � tan�1 ð1:257Þ
ffi �0:899:

(c) It follows from the calculations above

that

vCðtÞ ¼ 3:11 cos ot� 0:899ð Þ V;
f ¼ 1 kHz:

Example 12.24. Refer to Fig. 12.23(a), where

i tð Þ is the phase reference, expressed in stan-

dard form as i tð Þ ¼ I0 cos otð Þ.

+
– v0 vCC

R

+

–

R

ZC
~
V0

~
VC

+

–

(a) original circuit (b) transformed circuit

+
–

Fig. 12.22 See Example 12.23

14Of course, we can also use admittances. But conventionally,

elements are represented by their impedances in circuit dia-

grams, even if circuit equations are subsequently written in

terms of admittances.
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(a) Obtain an expression for the phasor rep-

resentation of the voltage va in terms of the

phasor for the current i and the impedances of

the circuit elements.

(b) Let I0 ¼ 5 mA, f ¼ 10 kHz, R1 ¼ 1 kO,
C ¼ 10 nF, R2 ¼ 5 kO, and L ¼ 100 mH.

Express the voltage va as a real sinusoid and

find the peak amplitude and initial phase of the

voltage va.

Solution: (a) We transform the circuit as shown

in Fig. 12.23(b), where

~I ¼ I0; ZC ¼ 1

joC
; ZL ¼ jo L

The equivalent impedance seen by the

current source is

Z ¼ 1

R1

þ 1

ZC
þ 1

R2 þ ZL

� ��1

and
~V ¼ I0 Z

(b) For the parameter values given, we find

ZC¼ 1

joC
ffi 1:59ffð�p=2ÞkO

R2þZL ¼ R2 þ joLffi 8:03ffð0:90ÞkO
Z ffi 832ff ð�0:458ÞO:

Thus

~Va ¼ I0Z ffi ð5mAÞ½832 ff ð�0:458ÞO�
ffi ð4:165ff � 0:458ÞV:

It follows that

va ffi 4:165 cos 2p f t� 0:458ð Þ V;
f ¼ 10 kHz:

In general, even if a numerical result is called for, it

is best to carry symbolic analysis as far as possible and

reasonable, as is done in the examples above. Sym-

bolic expressions exhibit effects of individual para-

meters, allow determination of critical parameters,

and permit dimension and limit checking. Numerical

results allow none of these things.

Exercise 12.18. Refer to Fig. 12.24.

(a) Obtain an expression for the phasor rep-

resentation of the current i in terms of the

phasor for the voltage vS and the impedances

of the circuit elements.

(b) Express the current as a real sinusoid

and find the peak amplitude and initial phase of

the current.

12.13 Reactance and Effective
Resistance

An impedance can be expressed in rectangular

form as

Z ¼ RZ þ j XZ: (12.45)

The quantities RZ and XZ are real and in general are
functions of frequency. The real part RZ of impedance

is called effective resistance and the imaginary part

XZ is called reactance.

impedance ¼ effective resistance

þ j	 reactance: (12.46)

I

R1 L
R2

R1

R2

C

a

b = ref

b = ref

ZLZC

(a) original circuit

(b) transformed circuit

~

a

i

Fig. 12.23 See Example 12.24
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From (12.45), and because impedances in series

are additive, the effective resistance and the reac-
tance of a load are defined with reference to a series

equivalent circuit for the load, as illustrated by

Fig. 12.25.

In general, neither effective resistance nor reac-

tance is physical, in the sense that neither necessarily

corresponds to any particular element or component in

a circuit at hand.

From Table 12.1, the impedances of an inductor

and a capacitor, expressed in the form (12.45), are

given by

ZL ¼ 0þ j o Lð Þ;

ZC ¼ 1

joC
¼ 0� j

1

oC

� �
:

(12.47)

Comparing (12.47) to (12.45) shows that the effec-

tive resistances of an ideal inductor and an ideal

capacitor equal zero15 and that the reactances of an

inductor and a capacitor are given by

XL ¼ o L; XC ¼ � 1

oC
: (12.48)

Because frequency, inductance, and capacitance

are positive quantities, the reactance of an inductor
is positive and the reactance of a capacitor is negative.

A load having a positive reactance at a particular

frequency is said to be inductive at that frequency

and a load having a negative reactance at a particular

frequency is said to be capacitive at that frequency.

A load whose impedance is real and non-zero at a

particular frequency is said to be resistive at that

frequency. A load having non-zero reactance is called

a reactive load. A load having non-zero reactance and

zero effective resistance is called a purely reactive

load. For example, an inductor in series with a resistor

is reactive and an (ideal) inductor alone is purely

reactive.

Using methods described above (or Thévenin’s

theorem described in the sequel), we can reduce a

load (a one-port circuit) containing any number of

resistors, capacitors, and inductors to a single resis-

tance in series with a single reactance, both of which

are in general functions of frequency and of the

various resistances, capacitances, and inductances

appearing in the circuit. If the reduced (equivalent)

impedance is expressed numerically for a particular

frequency, it will be equivalent to a single resistor in

series with either a single inductor (if the reactance is

positive) or a single capacitor (if the reactance is

negative). In any case, an impedance expressed
numerically is valid only at the frequency for which

it was determined. If the reduced impedance or admit-

tance is expressed as a function of frequency, it is valid

at all frequencies within the range of frequencies for

which the original circuit model is valid. An imped-

ance expressed as a function of frequency (and circuit

parameters) can be a valuable (or essential) guide for

design. An impedance expressed numerically is rarely

useful in that regard, except as a specification.

Example 12.25. Refer to Fig. 12.26. (a)

Obtain expressions for the effective resistance

and the reactance of the parallel RL load as

functions of the frequency of the source. (b)

Calculate the effective resistance and the reac-

tance for f ¼ 1 kHz. (c) Find the equivalent

series RL circuit for f ¼ 1 kHz.

Solution: (a) The impedance of the load is

given by

R1 R2

L C

vS vL vC

v1i

vS(t) = V0 cos(2p f t),
V0 = 5 V, f = 10kHz,
R1 = 1 KΩ, C = 10nF,
R2 = 5 KΩ, L = 100mH.

+
–

Fig. 12.24 See Exercise 12.18

Z jXZ
=

RZ

Fig. 12.25 Illustrating the definitions of effective resistance

and reactance. See (12.45) and (12.46)

15The effective resistances of physical inductors and capacitors

are not zero and their reactances are not exactly those given in

(12.48). These and other departures of physical components

from ideal behavior are discussed in Section 12.22.
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Z ¼ ZR ZL
ZR þ ZL

¼ jo LR

Rþ jo L

¼ jo LR R� jo Lð Þ
R2 þ o Lð Þ2

¼ o Lð Þ2 R
R2 þ o Lð Þ2 þ j

o LR2

R2 þ o Lð Þ2 :

It follows that the effective resistance and

the reactance of the load are given by

RZ ¼ Re Zð Þ ¼ o Lð Þ2 R
R2 þ o Lð Þ2 ;

XZ ¼ Im Zð Þ ¼ o LR2

R2 þ o Lð Þ2 :

The effective resistance and the reactance

are functions of frequency.

(b) For frequency f ¼ 1 kHz, we obtain

Z ¼ ð2kOÞ j2 pð Þ 1kHzð Þ 2Hð Þ
2kOþ ðj2 pÞ 1kHzð Þ 2Hð Þ

¼ 1951þ j 310 O;

and so

RZ ¼ 1;951 O; XZ ¼ 310 O:

(c) An equivalent series RL circuit at freque-

ncy f ¼ 1 kHz has resistance RZ ¼ 1;951 O
and inductance

Leq ¼ XZ

o
¼ 310

2 p 103
¼ 49 mH:

This particular series connection is not
equivalent to the original load at any other

frequency. Figure 12.27 shows a graph of the

magnitudes of the original impedance

Z ¼ Rjjð jo LÞ and the series impedance

given by Zs ¼ Rz þ joLeq versus frequency.

The graphs touch at 1 kHz, but are different

at other frequencies.

Example 12.26. Refer to Fig. 12.28. (a)

Obtain an expression for the impedance at the

terminals a–b. (b) Calculate the value of the

impedance for frequency f ¼ 10 kHz, and find

a series combination of resistance and capaci-

tance or resistance and inductance having that

impedance at the specified frequency. (c)

Repeat (b) for f ¼ 50 kHz.

Solution: Figure 12.29 illustrates steps in the

solution.

(a) We replace the circuit elements by

the corresponding impedances, as shown in

Fig. 12.29, where

Z1 ¼ 1

joC
; Z2 ¼ R2 þ jo L:

We obtain the equivalent impedance of the

parallel connection of Z1; Z2. This gives

Z3 ¼ Z1 Z2
Z1 þ Z2

¼ R2 þ jo L

1� o2 LCþ joR2 C
:

0 500 1000 1500 2000 2500
1900

1950

2000

2050

f (Hz)

|Z
| (

Ω
)

|ZS |

|ZP |

Fig. 12.27 See Example 12.25

R Lv (t) v (t) = V0 cos(w t), R  = 2 kΩ, L = 2H+
–

Fig. 12.26 See Example 12.25

R1

R2

L

a

b

R1 = 100 Ω, R2 = 10 Ω,

C = 100nF, L = 1mH.

Fig. 12.28 See Example 12.26

12.13 Reactance and Effective Resistance 409



We add the series resistance to the imped-

ance Z3 to obtain the equivalent impedance

Z ¼ R1 þ Z3 ¼ R1 þ R2 þ jo L

1� o2 LCþ joR2 C
:

(b) For f ¼ 10 kHz) o¼ 20	 103 p s�1,

we obtain

Z¼R1þ R2þ joL

1�o2LCþ joR2C
¼127þ j101O

¼RZþ jXZ:

For f ¼ 10 kHz, the effective resistance is

RZ ¼ 127 O and the reactance is XZ ¼ 101 O.
The reactance is positive, so the circuit is

equivalent (at the terminals a–b) to the series

connection of a resistor having resistance

R0 ¼ RZ ¼ 127 O and an inductor having

inductance

L0 ¼ XZ

o
¼ 101O

2pð Þ 10kHzð Þ ¼ 1:61 mH:

(c) Similarly, for f ¼ 50 kHz ) o ¼ 100	
103p s�1, we obtain Z ¼ 100� j 35:4 O.
The reactance is negative, so the circuit is

equivalent (at the terminals a–b) to the series

connection of a resistor having resistance

R0 ¼ RZ ¼ 100 O and a capacitor having

capacitance

C ¼ � 1

oXZ
¼ � 1

2 pð Þ 50 kHzð Þ �35:4Oð Þ
¼ 89:9 nF:

In general, a load can be inductive at some frequen-

cies and capacitive at others, as illustrated by Example

12.26. But a load containing only resistors and induc-
tors is inductive at all frequencies and a load contain-

ing only resistors and capacitors is capacitive at all

frequencies. This follows from the fact that in a passive
circuit, inductance arises only from energy stored in a

magnetic field and capacitance arises only from energy

stored in an electric field. A load containing only resis-

tors and inductors can store energy only in magnetic

fields, and must be inductive. A load containing only

resistors and capacitors can store energy only in elec-

tric fields, and must be capacitive. A load containing

both capacitors and inductors can be capacitive or

inductive, depending upon the frequency of the source

and upon which energy-storage mechanism is domi-

nant at that frequency. Finally, the effective resistance
of a load containing only resistors, capacitors, and

inductors is non-negative. This follows from the fact

that the average power dissipated at the terminals of a

passive load must be non-negative.

Above, we are careful to confine remarks to passive

circuits – circuits containing no dependent sources. In

truth, whether a two-terminal circuit or load appears to

be inductive or capacitive (whether the reactance is

positive or negative) depends on the terminal charac-

teristic. If the terminal characteristic has the form

i ¼ K1vþ K2

dv

dt
$ ~I ¼ K1 þ joK2ð Þ ~V;

the circuit appears to be capacitive. If the terminal

characteristic has the form

v ¼ K1iþ K2

di

dt
$ ~V ¼ K1 þ joKð Þ ~I;

the circuit appears to be inductive. Certain active RC

circuits can exhibit positive reactance and certain

active RL circuits can exhibit negative reactance.

Also, certain active circuits can exhibit negative

Z1 Z1 Z2 Z3

a

b

aaa

bbb

R1 R1 R1

ZL

R2
Z

Fig. 12.29 See Example

12.26
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effective resistance. We treat one such active circuit in

Section 12.21.

Example 12.27. (a) Find two frequencies for

which the circuit of Example 12.26 is equiva-

lent to a resistor at the terminals a–b and find

the effective resistance in both cases. (b) Find

the range of frequencies for which the imped-

ance is capacitive and the range of frequencies

for which the impedance is inductive.

Solution: (a) From Example 12.26, the equiva-

lent impedance at the terminals a–b is given by

Z ¼ R1 þ R2 þ jo L

1� o2 LCþ joR2 C
: (12.49)

For the equivalent impedance to be resistive

(real), the imaginary part of the impedance

must be zero. Because R1 is real, this requires

Im
R2 þ jo L

1� o2 LCþ joR2 C

� �
¼ 0:

Multiplying numerator and denominator by

the conjugate of the denominator gives

Im

"
R2 þ jo L

1� o2 LCþ joR2 C

� �

	 1� o2 LC� joR2 C

1� o2 LC� joR2 C

� �#

¼ �oR2
2 Cþ o L 1� o2 LCð Þ

1� o2 LCþ joR2 Cj j2 ¼ 0:

The denominator in the expression above is

positive, so

� oR2
2 Cþ o L 1� o2 LC

	 
 ¼ 0:

This last equation is satisfied if either o ¼ 0 or

R2
2C¼ L 1�o2LC

	 
)o¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L�R2

2C

L2C

s

¼9:95	104 s�1) f ¼15:8 kHz:

For o ¼ 0 ) f ¼ 0, the effective resis-

tance is

R ¼ R1 þ R2 ¼ 110 O;

as is evident by inspection of the circuit

because, for f ¼ 0, the capacitor is an open

circuit ZCj j ! 1ð Þ and the inductor is a short

circuit ZL ¼ 0ð Þ.
For o ¼ 9:95	 104 s�1, the effective resis-

tance is, from (12.49),

R1 þ R2 þ jo L

1� o2 LCþ joR2 C
¼ 1:1 kO:

(b) The impedance is capacitive if the reac-

tance is negative. The frequencies for which

the circuit is capacitive are given by

Im
R2 þ jo L

1� o2 LCþ joR2 C

� �
< 0

) �oR2
2 Cþ o L 1� o2 LCð Þ

1� o2 LCþ joR2 Cj j2 < 0:

The denominator is the magnitude of a

quantity and is positive. Angular frequency

o is non-negative. The impedance is capaci-

tive for frequencies such that

� oR2
2 Cþ o L 1� o2 LC

	 

< 0;

which implies

o>

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L� R2

2 C

L2 C

s
¼ 9:95	 104 s�1

) f > 15:8 kHz:

Because the impedance is resistive for

f ¼ 0 and f ¼ 15:8 kHz and capacitive for

f > 15:8 kHz, and because the impedance

must be one of resistive, capacitive, or induc-

tive at each frequency, the impedance is induc-

tive for

0< f < 15:8 kHz:
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Exercise 12.19. Refer to Fig. 12.30. Use the

result obtained in Exercise 12.17 and calcu-

late the value of the impedance for fre-

quency f ¼ 5 kHz. Then find a series

combination of resistance and capacitance

or resistance and inductance having that

impedance at the specified frequency.

Repeat for f ¼ 1 kHz.

12.14 Susceptance and Effective
Conductance

An admittance can be expressed in rectangular form as

Y ¼ 1

Z
¼ GY þ j BY : (12.50)

The real part GY of admittance is called effective

conductance and the imaginary part BY is called sus-

ceptance.

admittance ¼ effective conductance

þ j	 susceptance: (12.51)

The dimension of both effective conductance and

susceptance is that of conductance and the SI unit of

both is siemens (S).

From (12.50), and because admittances in parallel

are additive, the susceptance and effective conduc-

tance of a load are defined with reference to an equiv-

alent parallel circuit for the load, as illustrated by

Fig. 12.31, whereas effective resistance and reactance

are defined with reference to an equivalent series

circuit for the load. Note that in Fig. 12.31, elements

are represented by their impedances, as is conven-

tional in circuit diagrams.

Admittance is the reciprocal of impedance, but in

general effective conductance is not the reciprocal of

effective resistance and effective susceptance is not

the reciprocal of effective reactance. That is, with

reference to Figs. 12.25 and 12.31, Z ¼ Y�1, but

RZ 6¼ GY
�1 and XZ 6¼ BY

�1. This is because

1

RZ þ jXZ
6¼ 1

RZ
þ 1

jXZ
:

From Table 12.2, the admittances of an inductor

and a capacitor are given by

YL ¼ 1

joL
¼ 0� j

1

o L
; YC ¼ 0þ joC: (12.52)

It follows from (12.50) that the susceptances of an

inductor and a capacitor are given by

BL ¼ � 1

oL
; BC ¼ oC: (12.53)

Because frequency, inductance, and capacitance

are positive quantities, the susceptance of an inductor

is negative and the susceptance of a capacitor is

positive.16 A load having a negative susceptance at a

particular frequency is inductive at that frequency and

a load having a positive susceptance at a particular

frequency is capacitive at that frequency. A load

whose admittance is real and non-zero at a particular

frequency is resistive at that frequency. At any partic-

ular frequency, a load containing any number of resis-

tors, capacitors, and inductors is equivalent to a single

resistor in parallel with either a single inductor (if

BY < 0) or a single capacitor (if BY > 0). It follows

from the last paragraph in the previous section that

the susceptance of a circuit containing only resistors
and inductors is negative for all frequencies and the

susceptance of a circuit containing only resistors and

capacitors is positive for all frequencies. Also, the

C

R1

R2

R3L

b

a

R1 = 1kΩ, R2 = 220 Ω, R3 = 330 Ω, L = 10mH, C = 100nF

Fig. 12.30 See Exercise 12.19

GY
−1 BY

−1Y −1 =

Fig. 12.31 Illustrating the definitions of effective conductance

and susceptance. See (12.50) and (12.51)

16Note that for any particular load at any particular frequency,

reactance and susceptance have opposite signs (if non-zero).
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effective conductance of a load containing only resis-

tors, capacitors, and inductors is non-negative.17

Example 12.28. Obtain expressions for the

effective conductance and susceptance of the

series connection of a resistor having resis-

tance R and an inductor having inductance L.

Solution: The impedance of the series connec-

tion is given by Z ¼ Rþ jo L. Hence the

admittance is given by

Y ¼ 1

Z
¼ 1

Rþ jo L

¼ 1

Rþ jo L

� �
R� jo L

R� jo L

� �

¼ R

R2 þ o Lð Þ2 � j
o L

R2 þ o Lð Þ2 :

Comparing the right side of this result with

(12.50) shows that the conductance and sus-

ceptance are given by

GY ¼ R

R2 þ o Lð Þ2 ; BY ¼ � oL

R2 þ oLð Þ2 :

Note that the susceptance is negative, as

expected for an inductive load.

The next example illustrates the fact that a circuit

containing both inductors and capacitors can be induc-

tive, capacitive, or resistive, depending upon the fre-

quency of the applied current or voltage.

Example 12.29. Obtain an expression for the

admittance of the load shown in Fig. 12.32 and

specify the frequencies for which the load is (i)

resistive, (ii) capacitive, and (iii) inductive in

terms of the circuit parameters.

Solution: The admittance of the load is

given by

Y ¼ 1

R
þ 1

jo L
þ joC ¼ 1

R
þ j oC� 1

oL

� �
:

The susceptance is given by

B ¼ ImðYÞ ¼ oC� 1

o L

� �
:

The load is resistive if the admittance is real

(if the susceptance equals zero), or for the

frequency given by

B ¼ 0 ) oC� 1

oL

� �
¼ 0 ) oC

¼ 1

o L
) o ¼

ffiffiffiffiffiffi
1

LC

r
) f ¼ 1

2p

ffiffiffiffiffiffi
1

LC

r
:

The load is capacitive if the susceptance is

positive, or for frequencies given by

B> 0 ) o>

ffiffiffiffiffiffi
1

LC

r
:

The load is inductive if the susceptance is

negative, or for frequencies given by

B< 0 ) o<

ffiffiffiffiffiffi
1

LC

r
) f <

1

2p

ffiffiffiffiffiffi
1

LC

r
:

Exercise 12.20. Refer to Fig. 12.33. Use

results obtained in Exercise 12.19 and calcu-

late the value of the impedance for frequency

f ¼ 5 kHz. Then find a parallel combination

of resistance and capacitance or resistance and

R L C

a

b
Fig. 12.32 See Example

12.29
CL

b

a R1

R2

R3

R1 = 1kΩ, R2 = 220 Ω, R3 = 330 Ω, L = 10mH, C = 100nF

Fig. 12.33 See Exercise 12.2017These remarks pertain to passive circuits.

12.14 Susceptance and Effective Conductance 413



inductance having that admittance at the spe-

cified frequency. Repeat for f ¼ 1 kHz.

12.15 Impedance and Admittance
Triangles

From the generalized form of Ohm’s law, the phasor

voltage across a load having impedance Z is given by

~V ¼ Z ~I;

where ~I is the phasor current entering the positive

terminal of the load. The angle of the product of

complex quantities equals the sum of the angles of

the factors. It follows that

∡ ~V ¼ ∡Z þ∡~I:

The angle of an inductive impedance is positive

because inductive reactance is positive. If the imped-

ance is inductive, then ∡Z> 0 and ∡ ~V>∡~I. The

current through an inductive load lags the voltage
across the load. The angle of a capacitive impedance

is negative because capacitive reactance is negative. If

the impedance is capacitive, then ∡Z< 0 and

∡ ~V<∡~I. The current through a capacitive load

leads the voltage across the load. If the impedance is

resistive, then ∡Z ¼ 0 and ∡ ~V ¼ ∡~I. The current
through a resistive load is in phase with the voltage

across the load.

An impedance Z=R+jX can be represented graphi-

cally by a point (R, X) in a complex plane, as illu-

strated by Fig. 12.34(a). The abscissa is the effective

resistance and the ordinate is the reactance. Lines

drawn as shown in Fig. 12.34(a). form a right triangle

called the impedance triangle. The length of the

hypotenuse of the triangle is the magnitude of the

impedance and the angle formed by the hypotenuse

and the real axis is the angle of the impedance. If the

angle of the impedance of a load is positive, the load is

inductive and current through the load lags the voltage

across the load.

Similarly, an admittance Y = G þ jB can be repre-

sented graphically by a point (G, B) in a complex

plane, as illustrated by Fig. 12.34(b). The abscissa is

the effective conductance and the ordinate is the sus-

ceptance. Lines drawn as shown in Fig. 12.34(b) form

a right triangle called the admittance triangle.18 The

length of the hypotenuse of the triangle is the magni-

tude of the admittance, and the angle formed by the

hypotenuse and the real axis is the angle of the admit-

tance. If the angle of the admittance of a load is

positive, the load is capacitive and current through

the load leads the voltage across the load.

Exercise 12.21. Refer to Exercise 12.19 and

Exercise 12.20,where you calculated the imped-

ance and the admittance at the terminals a–b for
f ¼ 1 kHz and f ¼ 5 kHz. Draw impedance

and admittance triangles for both cases.

12.16 Linearity and Superposition

The principle of superposition (as applied to sinusoi-

dally excited circuits) can be stated as follows:

|Z | |Y |

Z

Im(Z ) Im(Y )

Re(Z ) Re(Y )

Y

(a) Z = RZ  + jXZ (b)Y = GY  + jBY

XZ BY

RZ GY

Fig. 12.34 Impedance and

admittance triangles

18We define the admittance triangle for sake of completeness;

however, admittance triangles are rarely seen in practice.
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Suppose an RLC circuit contains two or more inde-

pendent sinusoidal current or voltage sources. Then

any particular current or voltage in the circuit can be

obtained as the sum of the corresponding currents or

voltages found by applying the independent sources

one at a time, all other independent sources being set

to zero. Do not set dependent sources to zero. In

applications of superposition, the various independent

sources may be applied in any order.

To set a voltage source to zero, replace the source

with a short circuit. To set a current source to zero,

replace the source with an open circuit.

Example 12.30. Using superposition, obtain

an expression for the phasor current ~I3 in the

circuit shown in Fig. 12.35(a), where the inde-

pendent sources have the same frequency.

Solution: We first find the current ~I3 due to the

voltage source ~V0 acting alone; that is, with the

source current ~I0 set to zero (with the current

source replaced by an open circuit), as illu-

strated by Fig. 12.35(b). This gives

~I3
��
~I0¼0

¼
~V0

Z1 þ Z2 þ Z3
:

Next we find the current ~I3 due to the cur-

rent source ~I0 acting alone; that is, with the

source voltage ~V0 set to zero (with the voltage

source replaced by a short circuit), as illu-

strated by Fig. 12.35(c). We obtain

~I3
��
~V0¼0

¼
~I0 Z2

Z1 þ Z2 þ Z3
:

The phasor for the (total) current ~I3 is

given by

~I3 ¼ ~I3
��
~I0¼0

þ~I3
��
~V0¼0

¼
~V0

Z1 þ Z2 þ Z3
þ

~I0 Z2
Z1 þ Z2 þ Z3

and the current is given in the time domain by

i3 tð Þ ¼ ~I3
�� �� cos o0 tþ∡~I3

	 

;

where f0 is the frequency of either source.

Example 12.31. Refer to Fig. 12.36, where

R1 ¼ 100 O; C ¼ 2 mF; RF ¼ 500 kO

Ro ¼ 100 kO; RL ¼ 2 kO; L ¼ 400 mH;

g ¼ 0:1 S; va tð Þ ¼ Va cos oa tð Þ;
Va ¼ 750 mV; fa ¼ 500 Hz;

vb tð Þ ¼ Vb cos ob tþ yð Þ; Vb ¼ 20 mV;

fb ¼ 1 kHz; y ¼ 0:5:

Using reasonable approximations to simplify

the calculations, find the output vL tð Þ.
Solution: Set vb tð Þ to zero. Do not set the

dependent source to zero. Use phasors to

find output due to va tð Þ. Kirchhoff’s current law
gives

2

R1

þ 1

RF
þYC

� �
~V1� 1

RF

~VL¼ 1

R1

~Va;

g� 1

RF

� �
~V1þ 1

Ro
þ 1

RF
þ 1

RL
þ 1

ZL

� �
~VL¼0;

YC¼ joC; ZL¼ joL:

I0
~

I3
~

I3|I0 = 0

~ ~

I3|V0 = 0
~ ~

V0
~

Z1

Z2
Z3

V0
~

Z1 Z2

Z3

Z1 Z2

Z3

(a)

(b)

(c)

+
–

+
–

Fig. 12.35 See Example 12.30
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From the given parameter values, we have

1

R1

� 1

RF
; g � 1

RF
;

1

RL
� 1

Ro
>

1

RF
:

so the equations above become

2

R1

þYC

� �
~V1� 1

RF

~VL ffi 1

R1

~Va;

g ~V1þ 1

RL
þ 1

ZL

� �
~VL ffi 0:

Eliminate ~V1 to obtain

~VLa ffi �gRFRLZL
RFRLþRFZLð Þ 2þYCR1ð ÞþgR1RLZL

~Va

) ~VLa

�� ��ffi 37:774V;∡ ~VLa ffi�2:443:

Set va tð Þ to zero. Do not set the dependent

source to zero. Use phasors to find output due to

vb tð Þ. The equations are unchanged, except ~Vb

replaces ~Va:

~VLb ffi �gRFRLZL ~Vb

RF RLþZLð Þ 2þYCR1ð ÞþgR1RLZL

) ~VLb

�� ��ffi 1:308V;∡ ~VLbffi�2:532:

By superposition, the output is given by

vL tð Þ ¼ ~VLa

�� �� cos oa tþ∡ ~VLa

	 

þ ~VLb

�� �� cos ob tþ yþ∡ ~VLb

	 

ffi 37:774 cos o0 t� 2:443ð Þ½
þ1:308 cos o1 t� 2:532ð Þ�V:

The principle of superposition is a consequence

of Kirchhoff’s laws and the fact that the terminal

characteristics of resistors, capacitors, inductors, and

dependent sources are linear. We can show this as

follows: Applying Kirchhoff’s laws to an RLC circuit

driven by sinusoidal sources x1 tð Þ; x2 tð Þ; . . . ; xM tð Þ
leads to a set of equations of the form

a11 ~Y1 þ a12 ~Y2 þ    þ a1N ~YN

¼ b11 ~X1 þ b12 ~X2 þ    þ b1M ~XM;

a21 ~Y1 þ a22 ~Y2 þ    þ a2N ~YN

¼ b21 ~X1 þ b22 ~X2 þ    þ b2M ~XM;

..

.

aN1 ~Y1 þ aN2 ~Y2 þ    þ aNN ~YN

¼ bN1 ~X1 þ bN2 ~X2 þ    þ bNM ~XM;

(12.54)

where the ~X’s are the phasors for the source currents

voltages, the ~Y’s are unknown phasor currents or

voltages, and the a’s and b’s are (in general) func-

tions of frequency and circuit parameters (impe-

dances or admittances), but are independent of the

known and unknown currents and voltages. We

have temporarily ignored the fact that the various

sources and responses might have different frequen-

cies, in which case we cannot actually compute

the indicated sums. (A sum of phasors representing

sinusoids having different frequencies is meaning-

less.) However, we remedy this temporary oversight

in what follows.

Formally, the solution of (12.54) has the form

~Y1 ¼ c11 ~X1 þ c12 ~X2 þ    þ c1M ~XM;

~Y2 ¼ c21 ~X1 þ c22 ~X2 þ    þ c2M ~XM;

..

.

~YN ¼ cN1 ~X1 þ cN2 ~X2 þ    þ cNM ~XM;

(12.55)

where the c’s are functions of frequency and the circuit

parameters, but do not depend upon the source cur-

rents and voltages (the ~X’s). Each term on the right

side of each equation in (12.55) is that part of the

RF

Ro RL LC v1

+

+
–

–

vL

+

–
gv1

R1

R1

va vb
+
–

Fig. 12.36 See Example

12.31
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associated response due to a particular source. For

example, c12 ~X2 is that part of the response ~Y1 that is

due to the source ~X2.

If all sources have the same frequency f0, then we

can form the sums on the right side of (12.55) and

obtain

y1 tð Þ ¼ ~Y1
�� �� cos o0 tþ∡ ~Y1

	 

;

y2 tð Þ ¼ ~Y2
�� �� cos o0 tþ∡ ~Y2

	 

;

..

.

yN tð Þ ¼ ~YN
�� �� cos o0 tþ∡ ~YN

	 

:

(12.56)

If the sources do not all have the same frequency,

we must convert each phasor on the right side of

(12.55) to the time domain before forming the indi-

cated sums. In general, if all have different frequen-

cies, we would define

~Y11 ¼ c11 ~X1; ~Y12 ¼ c12 ~X2; . . . ; ~Y1M ¼ c1M ~XM;

~Y21 ¼ c21 ~X1; ~Y22 ¼ c22 ~X2; . . . ; ~Y2M ¼ c2M ~XM;

..

.

~YN1 ¼ cN1 ~X1; ~YN2 ¼ cN2 ~X2; . . . ; ~YNM ¼ cNM ~XM:

(12.57)

where ~Ynm is the phasor for the sinusoidal component

of yn tð Þ due to the sinusoidal source xm tð Þ. The two

phasors in each of the relations in (12.57) (e.g., ~Y11 and
~X1) represent sinusoids having the same frequency.

We can convert each phasor to the equivalent time-

domain sinusoidal function to obtain

y11 tð Þ ¼ ~Y11
�� �� cos o1 tþ∡ ~Y11

	 

;

y12 tð Þ ¼ ~Y12
�� �� cos o2 tþ∡ ~Y12

	 

; . . . ;

y1M tð Þ ¼ ~Y1M
�� �� cos oM tþ∡ ~Y1M

	 

;

y21 tð Þ ¼ ~Y21
�� �� cos o1 tþ∡ ~Y21

	 

;

y22 tð Þ ¼ ~Y22
�� �� cos o2 tþ∡ ~Y22

	 

; . . . ;

y2M tð Þ ¼ ~Y2M
�� �� cos oM tþ∡ ~Y2M

	 

;

..

.

yN1 tð Þ ¼ ~YN1
�� �� cos o1 tþ∡ ~YN1

	 

;

yN2 tð Þ ¼ ~YN2
�� �� cos o2 tþ∡ ~YN2

	 

; . . . ;

yNM tð Þ ¼ ~YNM
�� �� cos oM tþ∡ ~YNM

	 

:

The following example illustrates the development

above.

Example 12.32. Refer to Fig. 12.37. We seek

expressions for the currents ~I1; ~I2.
Solution: We label two paths and associated

loop currents, as shown in Fig. 12.37. We write

Kirchhoff’s voltage law around each path to

obtain

Z1~I1 þ Z3 ~I1 � ~I2
	 
 ¼ ~Va

) Z1 þ Z3ð Þ~I1 � Z3 ~I2 ¼ ~Va;

Z2 ~I2 � Z3 ~I1 � ~I2
	 
 ¼ � ~Vb

) �Z3 ~I1 þ Z2 þ Z3ð Þ ~I2 ¼ � ~Vb: (12.58)

The right sides of (12.58) have the form

given in (12.54), with

~Y1 ¼ ~I1; ~Y2 ¼ ~I2; ~X1 ¼ ~Va; ~X2 ¼ ~Vb;

a11 ¼ a22 ¼ Z1 þ Z3; a12 ¼ a21 ¼ �Z3;

b11 ¼ 1; b22 ¼ �1:

The solution of (12.58) is

~I1 ¼ Z2 þ Z3ð Þ
Z1 Z2 þ Z1 Z3 þ Z2 Z3

� �
~Va

þ �Z3
Z1 Z2 þ Z1 Z3 þ Z2 Z3

� �
~Vb;

~I2 ¼ Z3
Z1 Z2 þ Z1 Z3 þ Z2 Z3

� �
~Va

þ � Z1 þ Z3ð Þ
Z1 Z2 þ Z1 Z3 þ Z2 Z3

� �
~Vb; (12.59)

which has the form given in (12.55), with

Z1 Z2

Z3

~
V1

~
Va

~
Vb

~
I1

~
I2

+

+
–

+
–

–
~
V2

~
V3

+ –

+

–

Fig. 12.37 See Example 12.32
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c11 ¼ Z2 þ Z3ð Þ
Z1 Z2 þ Z1 Z3 þ Z2 Z3

� �
;

c12 ¼ �Z3
Z1 Z2 þ Z1 Z3 þ Z2 Z3

� �
;

c21 ¼ Z3
Z1 Z2 þ Z1 Z3 þ Z2 Z3

� �
;

c22 ¼ � Z1 þ Z3ð Þ
Z1 Z2 þ Z1 Z3 þ Z2 Z3

� �
:

If ~Va and ~Vb have the same frequency, then

both ~I1 and ~I2 also have that frequency, and we

may use (12.59) as it stands. But if ~Va and ~Vb

have different frequencies, then we must

rewrite (12.59) as

~I1a ¼ Z2 þ Z3ð Þ
Z1 Z2 þ Z1 Z3 þ Z2 Z3

� �
~Va;

~I1b ¼ �Z3
Z1 Z2 þ Z1 Z3 þ Z2 Z3

� �
~Vb;

~I2a ¼ Z3
Z1 Z2 þ Z1 Z3 þ Z2 Z3

� �
~Va;

~I2b ¼ � Z1 þ Z3ð Þ
Z1 Z2 þ Z1 Z3 þ Z2 Z3

� �
~Vb: (12.60)

The next two examples further illustrate

these results.

Example 12.33. In the circuit treated in

Example 12.32, let Z1 ¼ joL, with

L ¼ 50 mH, Z2 ¼ joCð Þ�1
, with C ¼ 400 nF,

and Z3 ¼ 300 O. Find ia tð Þ and ib tð Þ if: (a), the
excitations have the same frequency, and are

given by

vaðtÞ¼Vacosðo0 tÞ; vb tð Þ¼Vb cos o0 tþyð Þ;

with f0 ¼ 1 kHz; Va ¼ 10 V;Vb ¼ 5 V;y¼ 0:5;
and (b) the excitations have different frequen-

cies and are given by

va tð Þ¼Vacos o0 tð Þ; vb tð Þ¼Vb cos 2o0 tþyð Þ;

with f0 ¼ 1 kHz; Va ¼ 10 V; Vb ¼ 5 V;y¼ 0:5:

Solution: From Example 12.32, we have

~I1a ¼ c11 ~Va; ~I1b ¼ c12 ~Vb;

~I2a ¼ c21 ~Va; ~I2b ¼ c22 ~Vb;

where

c11 ¼ Z2 þ Z3
Z1 Z2 þ Z1 Z3 þ Z2 Z3

� �
;

c12 ¼ �Z3
Z1 Z2 þ Z1 Z3 þ Z2 Z3

� �
;

c21 ¼ Z3
Z1 Z2 þ Z1 Z3 þ Z2 Z3

� �
;

c22 ¼ � Z1 þ Z3ð Þ
Z1 Z2 þ Z1 Z3 þ Z2 Z3

� �
;

with

Z1 ¼ j2p f L; Z2 ¼ j2p f Cð Þ�1; Z3 ¼ 300 O:

For Part (a), the excitations have the same

frequency f0 ¼ 1 kHz, so

~I1 ¼ c11 f0ð Þ ~Va þ c12 f0ð Þ ~Vb;

~I2 ¼ c21 f0ð Þ ~Va þ c22 f0ð Þ ~Vb;

with

~Va ¼ 10 V; ~Vb ¼ 5ff0:5ð Þ V:

We find

c11 f0ð Þ ¼ 2:922� j2:596ð Þ mS;

c12 f0ð Þ ¼ �2:307� j0:464ð Þ mS;

c21 f0ð Þ ¼ 2:307þ j0:464ð Þ mS;

c22 f0ð Þ ¼ �1:821� j2:879ð Þ mS;

and so

~I1 ¼ 39:142ff � 1:028ð Þ mA

) ia tð Þ ¼ 39:142 cos o0 t� 1:028ð Þ mA;

~I2 ¼ 25:218ff � 0:512ð Þ mA

) ib tð Þ ¼ 25:218 cos o0 t� 0:512ð Þ mA;

where va tð Þ ¼ Va cos o0 tð Þ is the phase

reference.
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In Part (b), the excitations have different

frequencies: f0 ¼ 1 kHz for va tð Þ and 2f0 ¼
2 kHz for vb tð Þ. Thus we have

~I1a ¼ c11 f0ð Þ ~Va; ~I1b ¼ c12 2f0ð Þ ~Vb;

~I2a ¼ c21 f0ð Þ ~Va; ~I2b ¼ c22 2f0ð Þ ~Vb;

where c11 f0ð Þ and c21 f0ð Þ have the values given
above, but

c12 2f0ð Þ ¼ �1:164þ j1:199ð Þ mS;

c22 2f0ð Þ ¼ �3:676� j1:238ð Þ mS;

and so

~I1a ¼ c11 f0ð Þ ~Va ¼ 39:084ff � 0:726ð Þ mA

) i1a tð Þ ¼ 39:084 cos o0 t� 0:726ð Þ mA;

~I1b ¼ c12 2f0ð Þ ~Vb ¼ 8:357ff2:841ð Þ mA

) i1b tð Þ ¼ 8:357 cos 2o0 tþ 2:841ð Þ mA;

~I2a ¼ c21 f0ð Þ ~Va ¼ 25:530ff0:198ð Þ mA

) i2a tð Þ ¼ 25:530 cos o0 tþ 0:198ð Þ mA;

~I2b ¼ c22 2f0ð Þ ~Vb ¼ 19:395ff � 2:317ð Þ mA

) i2b tð Þ ¼ 19:395 cos 2o0 t� 2:317ð Þ mA:

Finally,

i1 tð Þ ¼ i1a tð Þ þ i1b tð Þ
¼ 39:084 cos o0 t� 0:726ð Þ mA

þ 8:357 cos 2o0 tþ 2:841ð Þ mA;

i2 tð Þ ¼ i2a tð Þ þ i2b tð Þ
¼ 25:530 cos o0 tþ 0:198ð Þ mA

þ 19:395 cos 2o0 t� 2:317ð Þ mA:

Equations obtained by applying Kirchhoff’s laws to

any sinusoidally excited RLC circuit can always be put

in the form (12.54) and the solution for such a set can

always be written in the form (12.55), provided the

solution is interpreted as indicated by (12.57). Equa-

tion (12.55) [or, e.g., (12.59)] expresses each current

and voltage in a sinusoidally excited RLC circuit as

a linear combination of source currents and voltages.

To find a particular current or voltage due to a particu-

lar source current or voltage, we set all source currents

and voltages except the one of interest to zero. For

example, with reference to (12.59) in the example

above, the phasor for that part of the current i2(t) that

can be attributed to the source vb tð Þ is given by

~I2
��
~Va¼0

¼ � Z1 þ Z3ð Þ
Z1 Z2 þ Z1 Z3 þ Z2 Z3

� �
~Vb: (12.61)

Similarly, the phasor for that part of the current

i2 tð Þ that can be attributed to the source va tð Þ is

given by

~I2
��
~Vb¼0

¼ Z3
Z1 Z2 þ Z1 Z3 þ Z2 Z3

� �
~Va: (12.62)

If va tð Þ and vb tð Þ have the same frequency, the

phasor for the (total) current can be obtained by adding

the right sides of (12.61) and (12.62), in agreement

with the principle of superposition. If va tð Þ and vb tð Þ
have different frequencies, an expression for the total

current can be obtained by converting the individual

phasors to the time domain and adding the sinusoidal

functions in the time-domain, again in agreement with

the principle of superposition.

Equations (12.54) are linear equations, RLC cir-

cuits are linear circuits, and superposition is a conse-

quence of linearity. Superposition greatly facilitates

analysis of circuits excited by several sinusoidal

sources having different frequencies, and mainly in

cases where all sources are applied to a single termi-

nal pair (an input port). In such cases, it is essential to
express impedances and admittances as functions of

frequency (not numerically), so they can be computed

individually for each sinusoidal component of the

excitation.

Example 12.34. In Fig. 12.38, i tð Þ ¼
I1 cos o1 tð Þþ I2 cos o2 tþ yð Þ, where o1 6¼o2.

Use superposition to obtain an expression for

the voltage v.

Solution: Let ~I1 ¼ I1ff0; ~I2 ¼ I2ffy and obtain

expressions for the responses to these excitations

i (t) C R v

+

–
Fig. 12.38 See Example

12.34
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individually, using the appropriate frequency in

each case. Kirchhoff’s current law yields

~V

R
þ joC ~V ¼ ~I

) ~V ¼ R

1þ joCR
~I: (12.63)

The individual phasors for the individual

responses are

~V1 ¼ R

1þ jo1 CR
~I1

) v1 tð Þ ¼ ~V1

�� �� cos o1 tþ∡ ~V1

	 

;

~V2 ¼ R

1þ jo2 CR
~I2

) v2 tð Þ ¼ ~V2

�� �� cos o2 tþ yþ∡ ~V2

	 

: (12.64)

By superposition,

v tð Þ ¼ v1 tð Þ þ v2 tð Þ
¼ ~V1

�� �� cos o1 tþ∡ ~V1

	 

þ ~V2

�� �� cos o2 tþ yþ∡ ~V2

	 

: (12.65)

Example 12.35. Refer to Fig. 12.39(a), where

R ¼ 10 kO; C ¼ 15:9 nF and

vinðtÞ ¼ V0 þ V1 cos o0 tð Þ
þ V2 cos 2o0 t� p=6ð Þ;

f0 ¼ 1 kHz:

(a) Obtain an expression for the output

voutðtÞ. (b) Calculate the amplitudes and phases

of the individual components of the output for

V0 ¼ V1 ¼ V2 ¼ 5 V.

Solution: The best approach to a problem of this

kind, where a number of sinusoidal inputs are

applied at a single input port, is to first express

the output phasor for a single sinusoidal input

as a function of the frequency of the input, use

that relation to compute the output phasor for

each component of the input, and add the

results (superposition). From Fig. 12.39(b), by

voltage division, the phasor output ~Vout for pha-

sor input ~V is given by

~Vout ¼ ZC
ZC þ R

~V ¼
~V

1þ joRC
: (12.66)

Next, we use (12.66) to find the phasor out-

put for each component of the input (individu-

ally). It is helpful to think of the necessary

calculations in tabular form, as below:19

Frequency

of input

(and

output)

Input phasor Output phasor

o ¼ 0 ~V ¼ ~V0 ¼ 5 V ~Vout ¼
~V0

1þ j 0
¼ 5 V

o ¼ o0

¼ 2 p f0

~V¼ ~V1¼V0¼5V ~Vout ¼
~V1

1þ jo0 RC

¼ 5 V

1þ j

¼ 5 Vffiffiffi
2

p ffðp=4Þ
¼ 5ffiffiffi

2
p ffð�p=4ÞV

o ¼ 2o0

¼ 4 p f0

~V ¼ ~V2

¼ 5ffð�p=6ÞV
~Vout ¼

~V2

1þ j 2o0 RC

¼ 5ffð�p=6Þ
1þ j2

V

¼ 5ffð�p=6Þffiffiffi
5

p ff1:11 V

¼
ffiffiffi
5

p
ffð�1:63ÞV

Finally, we convert each phasor component

of the output to a sinusoid having the

corresponding frequency and add the results.

Thus

vout tð Þ ¼
"
5þ 5ffiffiffi

2
p cos o0t� p

4

� �

þ
ffiffiffi
5

p
cos 2o0t� 1:63ð Þ

#
V;

f0 ¼ 1 kHz:

19Because the standard form for a sinusoid is a cosine, a dc

component can be treated as a sinusoid whose frequency is zero.
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12.17 Thévenin and Norton Equivalent
Circuits: Source Transformations

The statement of Thévenin’s (or Norton’s) theorem for

a circuit in sinusoidal steady state is essentially identi-

cal to that for a resistive circuit if the terminal charac-

teristic is expressed in terms of phasors. Refer to

Fig. 12.40(a). The terminal characteristic at a terminal

pair (a port) of a linear circuit in sinusoidal steady state

can be expressed as

~I
~Isc

¼ 1�
~V
~Voc

; (12.67)

where ~Isc; ~Voc are the phasor representations of the

short-circuit current and the open-circuit voltage,

respectively.

With the definitions

~VT ¼ ~Voc; ZT ¼
~Voc

~Isc
; ~IN ¼ ~Isc; ZN ¼ ZT ¼

~Voc

~Isc
;

(12.68)

Equation (12.67) can be written as

~V ¼ ~VT � ~I ZT ; (12.69)

which has the form of a Kirchhoff’s voltage law

equation and suggests the circuit model shown in

Fig. 12.40(b), or as

~I ¼ ~IN �
~V

ZN
; (12.70)

which has the form of a Kirchhoff’s current law equa-

tion and suggests the circuit model shown in Fig. 12.40

(c). The (non-physical) impedance ZT ¼ ZN is called

(variously) the Thévenin equivalent impedance, the

Norton equivalent impedance, the output imped-

ance of the circuit, the source impedance, or the

internal impedance of the circuit (regarded as a

source), depending upon context. Proof of Théve-

nin’s theorem expressed in terms of phasors for ter-

minal current and voltage is virtually identical to that

given for resistive circuits in Chapter 4. Note that the

same phase reference must be used when finding the
open-circuit voltage and short-current current. Oth-

erwise, the angle of the Thévenin (Norton) imped-

ance can be incorrect. In other words, if a circuit is

driven by more than one sinusoidal source (all having

the same frequency), use the same one as the phase

reference for both the open-circuit and the short-

circuit calculations.

Thévenin’s and Norton’s theorems justify source

transformations for circuits in sinusoidal steady state.

Such transformations are carried out (symbolically)

exactly as they are for resistive circuits, but using

phasor currents and voltages and impedances instead

of actual (time-domain) currents and voltages and

resistances.

vin vout

+

–

R
C

(a) original circuit

+
–

Vout

+

–

ZC

R
V(w)

(b) transformed circuit

~ ~+
–

Fig. 12.39 See Example

12.35

ZT
ZNlinear circuit

+
+
–

–

V
~

+

–

V
~

+

–

V
~

VT
~

IN
~

I
~

I
~

I
~

load load load

VT  = Voc, ZT  = Voc / Isc
~ ~ ~ ~
(b) Thevenin equivalent

IN  = Isc, ZN  = ZT  = Voc / Isc
~ ~ ~ ~

(c) Norton equivalent(a) original circuit
Fig. 12.40 Thévenin and

Norton equivalents for a

one-port linear circuit
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Usually, it is best to express Thévenin source vol-

tages, Norton source currents, and Thévenin or Norton

equivalent impedances symbolically, as functions of

frequency and circuit parameters. If the source voltage

or current and equivalent impedance are expressed

numerically, the model is valid for only the particular

frequency for which those quantities are calculated.

Example 12.36. Refer to Fig. 12.41(a), where

i0 ¼ I0 cos otð Þ. Obtain the Thévenin equivalent
for the circuit at the terminals a–b. Express the

Thévenin source voltage and the Thévenin

impedance in terms of frequency and circuit

parameters.

Solution: Figure 12.41(b)–(d) shows steps in the
solution, where

~I0 ¼ I0ff0; ZC ¼ 1

joC
:

From Fig. 12.41(d), we obtain

~Voc ¼ R2
~I0 R1

R1 þ ZC þ R2

; ~Isc ¼
~I0 R1

R1 þ ZC
:

It follows that

~VT ¼ ~Voc ¼ R2
~I0R1

R1þZCþR2

¼ joCR1R2 I0
1þ joC R1þR2ð Þ ;

ZT ¼
~Voc

~Isc
¼ R1þZCð ÞR2

R1þZCþR2

¼ R2 1þ joCR1ð Þ
1þ joC R1þR2ð Þ :

As one check on this result, we note that if

the capacitance is set to zero, then from the

expression above

ZT ¼ R2 1þ 0ð Þ
1þ 0

¼ R2:

If C ¼ 0 then ZC ¼ 1= joCð Þ ! 1 (the

capacitor is replaced by an open circuit), the

impedance seen at the terminals a–b equals R2,

and ZT ¼ R2, in agreement with the value given

under the same condition by the expression

above.

Example 12.37. Refer to Fig. 12.42. (a) Obtain expressions for the Thévenin equivalent source voltage

and the Thévenin equivalent impedance at the terminals a–b. (b) Calculate the values of the Thévenin

source voltage and Thévenin equivalent impedance. Express the Thévenin source voltage in polar form

and the Thévenin equivalent impedance in rectangular form. (c) Represent the Thévenin equivalent

impedance as a resistor in series with an inductor or capacitor, as appropriate, and give the values of the

effective resistance and inductance or capacitance.

C
R1 R2

R1
R2

i0

a

b

C
a

b

a

b

R2

R1 ZC

a

b

R2

(a) original circuit (b) after source transformation

(c) transformed to 
frequency domain

(d) reduced to
voltage divider

i0 R1

R1+ZC

I
~

0 R1 I
~

0 R1

Fig. 12.41 See Example

12.36
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Solution: Figure 12.43 illustrates steps in the solution. We first transform the circuit, replacing sources

by their phasor representations and elements by their impedances, to obtain the circuit shown in

Fig. 12.43(a), where

Z1 ¼ R1 þ jo L ¼ 10:0þ j 157 O; Z3 ¼ R3 þ 1

joC
¼ 1:00	 103 � j159 O;

~I0 ¼ I0ffðp=6Þ ¼ 10ff ðp=6Þ mA; ~V0 ¼ V0ff 0 ¼ 5ff 0 V:

R2 R3C

L

a

b

R1

i0(t) v0(t)

R1 = 10 Ω, R2 = R3 = 1kΩ, C = 200nF, L = 5mH

i0(t) = I0 cos  ωt+     , v0 (t) = V0 cos(ωt)

I0 = 10mA, V0 = 5 V, f  = 5kHz

π
6

+
–

Fig. 12.42 See Example 12.37

a

b

a

b

a

b

a

b

+

–

R2

R2

(a)

(b)

(c)

(d)

Z3

Z3

Z3

Z 3

Z 2

Z2

Z1

Z1I
~

0

I
~
sc

V
~

1

V
~

1

V
~

1 V
~

0

V
~

0

V
~

0

V
~

0

V
~

oc

Fig. 12.43 See Example 12.37
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We use a source transformation to obtain the circuit shown in Fig. 12.43(b), where

~V1 ¼ ~I0 Z1 ¼ 1:57ff2:03 V:

We combine the impedance Z1 and the resistor R2 to obtain the circuit shown in Fig. 12.43(c), where

Z2 ¼ Z1 þ R2:

To find the open-circuit voltage, we apply Kirchhoff’s current law to node a. This gives

~Voc � ~V1

Z2
þ

~Voc � ~V0

Z3
¼ 0 ) ~Voc ¼

~V1 Z3 þ ~V0 Z2
Z3 þ Z2

¼ 2:55ff0:468 V:

To find the short-circuit current, we short the terminals a–b, as shown in Fig. 12.43(d), and again

apply Kirchhoff’s current law to node a. This gives

�
~V1

Z2
�

~V0

Z3
þ ~Isc ¼ 0 ) ~Isc ¼

~V1 Z3 þ ~V0 Z2
Z3Z2

¼ 4:95ff0:471 mA:

The Thévenin source voltage is

~VT ¼ Voc ¼ 2:55ff0:468 V:

The Thévenin equivalent impedance is

ZT ¼
~Voc

~Isc
¼ Z2 Z3

Z2 þ Z3
¼ 515ff � 0:003 O:

Figure 12.44 Shows the Thévenin equivalent circuit, where (summary)

Z1 ¼ R1 þ jo L; Z2 ¼ Z1 þ R2; Z3 ¼ R3 þ 1

joC
;

~VT ¼
~I0 Z1 Z3 þ ~V0 Z2

Z2 þ Z3
; ZT ¼ Z2 Z3

Z2 þ Z3
:

(b) From part (a)

VT

ZT

a

b

~+
–

Fig. 12.44 See Example

12.37

vT

515 Ω
a

b
vT(t) = 2.55 cos (wt+0.468) V; f = 5kHz

24.6 μF+
–

Fig. 12.45 See Example 12.37

424 12 Sinusoids, Phasors, and Impedance



Z1 ¼ R1 þ jo L ¼ 10:0þ j 157 O ¼ 157ff1:51 O;

Z2 ¼ Z1 þ R2 ffi 1010þ j 157 O ¼ 1:02ff0:154 kO;

Z3 ¼ R3 þ 1

joC
ffi 1:00	 103 � j 159 O ¼ 1:01ff � 0:158 kO;

~I0 ¼ I0ffp
6
¼ 10ff p

6
mA; ~V0 ¼ V0ff0 ¼ 5ff0 V;

~VT ¼
~I0 Z1 Z3 þ ~V0 Z2

Z2 þ Z3

ffi 10 mAffp=6ð Þ 157 Off1:51ð Þ 1:01 kOff � 0:156ð Þ þ 5 Vff0ð Þ 1:02 kOff0:154ð Þ
1010þ j 157ð Þ Oþ 1:00	 103 � j159ð Þ O

ffi 2:55 Vff0:468 V;

ZT ¼ Z2 Z3
Z2 þ Z3

ffi 1:02 kOff0:154ð Þ 1:01 kOff � 1:58ð Þ
1010þ j 157ð Þ Oþ 1:00	 103 � j159ð Þ O ffi 515ff � 0:0025 O

ffi 515� j1:29 O

(c) The Thévenin equivalent reactance is negative, so the equivalent impedance (at the specified

frequency) is a series connection of a resistor and capacitor:

ZT ¼ RT þ j XT ; XT ¼ � 1

joCT
ffi �1:29 O;

RT ffi 515 O; CT ¼ � 1

oXT
ffi 24:6 mF

Figure 12.45 shows the equivalent circuit (for f ¼ 5 kHz).

Exercise 12.22. In Fig. 12.46, vS ¼
VS cos o0 tð Þ, with VS ¼ 5 V and f ¼ 20 kHz.

Find the values of the Thévenin equivalent

(open circuit) voltage and impedance at the

terminals a–b.

The Thévenin or Norton equivalent for a circuit can

be obtained from a circuit diagram by finding the

open-circuit voltage and the short-circuit current at

the terminals of the circuit. Equation (12.67) is a linear

relation between terminal current ~I and terminal volt-

age ~V. Given any two pairs of values of current ~I and
voltage ~V satisfying (12.67), we can determine the

short-circuit phasor current ~Isc and the open-circuit

phasor voltage ~Voc. Let ~V1; ~I1
	 


and ~V2; ~I2
	 


denote

two such pairs. Then

~I1
~Isc

þ
~V1

~Voc

¼ 1;
~I2
~Isc

þ
~V2

~Voc

¼ 1; (12.71)

which can be written

~I1 ~V1

~I2 ~V2

0
@

1
A ~I�1

sc

~V�1
oc

 !
¼

1

1

 !

)
~I�1
sc

~V�1
oc

0
@

1
A ¼

~I1 ~V1

~I2 ~V2

0
@

1
A

�1
1

1

 !
: (12.72)

a

b

vS

RS

L1

L2

C1 C2

RS = 100 Ω, L1 = 1mH, C1 = 100nF, L2 =200 μH, C2 = 40nF

+
–

Fig. 12.46 See Exercise 12.22
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The solution is

~Voc ¼
~V2

~I1 � ~V1
~I2

~I1 � ~I2
; ~Isc ¼

~V2
~I1 � ~V1

~I2
~V2 � ~V1

: (12.73)

The analysis above culminating with (12.73) seems

straightforward, but there is a practical difficulty with

(12.73), in that the measurements ~V1; ~I1
	 


and ~V2; ~I2
	 


require a common phase reference. We cannot simply

attach one load to the terminals and observe the load

voltage ~V1, then attach a second and again observe the

load voltage ~V2 because we have no means of assigning

initial phases (or a relative phase) to the observed wave-

forms. The next example illustrates this difficulty.

Example 12.38. Refer to Fig. 12.47, where

we seek to find the Thévenin parameters
~VT ; ZT from measurements made at the term-

inals a–b. Unknown to us, ~VT ¼ 20ff0 V,

ZT ¼ 2þ j2ð Þ kO, and the frequency of the

source is f0 ¼ 5 kHz.

We use an oscilloscope to observe the volt-

age ~V for two different values of the load

resistances R to obtain

R ¼ 1 kO ) ~V ¼ ~V1 ¼ 5:547ff � 0:588ð Þ V;
~I ¼ ~I1 ¼

~V1

R1

¼ 5:547ff � 0:588ð Þ mA;

R ¼ 2 kO ) ~V ¼ ~V2 ¼ 8:944ff � 0:464ð Þ V;
~I ¼ ~I1 ¼

~V1

R1

¼ 4:472ff � 0:464ð Þ mA:

From (12.73), we obtain

~Voc ¼
~V2

~I1 � ~V1
~I2

~I1 � ~I2
¼ 20 V;

~Isc ¼
~V2
~I1 � ~V1

~I2
~V2 � ~V1

¼ 7:071ff � 0:785ð Þ mA:

whence

~VT ¼ ~VOC ¼ 20 V; ZT ¼
~VOC

~ISC
¼ 2þ j2ð Þ kO:

All seems well and good. But examine the

measurements of ~V1; ~V2 above. How did we

obtain the relative phases for the two voltages?

What and where is the phase reference? If we

observe a single sinusoidal voltage (e.g., on an

oscilloscope), we can obtain the amplitude and

frequency, but we cannot determine a unique

initial (or relative) phase. So how did we know

that ∡ ~V1 ¼ � 0:588 and ∡ ~V2 ¼ �0:464? We

could not have known that, because we had no

phase reference. The “measured” voltages

used in this example were in fact secretly cal-

culated using the resistive loads and unknown

Thévenin parameters ~VT ¼ 20ff0 V and ZT ¼
2þ j2ð Þ kO.
The point of this example is that in applying

(12.73), we must use the same phase reference

for ~V1; ~I1
	 


and ~V2; ~I2
	 


. This is easy to do

mathematically, given a complete diagram for

a circuit at hand, but is not as easy to do

experimentally, given a circuit in a black box.

For example, simply finding the current

through and voltage across two different pas-

sive loads doesn’t work, as illustrated above,

because there is no way to ensure that the

source driving the circuit has the same initial

phase for both measurements.

The next example illustrates another method for

finding a Thévenin equivalent experimentally, where

an external source provides the required phase

reference.

Example 12.39. Refer to Fig. 12.48, where a voltage source v0 ¼ V0 cos otð Þ is connected to a two-

terminal linear circuit through a variable resistor having total resistance R ¼ R1 þ R2 ¼ 1 kO. The
circuit’s open-circuit voltage is sinusoidal and the frequency of the source v0 is made to equal that of

a

b

ZT
R V

~V
~

T

+

–

I
~

+
–

Fig. 12.47 See Example 12.38
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the circuit’s open-circuit voltage. The voltages v and v0 are observed on a two-channel oscilloscope,

using v0 as the phase reference. Figure 12.49 shows the resulting oscilloscope traces for two different

values of the resistance R2. Find the Thévenin equivalent for the circuit at the terminals in question.

Solution: Refer to the graphs in Fig. 12.49. The amplitude of the source v0 is V0 ¼ 5 V and the period of

both the source and of the voltage v is 1 ms; thus the frequency of the source v0 and of the Thévenin

equivalent source is 1 kHz. For R2 ¼ 100 O, the peak amplitude V1 and phase delay t1 of the voltage v
are V1 ¼ 2 V; t1 ¼ 200 ms. For R2 ¼ 500 O, the peak amplitude V2 and phase delay t2 of the voltage v

are V2 ¼ 4 V; t2 ¼ 100 ms. It follows that the relative (to v0) phases are

y1 ¼ �2 p f t1 ¼ �1:257; y2 ¼ �2 p f t2 ¼ �0:628

and the phasors for the measured voltages are

~V1 ¼ 2ff � 1:257 V; ~V2 ¼ 4ff � 0:628 V:

From Kirchhoff’s current law, the current exiting the positive terminal of the circuit is given by

~I ¼
~V

R2

þ
~V � ~V0

R1

;

and so

~I1 ¼
~V1

R2

þ
~V1 � ~V0

R1

ffi 2ff � 1:257V

100O
þ 2ff � 1:257V� 5ff0V

900O
ffi 21:2ff � 1:51 mA;

~I2 ¼
~V2

R2

þ
~V2 � ~V0

R1

ffi 4ff � 0:628V

500O
þ 4ff � 0:628V� 5ff0V

500O
ffi 9:85ff � 1:27 mA:

+

–

v
v0

linear 
circuit

R1

R2

+
–

Fig. 12.48 See Example 12.39

0 0

v0 (t) v (t)

(a) R2 = 100 Ω (b) R2 = 500 Ω
Fig. 12.49 See Example

12.39
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From (12.73)

~VT ¼
~V2

~I1 � ~V1
~I2

~I1 � ~I2
¼ 4ff � 0:628ð Þ 21:0ff � 1:51ð Þ � 2ff � 1:257ð Þ 9:86ff � 1:27ð Þ½ � 10�3ð Þ

21:0ff � 1:51� 9:86ff � 1:27ð Þ 10�3ð Þ
¼ 5:65ff � 0:318 V;

ZT ¼
~V1 � ~V2

~I2 � ~I1
¼ 2ff � 1:257� 4ff � 0:628

9:86ff � 1:27� 21:0ff � 1:51ð Þ 	 10�3
¼ 224ff1:54 ffi j 224 O:

The initial phase (�0.317) obtained for the Thévenin source is artificial, being relative to the initial

phase of the source used for the measurements. In absence of any pre-selected external phase reference,

an equally valid Thévenin equivalent source voltage is

~VT ¼ 5:65ff0 V:

Example 12.40. Figure 12.50 illustrates

another method for finding (experimentally)

the Thévenin equivalent for a two-terminal

linear circuit, when only the terminals of the

circuit are accessible and it is known that the

open-circuit terminal voltage is sinusoidal. We

assume that a variable resistance R, a variable

reactance X, and a voltmeter are available. We

may make as many measurements as we like at

the terminals a–b, but none inside the box.

We proceed as follows:

(1) We measure the peak amplitude of the

open-circuit voltage, which we denote by

VOC We define the open-circuit voltage as

the phase reference, so ~VT ¼ VOCff 0.
(2) We set the resistance R to any convenient

non-zero value and adjust the variable

reactance X until the magnitude of the

voltage ~V across the external resistor has

its maximum value. At that point, the mag-

nitude of the current ~I also has its maxi-

mum value. Denote that reactance by X0.

Because

~I
�� �� ¼ ~VT

�� ��ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RT þ Rð Þ2þ XT þ Xð Þ2

q
is maximum for XT ¼ �X, we have deter-

mined that XT ¼ �X0.

(3) Denote the maximum magnitude of the

current obtained in part (2) by I0. For

X ¼ X0 ¼ �XT , the total series impedance

equals RT þ R. Thus

I0 ¼
~VT

�� ��
RT þ R

) RT ¼
~VT

�� ��
I0

� R ¼ VOC

I0
� R

and all parameters of the Thévenin equivalent

have been determined.

This approach is problematic if the Théve-

nin equivalent resistance is large relative to the

magnitude of the Thévenin equivalent reac-

tance. In such a case, the magnitude of the

voltage across the resistor in step (2) will

have a broad maximum, and it can be difficult

or even impossible to accurately determine the

maximum value (experimentally). To illustrate

V
~
T

RT jXT
jX

I
~

R
a

b

+ V
~

–
+

V
~

–

+
–

Fig. 12.50 See Example 12.40
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this difficulty, we let ~VT ¼ 5ff0ð Þ V; R ¼ 1 O,
XT ¼ 100 O and plot

~V
�� ��

dB
¼ 20 log

~V
~VT

����
����

� �

versus Xj j for 1 O � Xj j � 1 kO and for

RT ¼ 10 O; 100 O; 1 kO. Figure 12.51 shows

the resulting graph. The voltage ~V
�� ��

dB
has a

sharp maximum for RT ¼ 10 O and a broader

but discernible maximum for RT ¼ 100 O, but
the maximum for RT ¼ 1 kO is impossible to

see. We might work around this difficulty by

adding reactance that effectively increases XT

until varying X reveals a sharp peak. But this is

troublesome, and there are easier ways to find

the Thévenin parameters, such as that illu-

strated by Example 12.39, above.

Whether a Thévenin (or Norton) equivalent circuit

is obtained mathematically from a circuit diagram or

experimentally in a laboratory, the initial phase of the

Thévenin equivalent voltage will in general be non-

zero (e.g., see Example 12.39). Because the Thévenin

equivalent source is the only source in the Thévenin

equivalent circuit and because the Thévenin source is

non-physical to begin with, the non-zero initial phase

is essentially an artifice of the computational or exper-

imental method used to obtain the Thévenin equiva-

lent. In using the Thévenin equivalent for subsequent

analysis (e.g., to examine signal transfer to a load), we

may take the initial phase of the Thévenin source to be

zero, which simply makes the Thévenin source the

phase reference for the subsequent analysis. For exam-

ple, suppose we obtain, either experimentally or from

a circuit diagram, a Thévenin equivalent circuit for

which

~VT ¼ 5:8ff � 0:24 V; ZT ¼ 102þ j 48 O:

Subsequently, we might wish to compute either the

current or power transferred from the circuit to a load

ZL ¼ RL þ j XL for various values of the effective

resistance RL and the reactance XL. In either case, we

may replace the computed (or measured) Thévenin

source with ~V0
T ¼ 5:8ff0 V without ill effect. Indeed,

we could assign any initial phase whatever to the

Thévenin source because the initial phases found for

the load current and load voltage are only relative to

that of the source.

Figure 12.52 illustrates an important application of

a Thévenin (or Norton) equivalent, where a linear two-

port circuit containing no independent sources and

driven by a sinusoidal source is represented by the

Thévenin equivalent. From the viewpoint of the load

ZL, the two-port circuit and the source ~V0 comprise

only a single (Thévenin equivalent) impedance ZT in

series with the Thévenin equivalent source ~VT . The

entire circuit is effectively reduced to a voltage

divider. Such a representation greatly simplifies inves-

tigating the response of a two-port to various loads.

Example 12.41. Refer to Fig. 12.53. Express

the average power dissipated in the load RL as

1 10 100 103
–70

–60

–50

–40
~

–30

–20
RT = 10 Ω

RT = 100 Ω

RT = 1kΩ

|V |dB

|X | (Ω)
Fig. 12.51 See Example

12.40
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a function of RL and the other circuit para-

meters. Let the frequency of the source be

f ¼ 30 kHz and draw a graph of the power

dissipated in the load versus the load resistance

RL, for 1 O � RL � 10 kO. Use a logarithmic

scale for the resistance. From the graph, deter-

mined (or estimate) the load resistance for

which the power dissipated has its maximum

value. Then let the load have that resistance

and draw a graph of the power dissipated in the

load versus the frequency f of the source, for

100 Hz � f � 100 MHz and estimate the fre-

quency for which the power dissipated in the

load is maximum.

Solution: We first obtain the Thévenin equiva-

lent for the circuit to the left of the load RL.

Kirchhoff’s current law gives

~VT
1

RS
þ 1

Rþ joL
þ joC

� �
¼ VS

RS

) ~VT ¼ Rþ joLð ÞVS

RSþR�RSLCo2þ jo LþRSRCð Þ ;

where vS is the phase reference and ~VT is the

open-circuit (Thévenin equivalent) voltage.

The short-circuit (Norton equivalent) current

is given by

~IN ¼ VS

RS
;

so the Thévenin equivalent impedance is

given by

ZT ¼
~VT

~IN
¼ Rþ joLð ÞRS

RSþR�RSLCo2þ jo LþRSRCð Þ ;

where f is the frequency of the source and

o ¼ 2 p f . The rms amplitude of the voltage

across a load RL is given by

VL rms ¼ VSRLffiffiffi
2

p
ZT þ RLð Þ

�����
�����

and the power dissipated by the load is given by

PL ¼ VL rms
2

RL
:

Figure 12.54 shows a (computer-generated)

graph of the power dissipated versus the load

resistance. The load resistance that draws max-

imum power is approximately RL ¼ 10 O.
To see if this result is reasonable, we calculate

the Thévenin impedance for f ¼ 30 kHz.

We obtain ZT ¼ 9:35þ j2:18ð Þ O, so we

might expect maximum power transfer for a

load in the neighborhood of 10 O. We also

expect the power dissipated to approach zero

for RL ! 0, in which case the load voltage

approaches zero, and for RL ! 1, in which

vS vL

vS = VS cos (w t); VS = 15V
RS = 10 Ω, L = 200µH
C = 15nF, R = 2 Ω

RS
R

L

C
RL

+

–

+
–

Fig. 12.53 See Example

12.41

V0
~ ~

VTZL ZL

ZT

RLC circuit

(a) circuit, source, and load (b) Thévenin equivalent

+
–

+
–

Fig. 12.52 Sinusoidally

excited circuit and Thévenin

equivalent

430 12 Sinusoids, Phasors, and Impedance



case the load current approaches zero. The

graph in Fig. 12.54 is consistent with these

expectations.

Figure 12.55 shows a computer-generated

graph of the power dissipated in the load

RL ¼ 10 O versus frequency. Maximum

power is dissipated for frequencies near 100

kHz. This is not surprising, because the magni-

tude of the impedance of the parallel RLC

branch at that frequency is 678 O, which is

much larger than both the source resistance

and the load resistance. Thus the parallel RLC

branch draws very little current for frequencies

near 100 kHz. For frequencies approaching

zero, the impedance of the parallel RLC branch

approaches R ¼ 2 O, so the load voltage

approaches

VL rms f ! 0ð Þ ¼ R RLk
RS þ R RLk

VSffiffiffi
2

p ffi 1:52 V;

and the power dissipated approaches

PL f ! 0ð Þ ¼ VL rms
2

RL
ffi 230 mW:

For frequencies much larger than 100 kHz,

the impedance of the parallel RLC branch

approaches the impedance of the capacitor,

which in turn approaches zero, so the parallel

RLC branch shunts virtually all of the current

to ground and the power dissipated by the load

approaches zero. The graph in Fig. 12.55 is

consistent with these observations.

This example illustrates using a Thévenin

equivalent to simplify studying load power (or

current or voltage) as a function of the load

impedance and source frequency. Using the

Thévenin equivalent means we must solve

equations obtained from (e.g.) Kirchhoff’s cur-

rent law only once. Thereafter, the circuit is

simply a voltage divider, and subsequent anal-

ysis is relatively simple.

The discussion and examples above deal with

obtaining the Thévenin (or Norton) equivalent for

any linear circuit in which all sources are sinusoidal
and have the same frequency. It is possible to obtain a

Thévenin (or Norton) equivalent for a circuit contain-

ing sources having different frequencies, but we have

no need for that generalization at this point.

12.18 Checking Your Work

Obtaining incorrect answers is a useless pursuit. Your

grades while in college, your career afterward, and (in

some cases) the safety of others all depend upon your

ability to pose and solve engineering problems

1 10 100 103 104
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)

Fig. 12.54 See Example 12.41
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Fig. 12.55 See Example 12.41
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correctly. You should cultivate the habit of checking

your work. There are many ways to check a result,

including:

• Solving a problem more than one way; e.g., once
using Kirchhoff’s current law and again using

Kirchhoff’s voltage law.

• Kirchhoff’s-law checks: If your analysis yields all
of the currents leaving a node or all of the voltages

around a closed path, you can check to see if your

results satisfy the applicable Kirchhoff law.

• Checking dimensions (units) of terms in equations,

of relations obtained along the way, and of the final

expression.

• Order-of-magnitude checks (for numerical answers).

Is the magnitude of a current or voltage reasonable

for a circuit at hand?

• Frequency-limit checks. Does an expression give

correct results if the frequency of the excitation is

made zero or infinite?

• Parameter limit checks. Does an expression give

correct results if the value of a circuit parameter

(e.g., resistance, capacitance, or inductance) is

made zero or infinite?

• Power-conservation check. If your analysis yields

expressions for all currents and voltages in a cir-

cuit, you can check to see if power is conserved.

• Simulating the circuit at hand and comparing your

results with those of the simulation.

• Building a prototype and making measurements.

Limit checks are especially useful for relatively

simple circuits because they often are easy and quick

(and therefore useful on exams).

In a frequency limit check, we evaluate an expres-

sion for f ! 0 and f ! 1 and compare results

obtained with those we would expect, based upon

inspection or analysis of the circuit under the same

conditions. Frequency limit checks are based upon the

behavior of capacitors and inductors for f ! 0 and

f ! 1

lim
f!0

oLð Þ ¼ 0; lim
f!1

oLð Þ ¼1;

lim
f!0

1

oC

� �
¼1; lim

f!1
1

oC

� �
¼ 0: (12.74)

In words, for f ! 0, a capacitor becomes an open

circuit and an inductor becomes a short circuit (a

conductor), whereas for f ! 1, a capacitor becomes

a short circuit and an inductor becomes an open cir-

cuit. At either limit, an RLC circuit becomes a resistive

circuit.

To perform a zero-frequency limit check, re-draw the

circuit for f ! 0, replacing capacitorswith open circuits

and inductors with conductors (short circuits), thereby

obtaining a resistive circuit. Obtain an expression for the

quantity of interest from the resistive circuit, and com-

pare it with the limit as f ! 0 of the corresponding

expression for the original circuit. The two expressions

should be the same. To perform an infinite-frequency

limit check, re-draw the circuit for f ! 1, replacing

inductors with open circuits and capacitors with con-

ductors. Again, there remains a resistive circuit, for

which it is relatively easy to obtain an expression for

the quantity being checked. Some examples follow.

Example 12.42. Refer to Fig. 12.56(a), where

i ¼ I cos otð Þ. Obtain an expression for the

phasor voltage across the inductor. Check the

result by obtaining expressions for the voltage

for f ¼ 0 and f ! 1.

Solution: We transform the current source and

parallel resistance R1 to a voltage source and

series resistance R1, and use voltage division to

obtain

~V ¼ R3 ZLk
R1 þ R2 ZC þ R3 ZLkk
� �

~I R1; (12.75)

where

ZL ¼ jo L; ZC ¼ 1

joC
:

To check this result, we first examine it for

f ¼ 0 and f ! 1. For f ¼ 0, R3 ZLk ¼ 0 and

R2 ZCk ! R2, so ~V ¼ 0. For f ! 1,

R3 ZLk ! R3 and R2 ZCk ! 0, so

~V ¼ R1R3

R1 þ R3

~I:

Next we draw the circuit diagram for f ¼ 0

and for f ! 1 and obtain expressions for the

voltage ~V in each case. For f ¼ 0, the capacitor

is an open circuit and the inductor is a short
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circuit (conductor). Because the voltage drop

across a conductor equals zero, ~V ¼ 0.

For f ! 1, the inductor is an open circuit

and the capacitor is a short circuit (conductor).

The voltage v is the voltage across the parallel

connection of R1 and R3, given by

~V ¼ R1 R3

R1 þ R3

~I:

These checks give us confidence in the expres-

sion (12.75).

Example 12.43. Refer to the circuit shown in

Fig. 12.57(a). We find (after a little work) that

the equivalent impedance at the terminals a–b

is given by

Z ¼ jo LR

Rþ jo L� o2 RLC
: (12.76)

We may check this result several ways.

First, we check dimensions (units). The SI

unit of the numerator is O2 and the SI unit

of the denominator is O, so the unit of the

expression (12.76) is O, which is correct for

impedance. In checking units, it often is help-

ful to remember that oRC; o L=R, and

oRCð Þ oL=Rð Þ ¼ o2 LC are dimensionless.

Next, we perform a frequency limit check.

We draw the circuit for f ! 0 and f ! 1, as

shown in Fig. 12.57(b) and (c), respectively.

i

(a) original circuit

+

–

C

R1 R3

R2

R1 R3

R2

R1 R3

R2

L v

I
~

I
~

V = 0
~

+

–

V =
~

I
~

+

–

R1 R3

R1 + R3

(b) f = 0

(c) f → ∞
Fig. 12.56 See Example

12.42
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For f ! 0 (Fig. 12.57(b)), the impedance of

the capacitor approaches infinity (the capacitor

becomes an open circuit) and the impedance of

the inductor approaches zero (the inductor

becomes a short circuit). Thus the equivalent

impedance at the terminals a–b should

approach zero as f ! 0. The expression

above for the equivalent impedance gives

lim
f!0

Z ¼ lim
f!0

jo LR

Rþ jo L� o2 RLC

¼ lim
f!0

jo LR

R
¼ 0;

in agreement with what was deduced from

Fig. 12.57(b).

For f ! 1 (Fig. 12.57(c)), the impedance

of the capacitor approaches zero (the capacitor

becomes a short circuit) and the impedance of

the inductor approaches infinity (the inductor

becomes an open circuit). Thus the equivalent

impedance at the terminals a–b should

approach zero as f ! 1. The expression

above for the equivalent impedance gives

lim
f!1

Z ¼ lim
f!1

jo LR

Rþ jo L� o2 LC

¼ lim
f!1

jo LR

�o2 LC
¼ lim

f!1
j R

�oC
¼ 0;

in agreement with what was deduced from

Fig. 12.57(c).

Finally, we determine whether the expres-

sion (12.76) reduces to the correct one if vari-

ous parameters are set to zero. If the resistance

is set to zero, the expression (12.76) reduces to

jo LR

Rþ jo L� o2 RLC
! 0

0þ jo L� 0
¼ 0;

which is correct because a resistor having

zero resistance is a conductor (is a short cir-

cuit), and a conductor in parallel with any

number of other elements is equivalent to a

conductor.

If the capacitance is set to zero, the expres-

sion (12.76) reduces to

jo LR

Rþ jo L� o2 RLC
! jo LR

Rþ jo L
;

which is the impedance of the parallel connec-

tion of the resistor and inductor, and is correct

because a capacitor having capacitance zero is

equivalent to an open circuit.

If the inductance is set to zero, the expres-

sion (12.76) reduces to

jo LR

Rþ jo L� o2 RLC
! 0

R
¼ 0;

which is correct because an inductor having

inductance zero is equivalent to a short circuit.

The checks above give us confidence in the

expression for the equivalent impedance.

If an expression you obtain on a homework assign-

ment or an exam problem is dimensionally consistent,

exhibits the correct behavior for f ¼ 0 and f ! 1,

and passes at least one parameter limit check, the

probability that the expression is incorrect is quite

small.

Avoid applying parameter limit checks and fre-

quency limit checks simultaneously, as such practice

can lead to inconsistencies. For example, consider the

circuit in Fig. 12.58, where the source is sinusoidal.

Suppose, as a check on an expression we obtain for the

current ~I, we let L ! 0, in which case the impedance

of the inductor approaches zero. Then in the resulting

degenerate circuit, we let f ! 1. We have an incon-

sistency because

(a) original circuit

R L C

(b) f → 0 (c) f → ∞

R

a

b

a

b

a

b

R

Fig. 12.57 See Example 12.43
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C
L

R
vS

+
–

Fig. 12.58 Series RLC circuit used to illustrate limit checking
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lim
f!1

lim
L!0

~I
	 
 ¼ lim

f!1
lim
L!0

~VS

Rþ joCð Þ�1 þ joL

¼ lim
f!1

~VS

Rþ joCð Þ�1
¼

~VS

R
;

whereas (reverse the limiting operations)

lim
L!0

lim
f!1

~I
	 
 ¼ lim

L!0
lim
f!1

~VS

Rþ joCð Þ�1þjoL

¼ lim
L!0

0ð Þ ¼ 0:

12.19 Resonance

The impedance of the series LC circuit in Fig. 12.59

is given by

Z ¼ joLþ 1

joC
¼ j oL� 1

oC

� �
(12.77)

and equals zero for

o ¼ or ¼ 1ffiffiffiffiffiffi
LC

p ) fr ¼ 1

2p
ffiffiffiffiffiffi
LC

p : (12.78)

The frequency fr given by (12.78) for which the

impedance of the series LC circuit equals zero is called

the resonant frequency of the circuit and the circuit

exhibits series resonance at that frequency.

The admittance of the parallel LC circuit in

Fig. 12.60 is given by

Y joð Þ ¼ 1

jo L
þ joC ¼ 1� o2LC

jo L
(12.79)

and equals zero for

o ¼ or ¼ 1ffiffiffiffiffiffi
LC

p ) fr ¼ 1

2p
ffiffiffiffiffiffi
LC

p : (12.80)

The frequency fr given by (12.80) for which the

admittance of the parallel LC circuit equals zero is

called the resonant frequency of the circuit and the

circuit exhibits parallel resonance at that frequency.

At resonance, the impedance of a series LC circuit

and the admittance of a parallel LC circuit equal zero.

Of course, these are idealizations. Physical inductors

and capacitors exhibit losses and parasitic effects20

that make the impedance of a series LC circuit and

the admittance of a parallel LC circuit greater than

zero. But in many applications, the losses can be

made small enough that the impedance or admittance

at resonance is much smaller than for frequencies that

differ only slightly from the resonant frequency. We

discuss practical implications of resonance in more

detail in subsequent sections. In this section, we

focus primarily on what resonance is.

Example 12.44. Refer to Fig. 12.61. Draw a

qualitative phasor diagram for the voltages
~VR; ~VL; ~VC when the frequency of the sinusoi-

dal source equals the resonant frequency of the

series LC portion of the circuit. Use the source

voltage ~V for the phase reference.

Solution: At the resonant frequency or ¼
1
� ffiffiffiffiffiffi

LC
p

; the impedance of the LC section

equals zero, so the total voltage across the LC
section equals zero. It follows that at reso-

nance, the voltage ~VR across the resistor equals

the source voltage ~V and the current ~I equals
~V
�
R. Because the voltage ~V is the phase refer-

ence, we may write ~V ¼ Vff0. We also use

j ¼ 1ff p=2ð Þ and express the voltages across

the inductor and the capacitor at resonance as

L

CZ ⇒

Fig. 12.59 A series LC circuit

L CZ ⇒
Fig. 12.60 A parallel LC
circuit

20For example, at sufficiently high frequencies, an inductor

exhibits shunt capacitance. Section 12.22 is an introductory

treatment of such parasitic effects.
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~VL ¼ jor L ~I ¼ jor L
~V

R
¼ 1ff p=2ð Þ LVff0

R
ffiffiffiffiffiffi
LC

p

¼ V

R

ffiffiffiffi
L

C

r
ff p=2ð Þ;

~VC ¼
~I

jor C
¼

~V

jor RC
¼ Vff0ð Þ ffiffiffiffiffiffi

LC
p

1ff p=2ð Þ½ �RC

¼ V

R

ffiffiffiffi
L

C

r
ff �p=2ð Þ:

At resonance, the voltages across the induc-

tor and the capacitor have equal magnitudes

and are in phase opposition. Figure 12.62

shows a phasor diagram for the voltages in

the circuit at resonance.

Example 12.45. Refer to Fig. 12.63. Draw a

qualitative phasor diagram for the currents
~IR; ~IL; ~IC when the frequency of the sinusoidal

source equals the resonant frequency of the

parallel LC portion of the circuit. Use the

source current ~I for the phase reference.

Solution: Because ~I is the phase reference, we

may write ~I ¼ Iff 0. At resonance, the admit-

tance of the LC section equals zero (the imped-

ance is infinite), so the current ~ILC ¼ ~IL þ ~IC
must be zero. It follows from Kirchhoff’s cur-

rent law that ~IR ¼ ~I and then from Ohm’s law

that ~V ¼ R ~IR ¼ RIff 0. Because R is real and

positive and ~IR ¼ ~I has zero initial phase, we

have

~IL ¼ RIff0
jor L

¼ RIff0
or Lff p=2ð Þ ¼

RI

or L
ff �p

2

� �
;

~IC ¼ jor CRIff0 ¼ or Cff p=2ð Þ½ � RIff0½ �
¼ or CRIff p

2

� �
:

The resonant frequency is or ¼ 1
� ffiffiffiffiffiffi

LC
p

, so

the expressions above reduce to

~IL ¼ RI

L
� ffiffiffiffiffiffi

LC
p ff � p

2

� �
¼ RI

ffiffiffiffi
C

L

r
ff �p

2

� �
;

~IC ¼ CRIffiffiffiffiffiffi
LC

p ff p
2

� �
¼ RI

ffiffiffiffi
C

L

r
ff p

2

� �
:

At resonance, the currents ~IL; ~IC have equal

magnitudes and are in phase opposition. Fig-

ure 12.64 shows a phasor diagram for the cur-

rents in the circuit at resonance.

Resonance is a result of a low-loss exchange

of energy between two energy-storage mechanisms.

The pendulum in a grandfather clock is resonant, and

the energy exchange is between the kinetic energy

of the pendulum and the potential energy stored in the

gravitational field. Little is lost in the bearing supporting

the pendulum. In a resonant RLC circuit, the exchange

often is between the electric field associated with a

capacitance and the magnetic field associated with an

inductance, with little energy being lost in resistance.

V

I

R
L C

VL VC
~~

~

~

~
VR

+ – + –

+

–

+
–

Fig. 12.61 See Example 12.44
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VR = V = V∠0

∠(p / 2)V
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L
C

∠(−p / 2)V
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~ L

C

Fig. 12.62 See Example 12.44
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~
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~

V
~
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~

Fig. 12.63 See Example 12.45
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A passive circuit must contain at least one capacitor and

at least one inductor to exhibit resonance.21

The definitions given above for resonance of series

and parallel LC circuits are specific examples of more

general definitions, of which there are several, all

being equivalent. For circuits containing at least one

capacitor and one inductor, two useful (and equiva-

lent) working definitions of resonance are:

A two-terminal (one-port) RLC circuit is in res-

onance when its impedance (or admittance) is real.

A two-terminal (one-port) RLC circuit is in

resonance when the angle of its impedance (or

admittance) equals zero.

For example, at resonance the impedance of the

series RLC circuit treated in Example 12.44 equals

the resistance R and the admittance of the parallel

RLC circuit treated in Example 12.45 equals the con-

ductance R�1.

Example 12.46. Obtain an expression for the

resonant frequency of the circuit shown in

Fig. 12.65.

Solution: We may ignore the resistor R1

because if Z is real, then so is Z � R1. The

impedance Z is real if

Im
1

joC

� ����� R2 þ jo Lð Þ
� �

¼ 0: (12.81)

Equation (12.81) leads to

Im
R2 þ joL

1þ joC R2 þ jo Lð Þ
� �

¼ Im
R2 þ joL

1� o2LCþ joCR2

� �
¼ 0;

which yields

Im
R2 þ jo Lð Þ 1� o2LC� joCR2ð Þ

1� o2LCð Þ2þ oCR2ð Þ2
" #

¼ 0:

Because the denominator is real, the imped-

ance is real if

Im R2 þ jo Lð Þ 1� o2LC� joCR2

	 
�  ¼ 0

) o L 1� o2LC
	 
� oCR2

2 ¼ 0;

which reduces to

o2LC ¼ 1� CR2
2

L
:

Thus the resonant frequency is given by

or ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� R2

2 C=Lð Þ
LC

s
:

Exercise 12.23. Obtain an expression for the

resonant frequency of the circuit shown in

Fig. 12.66.

C L

R1 R2

Z ⇒

Fig. 12.65 See Example 12.46Re

Im

C
IC = RI

L
~

~
IR = I∠ 0

∠(p / 2)

C
IL = RI

L
~ ∠(–p / 2)

Fig. 12.64 See Example 12.45

21As we show in a subsequent chapter, it is possible to emulate

inductance using an active device and capacitance. Thus it is

possible for an active circuit containing only active devices,

resistors, and capacitors to exhibit resonance. Also, as discussed

below, a physical component (such as a capacitor) is not ideal

and can exhibit all three of resistance, capacitance and induc-

tance and can be self-resonant at a sufficiently high frequency.
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Exercise 12.24. Refer to Fig. 12.67, where

vS ¼ VS cos o tð Þ, with VS ¼ 5 V. (a) Find the

current i tð Þ for o1 ¼ 1
� ffiffiffiffiffiffiffiffiffiffi

L1C1

p
and for

o2 ¼ 1
� ffiffiffiffiffiffiffiffiffiffi

L2C2

p
. (b) Does the circuit as a

whole have a resonant frequency? If so, what

is it?

12.20 Quality Factors and Common
Resonant Configurations

At any particular frequency, a reactive two-terminal

circuit or element can be modeled as an effective

resistance R in series with either an inductor or a

capacitor, depending upon whether the reactance X is

positive or negative. The quality factor of the circuit

or element at the frequency in question is defined by

Q ¼ Xj j
R

; (12.82)

where X is the (capacitive or inductive) effective series

reactance and R is the effective series resistance. In

particular, the quality factors of an inductor (a coil)

and a capacitor at a frequency o are given by

QL ¼ oL
RL

; QC ¼ 1= oCð Þ
RC

¼ 1

oRCC
; (12.83)

where RL and RC are the effective resistances of the

coil and the capacitor, respectively, at the frequency

o. Keep in mind that the quality factor of an inductor

or a capacitor (or any two-terminal reactive circuit) is

a function of frequency.
A large quality factor implies an inductive or

capacitive reactance much larger than the effective

series resistance. Thus the quality factors defined by

(12.83) indicate how nearly a physical inductor and a

physical capacitor approximate an ideal inductor and

ideal capacitor, respectively.

Many practical uses of passive resonant circuits

involve one or more of the three circuit configurations

shown in Fig. 12.68. From (12.78), the resonant

frequency of the series RLC circuit in Fig. 12.68a is

given by

o0 ¼ 1ffiffiffiffiffiffi
LC

p : (12.84)

In Example 12.46 above, we show that the resonant

frequency of the circuit in Fig. 12.68b is given by

or ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� R2 C=Lð Þ

LC

r
: (12.85)

In an end-of-chapter problem, you are asked to

show that (12.85) can be written

or ¼ o0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

Q2
0

s
: (12.86)

In (12.86), o0 is the resonant frequency of the

series RLC loop in Fig. 12.68(b) and Q0 is the quality

factor of the LR coil at the frequency o0 (not at the

resonant frequency or of the parallel RLC circuit).

However, if the quality factor of the coil is much larger

than unity, then

or ¼ o0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

Q2
0

s
ffi o0 ¼ 1ffiffiffiffiffiffi

LC
p : (12.87)

In other words, if the quality factor of the coil in

Fig. 12.68(b) is large at the frequency 1
� ffiffiffiffiffiffi

LC
p

, then the

C

LR1

R2

Z ⇒

Fig. 12.66 Exercise 12.23

RS = 100 Ω, L1 = 1mH, C1 = 100nF,
L2 = 200 μH, C2 = 11pF

C2C1

L1

L2

RS

i

vS
+
–

Fig. 12.67 See Exercise

12.24
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resonant frequency of the parallel circuit equals (to a

good approximation) the resonant frequency of the RLC

loop (considered as a series circuit). This approximation

can greatly simplify some analyses and calculations.

In an end-of-chapter problem, you are asked to

show that the resonant frequency of the circuit in

Fig. 12.68(c) is given by

or ¼ 1ffiffiffiffiffiffi
LC

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
LC� L

R2
CC� L

s
: (12.88)

The relation (12.88) can be put in a more conve-

nient form as follows: From (12.83),

RL ¼ o0L

QL
) R2

LC ¼ o2
0 L

2 C

Q2
L

¼ L

Q2
L

;

RC ¼ 1

o0CQC
) R2

CC ¼ LC

o2
0C

2Q2
C

¼ L

Q2
C

;

where we have used o0
2 LC ¼ 1. Thus

R2
LC� L

R2
CC� L

¼ Q�2
L L� L

Q�2
C L� L

¼ Q�2
L � 1

Q�2
C � 1

so (12.88) can be written

or ¼ 1ffiffiffiffiffiffi
LC

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q�2

L � 1

Q�2
C � 1

s

¼ 1ffiffiffiffiffiffi
LC

p QC

QL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2

L � 1

Q2
C � 1

s
: (12.89)

In (12.89), o0 ¼ 1
� ffiffiffiffiffiffi

LC
p

is the resonant frequency

of the series RL LCRC loop. The quantities QL and QC

are the quality factors of the coil and the capacitor,

respectively, at the loop resonant frequency o0, and

are given by

QL ¼ XL

RL
¼ o0L

RL
; QC ¼ XCj j

RC
¼ 1

o0RCC
: (12.90)

If both quality factors are large, the right side of

(12.89) reduces to or ¼ o0. In other words, if the

quality factors of the coil and the capacitor in

Fig. 12.68(c) are both large at the frequency 1
� ffiffiffiffiffiffi

LC
p

,

then the resonant frequency of the parallel circuit

equals (to a good approximation) the resonant fre-

quency of the series RLLCRC loop. This approximation

can greatly simplify some analyses and calculations.

Example 12.47. In Fig. 12.69, RL ¼ 2:2 kO
and vS ¼ VS cos o1tð Þ þ cos o2tð Þ½ � with f1 ¼
100 kHz and f2 ¼ 200 kHz. The circuit is

intended to block the 200 kHz component and

pass the 100 kHz component of the source

voltage. You have available a selection of 200

and 100 kHz coils with inductances ranging

from 10 to 200 mH in steps of 10 mH. All

have quality factors of about 25 at their

intended operating frequencies. You also have

available capacitors ranging from 10 to 91 pF

and a wide selection of trimmer capacitors in

the same range, both having quality factors in

Z ⇒

Z ⇒

Z ⇒

R L C

R L

C

RL L

CRC

(a)

(b)

(c)

1
LC

w0 =

w r =
2

= w0 w0 =
1 1 11– 1– ;R

Q0
2LC LCω0L

w r = = w0 w0 =
1 1;

RL
2C – L

RC
2C – L

QL
2 – L

QC
2 – LQL

QC

LC LC

Fig. 12.68 Common

resonant configurations
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excess of 100. Specify the circuit components

such that the 100 kHz component of the load

voltage is as large as possible and the 200 kHz

component is as small as possible. Evaluate

your design (with the help of a computer).

Solution: The impedance of a series RLC
circuit is minimum at resonance and the

impedance of a parallel RLC circuit is maxi-

mum at resonance. The idea here is to make the

series RLC section resonant at 100 kHz and the

parallel RLC section resonant at 200 kHz. For

the series circuit, we must choose a 100 kHz

coil and a capacitor such that

1ffiffiffiffiffiffiffiffiffiffi
L1C1

p ¼ o1 ¼ 200p	 103 s�1:

Given the large assortment of components

and in absence of other specifications, there are

a great many solutions. Choosing C1 ¼ 15 pF

gives

L1 ¼ 1

o2
1C1

¼ 169 mH;

For the parallel section, we require

1ffiffiffiffiffiffiffiffiffiffi
L2C2

p ¼ o2 ¼ 400p	 103 s�1

We choose C2 ¼ 62 pF and calculate

L2 ¼ 1

o2
2C2

¼ 10:2 mH:

For frequencies near resonance, we can

express the impedance of an inductor as

ZL ¼ RL þ joL ¼ oL
QL

þ joL

¼ joL 1� jQL
�1

	 

:

Similarly, for a capacitor,

ZC ¼ RC þ 1

joC
¼ 1

QCoC
þ 1

joC

¼ 1

joC
1þ jQC

�1
	 


:

The impedance of the series section in

Fig. 12.69 is given by

Z1 ¼ ZL1 þ ZC1

ffi joL1 1� j

QL

� �
þ 1

joC1

1þ j

QC

� �
:

Similarly, the impedance of the parallel

section is given by

Z2 ¼ ZL2ZC2
ZL2 þ ZC2

¼ joL2 1� jQL
�1

	 
� 
1þ jQC

�1
	 
� 

1þ jQC
�1

	 
� o2L2C2 1� jQL
�1

	 
 :
The load voltage is given by

~VL oð Þ ¼ RL
~VS

RL þ Z1 oð Þ þ Z2 oð Þ
Figure 12.70 shows a graph of the normal-

ized load voltage (or voltage gain) in dB, given

by

Av ¼ 20 log
~VL

~VS

����
����;

where ~VS ¼ 1V. The resonant peak at 100 kHz

and the resonant valley at 200 kHz are evident.

Direct calculation gives Av f1ð Þ ffi �14:5 dB;

Av f2ð Þ ffi �42:9 dB, so the 200 kHz compo-

nent of the load voltage is 28.4 dB below the

100 kHz component, if the components have

their specified values.

RLvS

vL
capacitor 1

capacitor 2
coil 1

coil 2

+
–

Fig. 12.69 See Example 12.47
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In some important applications and as illustrated by

Example 12.47, LC parallel resonant circuits are used

to select (pass or block) sinusoidal inputs within a

relatively narrow band of frequencies. Resonant cir-

cuits used in such applications are called tuned cir-

cuits, the implication being that the magnitude of the

impedance or admittance falls off sharply for frequen-

cies below and above the frequency to which the

circuit is tuned (the resonant frequency). Tuned cir-

cuits are especially important in many high-frequency

filtering applications and are practical applications of

resonance. Quality factors of capacitors and (espe-

cially) inductors are important parameters in analysis

and design of tuned RLC circuits.

Tuned circuits are built using coils specially

designed for such applications. Coils intended for use

in high-frequency tuned circuits are called a radio-

frequency coils or rf coils. Any particular rf coil is

designed to operate at or near a particular frequency

and to exhibit a specific quality factor at that fre-

quency. The operating frequencies of readily available

(off-the-shelf) coils are mostly determined by stan-

dards for radio-frequency equipment; for example,

frequencies assigned to cell-phone providers, military

radar and other equipment, and commercial broadcast

and cable television.

An rf coil possesses not only inductance, but also

resistance and capacitance, and for many purposes can

be modeled at any particular frequency as shown in

Fig. 12.71. The resistance Rs is the effective resistance

of the coil at the operating frequency. The capacitance

Cc accounts for the end-to-end and turn-to-turn stray

capacitance of the coil. Keep in mind that the model

parameters Rs; Ls; Cc are functions of frequency, so

the model is valid only for frequencies near the speci-

fied operating frequency. For example, skin and prox-

imity effects cause the effective resistance to increase

with frequency. But the dependence of the parameters

on frequency usually is weak enough that the model is

valid for the relatively narrow range of frequencies

over which most such circuits are intended to operate.

The quality factor for an rf coil is denoted by Q

and given by

Q ¼ o0 Ls
Rs

¼ Xs

Rs
; (12.91)

where o0 is the operating frequency for the coil, Ls

and Rs are the inductance and effective resistance of

the coil, respectively, at that frequency. Because the

parameters Ls; Rs are functions of frequency, the qual-

ity factor also is a function of frequency, but again, the

dependence on frequency usually is weak enough that

the quality factor can be assumed to be independent of

frequency for frequencies near the intended operating

frequency. The quality factor for a coil largely deter-

mines the degree of frequency selectivity that can be

achieved using the coil in a tuned circuit. In practice,

quality factors exceeding 20 are common for rf coils.

Large quality factors can be achieved using

magnetic cores, many turns, and special geometries.

Magnetic cores in rf coils usually are ferrite. Although

a magnetic core can greatly enhance inductance,

such cores also introduce losses that increase with

increasing frequency, and magnetic-core coils are

used mostly at frequencies below about 10–50 MHz.

Air-core coils are used at higher frequencies.

In order to use results obtained previously for paral-

lel LC circuits, we obtain below a parallel RpLp circuit

that is equivalent (at the operating frequency) to the

series RsLs branch in Fig. 12.71. Because the series

model is valid only for frequencies near the operating

frequency, the equivalent parallel model obtained below

also is valid only for frequencies near that frequency.

108107106105104103
–100

–80

–60

–40

–20

0

f (Hz)

(dB)
VL
~

VS
~

Fig. 12.70 See Example 12.47

Cc

Rs

Ls

Fig. 12.71 Circuit model for an rf coil
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Refer to Fig. 12.72. Equivalence of the circuits at a
pre-selected frequency f0 requires that the admittances

of the circuits at that frequency be equal. Equating

expressions for the admittances of the parallel and

series models gives

1

Rp
þ 1

jo0 Lp
¼ 1

Rs þ jo0 Ls

¼ 1

RS þ jQRs
¼ 1

Rs

1� jQ

1þ Q2
: (12.92)

Two complex quantities are equal if and only if the

real parts are equal and the imaginary parts are equal.

Thus (12.92) leads to

1

Rp
¼ 1

RS

1

1þ Q2
;

1

o0 Lp
¼ 1

Rs

Q

1þ Q2
: (12.93)

For cases of interest Q � 1, and (12.93) reduces to

1

Rp
ffi 1

Q2Rs
;

1

o0 Lp
ffi 1

QRs
¼ 1

o0 Ls
: (12.94)

It follows that

Rp ffi Q2 Rs; Lp ffi Ls; Q � 1; o ffi o0: (12.95)

Keep the limitations Q � 1; o ffi o0 in mind. The

equivalence relations expressed by (12.95) are valid

only for Q large and only for frequencies near f0. In
applications, (12.95) usually is assumed to hold for

Q � 10, which condition is rather easily met, and a

coil is used in circuits that operate near the operating

frequency for the coil (near the frequency for which

the specified Q and series model are valid).

For frequencies near the intended operating fre-

quency, we may model a high-Q coil as shown in

Fig. 12.73. For o near o0, the admittance of the coil

is given by

Y ¼ 1

Q2Rs
þ 1

jo Ls
þ joCc

¼ Q2Rs � o2 Ls Cc Q
2Rs þ jo Ls

jo LsQ2 Rs
: (12.96)

Because of the stray shunt capacitance Cc, the coil

alone can exhibit resonance and is said to be self-

resonant. The self-resonant frequency of the coil is

given by

fc ¼ oc

2p
¼ 1

2p
ffiffiffiffiffiffiffiffiffiffi
Ls Cc

p : (12.97)

Manufacturers specify the self-resonant frequen-

cies of their rf offerings, partly as a way of specifying

the apparent shunt capacitance. Usually, the self-

resonant frequency given by (12.97) is much higher

than the frequency f0 at which the coil is intended to

operate, and additional capacitance must be placed in

parallel with the coil to achieve the desired resonant

frequency. Thus, if C denotes the total parallel capaci-
tance, the resonant frequency of the resulting tuned

circuit is given by

f0 ¼ 1

2p
ffiffiffiffiffiffiffiffiffi
Ls C

p ; o0 ¼ 1ffiffiffiffiffiffiffiffiffi
Ls C

p : (12.98)

The admittance of the tuned circuit is given by

Y ¼ 1

Q2Rs
þ 1

jo Ls
þ joC

¼ Q2Rs � o2 Ls CQ2Rs þ jo Ls
jo LsQ2 Rs

¼ 1

Q2Rs

Q2 � o2 Ls CQ2 þ j oLs=Rsð Þ
j o Ls=Rsð Þ

¼ 1

Q2Rs

Q2 1� o2
�
o2

0

	 
þ j o=o0ð ÞQ
j o=o0ð ÞQ

¼ 1

Q2Rs

Q 1� o=o0ð Þ2
h i

þ j o=o0ð Þ
j o=o0ð Þ :

(12.99)

Ls

Rs

Rp = Q 2 Rs
Lp = Ls⇒

Fig. 12.72 Parallel and series RL models for a high-Q coil

Q 2Rs
Ls CcY ⇒

Fig. 12.73 Circuit model for a high-Q rf coil
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The impedance can be expressed as a function of

frequency (Hz), as

Z ¼ 1

Y
ffi j o=o0ð ÞQ2Rs

Q 1� o=o0ð Þ2
h i

þ j o=o0ð Þ

¼ j f=f0ð ÞQ2Rs

Q 1� f=f0ð Þ2
h i

þ j f=f0ð Þ
: (12.100)

From (12.100), the magnitude of the impedance is

given by

Zj j ¼ Q2Rsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2

1� f =f0ð Þ2
f=f0ð Þ

" #2
þ 1

vuut
:

The maximum impedance (magnitude) is obtained

for f ¼ f0 and equals the equivalent parallel resistance

R ¼ Q2Rs: (12.101)

The magnitude of the impedance normalized to the

maximum value R is given by

Z

R

����
���� ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Q2
1� f=f0ð Þ2

f=f0ð Þ

" #2
þ 1

vuut

We may regard this impedance as a normalized

transimpedance, expressed in dB as

Zj j
R

� �
dB

ffi�10 log Q2 1� f=f0ð Þ2
f=f0ð Þ

" #2
þ 1

������
������: (12.102)

Figure 12.74 shows a graph of the normalized

impedance in dB versus the normalized frequency

f=f0 for three values of the quality factorQ, illustrating

that the frequency selectivity of the circuit increases

(the width of the peak in Fig. 12.74 decreases) with

increasing Q. In the next section, we obtain a relation

between the quality factor of the coil and the fre-

quency selectivity of the circuit.

There are many kinds of rf coils; for example,

ferrite-core and air-core “chip” inductors and ferrite-

core and air-core axial-lead inductors. These have

inductances ranging from a few nH to a few mH,

quality factors from about 5 to about 100, operating

frequencies fTð Þ from about 50 kHz to almost 1 GHz,

dc resistances (DCR) from a few mO to a few hundred

O and self-resonant frequencies (SRF) from about 50

kHz to a few GHz.

Example 12.48. A manufacturer’s specifica-

tions for one of his offerings are L ¼ 22 mH,
Q ¼ 50, fT ¼ 2:52 MHz, and SRF ¼ 13 MHz.

(a) What is the ac resistance of the coil at the

operating frequency? (b) What (approxi-

mately) is the shunt (stray) capacitance of the

coil?

Solution:

(a)

Q ¼ oTL

Rac
) Rac ¼ oTL

Q

¼ 2p 2:52 MHzð Þ 22 mHð Þ
50

¼ 6:97 O:

(b)

SRF ¼ 1

2p
ffiffiffiffiffiffi
LC

p ) C ¼ 1

2pSRFð Þ2L

¼ 1

4p2 13 MHzð Þ2 22 mHð Þ ¼ 6:81 pF:

f / f0

Q = 10

Q = 20

Q = 50

1010.1
–60

–50

–40

–30

–20

–10

0

dB

|Z |
R

Fig. 12.74 Normalized impedance (dB) versus normalized

frequency f=fr for the parallel RLC (tuned) circuit
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12.21 Simulating Inductance Using
Active RC Circuits

Passive tuned circuits such as the singly tuned circuit

described above are useful primarily at high (video

and above) frequencies, where the inductances

required are small.22 But at audio frequencies, achiev-

ing sufficient inductance can require large, heavy, and

expensive inductors. Fortunately, it is possible to build

active RC circuits that simulate inductance and are

quite small. In this section, we describe one such

circuit that finds favor in the audio community.

In the vocabulary of audio engineers, a gyrator is

an active capacitive circuit that simulates a resistance

in series with an inductance. Figure 12.75 shows a

model commonly presented for a gyrator, where the

op amp is assumed to be ideal.23 Thus

~Vpn ¼ 0; ~In ¼ 0; ~Ip ¼ 0:

This model is incomplete because ~Iout 6¼ ~IS. To see

this, note that Kirchhoff’s voltage law around the loop

a-p-n-a gives

~Vap þ ~Vpn þ ~Vna ¼ 0 ) ~Vap ¼ � ~Vna ¼ ~Van;

which implies that the voltage across the resistor R1

equals the voltage across the capacitor, so not all of the

current ~IS passes through the capacitor and the resistor

R2. Some is diverted through R1. But the model does

not provide a closed path for the diverted current

because ~In ¼ 0 and ~Ip ¼ 0.

The situation is clarified if we replace the op amp

by a less-than-ideal model, as shown in Fig. 12.76,

where m � 1. We assume the op-amp input resistance

is exceedingly large and the op-amp output resistance

is negligibly small. The dependent source provides a

return path for the current through R1 to the negative

terminal of the independent source, so Kirchhoff can

stop spinning in his grave.

Using the model in Fig. 12.76, we can show that

under certain conditions the gyrator circuit in

Fig. 12.75 simulates an inductor in series with a resis-

tor. Taking b as the reference node and Applying

Kirchhoff’s current law at node a gives

~IS ¼ ~VS � ~Vp

	 

joCþ

~VS � ~Vp

R1

¼ 1þ joR1C

R1

� �
~VS � ~Vp

	 

; (12.103)

where we have used ~Vn ¼ ~Vp (because the op amp is

ideal). By voltage division,

~Vp ¼ R2
~VS

R2 þ 1
joC

¼ joR2C

1þ joR2C
~VS: (12.104)

Using (12.104) to eliminate ~Vp in (12.103) gives

~IS ¼ 1þ joR1C

R1

� �
~VS � joR2C

1þ joR2C
~VS

� �

¼ 1þ joR1C

R1 1þ joR2Cð Þ
~VS: (12.105)

It follows that the impedance at the terminals a–b

of the gyrator circuit is given by

+

–
C

R2

R1
IS
~

Iout
~

VS
~

Vn
~

Vp
~

Ip
~

In
~+

–

a

b

n

p

o

Fig. 12.75 An approximate implementation of a gyrator

+
–

C

R2

R1

p

n
IS
~

m (Vp – Vn)
~ ~

VS
~

a

b

+
–

Fig. 12.76 Equivalent circuit for the gyrator in Fig. 12.75

22Remember that the voltage across an inductor is proportional

to both the inductance and the rate of change of the voltage.
23Actually, the circuit considered here only approximates a true
gyrator, but provides a useful approximation at minimal cost.
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Z ¼
~VS

~IS
¼ R1 1þ joR2Cð Þ

1þ joR1C
; (12.106)

from which we obtain

Z ffi R1 1þ joR2Cð Þ; oR1C � 1: (12.107)

We can write (12.107) as

Z ffi R1 þ joL; L ¼ R1R2C; o � 1

R1C
: (12.108)

For frequencies well below 2 pR1Cð Þ�1; the

impedance of the gyrator is that of a resistor having

resistance R1 in series with an inductor having

inductance L ¼ R1R2C. At any particular frequency

f0 � 2 pR1Cð Þ�1
, the gyrator acts like a coil having

quality factor

Q ¼ o0R1R2C

R1

¼ o0R2C: (12.109)

The development above suggests a simple

approach to designing a gyrator-based singly-tuned

circuit, illustrated by Fig. 12.77 and described below.

Specifications on a singly-tuned circuit normally

include the resonant frequency f0, the quality factor

Q, and the impedance Z o0ð Þ at resonance.24 Thus we
have three specifications on the four free parameters

R1; R2; C; C1. From (12.106) and (12.107), we must

also require R2 � R1, if the gyrator is to behave like a

coil for frequencies below 2 pR1Cð Þ�1
.

The resonant frequency of the circuit in Fig. 12.77(b)

is given by

o0 ¼ 1ffiffiffiffiffiffiffiffi
LC1

p : (12.110)

To validate the approximations illustrated by

Fig. 12.77, we require

o0R1C � 1: (12.111)

The equivalent inductance of the gyrator is

given by

L ffi R1R2C; o0R1C � 1: (12.112)

The impedance of the gyrator in Fig. 12.77(a) at

resonance is given by

ZG ¼ R1 þ jo0R1R2C; (12.113)

so the quality factor of the gyrator (at resonance) is

given by

Q ¼ Im ZG o0ð Þ½ �
Re ZG o0ð Þ½ � ¼ o0R2C: (12.114)

The impedance of the tuned circuit in Fig. 12.77(b)

at resonance is given by

Z0 ¼ R1 þ jo0R1R2Cþ 1

jo0C1

¼ R1; (12.115)

which implies

jo0R1R2Cþ 1

jo0C1

¼ 0)R1R2CC1¼ 1

o2
0

: (12.116)

Example 12.49. Design a gyrator-based tuned

circuit subject to the following specifications:

resonant frequency ¼ f0 ¼ 400 Hz;

quality factor ¼ Q ¼ 10;

impedance at resonance ¼ Z0 ¼ 100 O:

Solution: We assume a suitable op amp is

available (which is almost always the case for

frequencies at which the gyrator described

above is useful). From (12.115) and the speci-

fication on the impedance at resonance, we

have

R1 ¼ Z0 ¼ 100 O: (12.117)

+

–
Z ⇒

a

b

C1

C
R2

R1

Z ⇒

a

b

C1

R1
L = R1R2C

(a) (b)

Fig. 12.77 The circuits (a) and (b) are equivalent if oR1C � 1

24The impedance at resonance is of interest because it deter-

mines the maximum current required of a circuit driving the

impedance.
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Based upon (12.111), we require

1

R1C
¼ 100o0;

which yields

C ¼ 1

100o0R1

¼ 39:79 nF:

From (12.114)

R2 ¼ Q

o0C
¼ 100 kO:

Finally, from (12.110)

C1 ¼ 1

o0
2L

¼ 397:89 nF:

The impedance of the gyrator-based circuit

is given by

ZG ¼ R1 1þ joR2Cð Þ
1þ joR1C

þ 1

joC1

:

The impedance of an equivalent passive

RLC circuit is given by

ZRLC ¼ Z0 1þ jQ
o
o0

� o0

o

� �� �

We may express the magnitudes of the nor-

malized impedances in dB as

ZGj j dB ¼ 20 log
ZG
R1

����
����

� �
;

ZRLCj j dB ¼ 20 log
ZRLC
R1

����
����

� �
:

Figure 12.78 shows graphs of the magni-

tudes of the impedances versus frequency, on

the same axes. The graphs are almost indistin-

guishable for f < 20 kHz, and indicate that the

design is successful. The resonant peak

appears to be at 400 Hz, in good agreement

with the specification.

In the development and example above, we have

glossed over a somewhat subtle point that can cause

confusion in simulations or physical implementations

of the circuit. To address this point, we again consider

the gyrator in Fig. 12.75, which we have re-drawn in

Fig. 12.79. In order to define an impedance at the

terminals a–b, the currents ~I1 and ~I3 must be equal;

that is, the terminal pair a–b must be a port. Recall

from above that the current ~I1 entering terminal a and

the current ~I2 through R2 are not equal, because the

current ~I0 through R1 is not zero, and no current enters

the n and p terminals of the op amp. Thus we cannot

define an impedance at the terminals a–c. Recall also

that an op amp has no ground or common terminal,

and that the reference or ground for the voltages in an

op amp is established by the manner in which the

supply �VCCð Þ and the load are connected to the op

amp. In this circuit, the current ~I3 coming up from

ground and out through terminal b consists of the

current ~I2 plus the current driven to ground (through

the power supply) by the op amp. Showing the latter

current in the circuit diagram would require using a

much more complex model for the op amp. You may
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gyrator RLC circuit

Fig. 12.78 See Example 12.49

I3

Z  ⇒

a

b c

C
~

I2
~

I1
~

I0
~

R2

R1

n

p

–

+

Fig. 12.79 Current paths in a gyrator
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use a simulation program of your choosing to explore

this issue.

12.22 Circuit Elements and Physical
Circuit Components

To conclude this chapter, we offer a brief discussion of

differences between real and ideal circuit elements.

Some knowledge of such differences can help you

understand and perhaps avoid many otherwise per-

plexing problems.

Ideal elements do not exist. Physical resistors, capa-

citors, and inductors are constructed such that resis-

tance, capacitance, and inductance are their dominant

properties under certain operating conditions, but each

exhibits all three phenomena to greater or lesser degree,

depending upon the frequency of the voltage across or

current through the component and other factors. Sec-

ondary phenomena, such as inductance and capacitance

exhibited by a physical resistor often are called para-

sitic or residual properties. In extreme cases, a residual

property can even become dominant; for example, at

sufficiently high frequencies, a physical resistor might

behave more like a capacitor than a resistor.

At sufficiently high frequencies, a physical resistor,

capacitor, or inductor must be modeled as a two-

terminal circuit composed of three elements (in general).

Such models are called lumped-parameter models. At
even higher frequencies, even those models fail. Every

lumped-parameter model is limited to wavelengths

much larger than the physical dimensions of the asso-

ciated component. Thus conventional discrete compo-

nents having dimensions on the order of 1 cm and

larger can be represented by lumped parameters only

for wavelengths longer than about lmin ¼ 10 cm; i.e.,

for frequencies lower than about

fmax ¼ c

lmin

¼ 3	 108 ms�1

0:1 m
¼ 3 GHz:

The overall dimensions of and the lengths of con-

ductors in some discrete-component circuits are much

larger than those of the individual components. Appli-

cability of lumped-parameter models for such circuits

is limited to even lower frequencies – typically a few

hundred MHz.

Lumped-parameter models can be used for

integrated components and circuits up to much higher

frequencies than for discrete components and circuits

because integrated components and circuits are so

small. In modern integrated circuits, dimensions of

subcircuits are on the order of 1–10 mm. The corres-

ponding limiting frequency for lumped-parameter

models for subcircuits is thus on the order of

fmax ¼ c

lmin

¼ 3	 108 ms�1

10�5 m
¼ 30 THz:

Stray capacitance and inductance also become

more problematic at higher frequencies because of

the time-derivative dependence of the resulting cur-

rents and voltages. For example, if a stray capacitance

is in parallel with an inductor, the current drawn

away from the inductor, given by iC ¼ CdvL=dt, is
proportional to the frequency of the voltage across

the inductor. At a sufficiently high frequency, if the

lumped-constant model holds up, the inductor will

begin to behave more like a capacitor.

Other phenomena that can come into play at higher

frequencies include skin effect and proximity effect,

described in Chapter 2. These effects cause a current to

occupy less than the whole cross-sections of a conduc-

tor, so the effective resistance of the conductor is

increased. Skin effect and proximity effect have essen-

tially the same root cause, that being eddy currents

introduced in conductors by a time-varying magnetic

field. Skin effect arises from self-induced eddy cur-

rents and proximity effect from mutually induced eddy

currents. In both cases, the eddy currents increase with

frequency, so the effective (ac) resistance of a conduc-

tor increases with frequency. The ac resistance of a

conductor or coil can be ten or more times the dc

resistance.

Although a principal concern, frequency is not

the only concern. Circuit components also are sensi-

tive in varying degrees to temperature, moisture, and

electromagnetic interference (e.g., from other, nearby

electrical equipment). A circuit designer must con-

sider not only how to achieve the desired function

(e.g., amplification), but also the particular kinds of

resistors, capacitors, and other elements to be used,

how they should be placed and interconnected on a

circuit board, how much power each will dissipate,

whether they might require forced cooling, and

whether and what kind of shielding against
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electromagnetic interference might be necessary. You

will learn more about such things as you progress

through your curriculum and later in your professional

life. Here, we can give only a brief and mainly descrip-

tive introduction to a few such topics. We begin by

describing how physical elements might be modeled

by more complex two-terminal circuits.

12.22.1 Resistors

Resistors are made of various materials in various

configurations. Ordinary wirewound resistors consist

of wire wrapped around a ceramic core, which is

also how many inductors are made. In so-called non-

inductive wirewound resistors, half the turns are

clockwise and the other, overlapping half of the turns

are counterclockwise, which theoretically eliminates

inductance. Such elimination is imperfect, and some

inductance remains. Several other kinds of discrete

resistors are made by depositing a layer of carbon or

metal film on a cylindrical core and then cutting away

some of the material to leave a spiral ribbon of resis-

tive material on the core, as illustrated by Fig. 12.80.

These also have a coil-like structure and become

inductive at sufficiently high frequencies.

Composition resistors consist of a mix of carbon or

metal granules in an insulating material such as phenol

resin (phenolic resistors) or ceramic (cermet resistors).

Inductance exhibited by such resistors arises primarily

from the leads (recall that even straight wires exhibit

inductance). Such inductance can be minimized by

keeping leads short.

Some discrete surface-mount resistors are essen-

tially miniature versions of the spiral structures

described above, but encased in a small flat case and

having relatively short leads. Such structures virtually

eliminate lead inductance, but inductance arising

from the spiral structure remains. Other surface-mount

resistors (chip resistors) consist of a flat film of resistive

material deposited on a flat substrate. For such resistors,

capacitance typically becomes problematic at frequen-

cies below those at which inductance would become an

issue.

Chip resistors and resistors in integrated circuits

are planar, consisting of a film of resistive material

deposited on a flat substrate, either in a straight line or

in zigzag fashion, as illustrated by Fig. 12.81. Planar

resistors are typically more capacitive than inductive.

Those that zigzag can be less inductive than straight-

line structures because the magnetic effects that give

rise to inductance tend to cancel in neighboring con-

ductors when the currents are in opposite directions.

However, a zigzag structure might exhibit more

capacitance than an otherwise equivalent straight-

line structure because of the proximity of the neigh-

boring conductors. Proximity effect might also be

significant.

For reasons given above and others, a resistor is not

just a resistor, at least not at sufficiently high frequen-

cies. Figure 12.82 shows a circuit model for a resistor.

The resistance R is the intended resistance. The induc-

tance L is attributed to spiral structure. In conventional

discrete and surface-mount chip resistors, the capaci-

tance C arises because (with alternating current) the

ends of a resistor (and possibly neighboring turns on

spiral and wirewound structures) are alternately and

oppositely charged. In integrated resistors, the capaci-

tance C arises from that effect and from the proximity

of the planar film to other conducting structures on

adjacent layers (stray capacitance). In conventional

discrete resistors, inductance usually appears before

(at a lower frequency than) capacitance, and arises

insulating capsule
metal lead

metallic or
carbon film
(gray)

insulating ceramic
substrate (white)

metal
end cap
(contact)

Fig. 12.80 Spiral film

resistor. The inset photograph

shows a carbon-film resistor

with and without its insulating

capsule (Photograph courtesy

of Betty Fuller, on behalf of

the late Jim Fuller.)
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from the spiral structure and (in axial resistors) from

the leads. The resistance Rl and inductance Ll are

attributed to the leads, depend strongly on lead length,

and are virtually non-existent in surface-mount and

integrated resistors. However, there can be worrisome

contact effects, which are nonlinear. In the discussion

below, we ignore lead resistance and inductance and

contact effects, and use the model shown in Fig. 12.83.

Composition and film resistors may exhibit capaci-

tances on the order of 1 pF, whereas the capacitance of

a wirewound resistor can be on the order of 10 pF.

Spiral-structure resistors, such as carbon-film and

metal-film resistors can exhibit inductances on the

order of 10 nH and wirewound resistors can exhibit

inductances on the order of 10 mH. The inductance of
composition resistors comes mainly from the leads

and varies greatly with lead length, but typically is

no more than a few nH and can be as small as a few

tens of pH.

Inductance arises at lower frequencies than capaci-

tance in discrete, axial- and orthogonal-lead structures.

Within that group, inductance usually arises at lower

frequencies in resistors having coil-like structures,

such as wirewound resistors and spiral carbon-film

resistors, and at higher frequencies in surface-mount

resistors having short leads. Capacitance can arise first

in planar resistors, such as those in integrated circuits.

In axial-lead spiral resistors, capacitance typically

comes into play at frequencies on the order of 1 GHz,

where the impedance is already far from ideal. Capac-

itance arises at much higher frequencies in surface

mount and integrated resistors, in some cases at fre-

quencies near those where lumped-parameter models

begin to fall apart for other reasons.

Figure 12.84 shows graphs of typical impedances

(magnitude, normalized to the dc resistance) versus

frequency for axial spiral, surface-mount spiral, and

surface-mount chip and planar integrated resistors.25

Actual (measured) impedances will differ from the

graph to varying degrees, but as a rule, we may treat

all resistors except some wirewound resistors as ideal

C

LRLlRl

Fig. 12.82 Circuit model for a resistor

Z

R

f (Hz)
107 108 109 1010
0
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2

3

4

5

axial-lead spiral

surface-mount spiral

planar integrated and
surface-mount chip

Fig. 12.84 Normalized impedance for three kinds of resistors

Contact

Contact

ContactContact

resistive film

resistive film

Fig. 12.81 Planar metallic-film resistor

C

LR

Fig. 12.83 Simplified circuit model for a resistor

25Adapted from Bogatin, Eric. Signal and Power Integrity –
Simplified. Prentice-Hall, Englewood Cliffs, NJ. 2010.
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for frequencies up to at least 10 MHz and perhaps up to

100 MHz. The excluded wirewound types are mainly

those used at high power and at frequencies well below

those at which inductance would come into play.

Do not assign too much significance to the models

discussed above. The model components and their

associations with geometry and materials are useful

guides in resistor design and selection, but such asso-

ciation is loose, especially at very high frequencies,

where the wavelengths of currents and voltages

approach the physical dimensions of components.

Ultimately, what matters is the actual (measured)

impedance over the range of frequencies of interest.

The purpose of this treatment is only to point out some

of the main reasons why resistors are not always just

resistors and that some kinds of resistors are much

better than others for high-frequency applications. A

circuit designer’s selection of components is guided in

part by such knowledge.

Physical resistors are sensitive to temperature, some

more than others. Temperature coefficients of resistivity

are useful guides to selection where high temperatures

or wide-ranging temperatures are anticipated. Carbon

composition and carbon-film resistors have relatively

large temperature coefficients, on the order of

5000 ppm. Metal-film and wirewound resistors are bet-

ter, having temperature coefficients of 100 ppm or smal-

ler, and are preferred for that reason (and others) in

applications requiring stable resistance values. Variation

of resistance with temperature is one of the more impor-

tant departures of real resistors from the ideal model.

Example 12.50. The temperature coefficient

for a certain 10 kO resistor is 500 ppm at

20�C. Construct a graph showing resistance

versus temperature T for 20�C � T � 200�C,
expressed as a percent of the nominal

resistance.

Solution: The resistance as a function of tem-

perature is given by

R ¼ R0 1þ a T � T0ð Þ½ �;

where

R0 ¼ 10 kO; a ¼ 500	 10�6 �Cð Þ�1;
T0 ¼ 20�C:

The percent variation of resistance with

temperature is given by

100 R� R0ð Þ
R0

¼ 100a T � T0ð Þ:

Figure 12.85 shows a graph of the expres-

sion above. For T ¼ 100 �C, a temperature

reached or exceeded under normal operating

conditions in some microelectronic circuits,

the resistance is increased by 4%. Even higher

temperatures are attained in a few such

circuits.

Physical resistors also are sources of electrical

noise. Carbon and carbon-film resistors are generally

noisier than metal-film and wirewound resistors. As a

rule, carbon composite and carbon-film resistors

should be used only in undemanding applications,

where noise and precision are relatively unimportant.

Most circuit designers nowadays use metal-film resis-

tors of either conventional or (better) surface-mount

construction.

Skin effect rarely is a problem in film resistors

because the films are generally thinner than their skin

depths at normal operating frequencies. Exceptions

arise in some microwave circuits. For example, the

skin depth of nichrome at 100 GHz is in the neighbor-

hood of 100 nm, which is on the order of the thickness

of films in integrated resistors and conductors (circa

2006). Skin effect might be a problem in some
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Fig. 12.85 See Example 12.50
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wirewound resistors, but generally inductance limits

use of such resistors to frequencies below those at

which skin effect becomes important. But there are

some interesting exceptions. For example, the effec-

tive cross-section area of conductors used in some

inductors for high-power radio and television trans-

mitters must be quite large to carry the currents

involved. For AM radio, the inductors operate in the

neighborhood of 1 MHz, where the skin depth of

copper is about 50 mm, so the inductors might be

made of large-diameter, thin-walled copper tube and

might even be silver-plated to reduce resistivity and

the associated losses. Most of a solid conductor having

the same diameter would be wasted.

Finally, the tolerances of carbon composition and

carbon-film resistors typically range from � 20% to

� 5%, whereas metal-film and wirewound resistors

are typically � 1% and better. Tolerances of

integrated film resistors might be somewhat poorer

because it is difficult to achieve precise control of the

composition, thicknesses, and widths of films in IC

manufacturing. These problems affect every compo-

nent on a particular chip in very nearly the same way,

so are less problematic in circuits where only ratios of

resistances and not the resistances themselves must be

precise. Where individual resistances are important,

one often uses resistors that can be laser trimmed to

precise values.

12.22.2 Inductors

Circuit models for inductors are essentially identical

to those for resistors (Fig. 12.83), except that induc-

tance is the desired property and is dominant at low

frequencies. The measured (ac) resistance of an

inductor generally increases with frequency. Some

of the increase is due to skin effect. At any frequency,

the skin depth of the good conductors usually used in

inductors is much smaller than that of the resistive

materials used in resistors, so skin effect comes into

play in inductors at lower frequencies than in resis-

tors. The effective resistance of an inductor also

increases with frequency because of the proximity

effect and the fact that conductors in inductors can

be quite close together. Adjacent turns in inductors for

high-frequency operation usually are kept relatively

far apart to minimize proximity effect. Finally, for

iron-core and other magnetic-core inductors, the resis-

tive component of the impedance arises partly from

core losses due to eddy currents. Eddy current losses

can be reduced by using laminated or granular core

material.

Capacitance in the model for an inductor arises, as in

a resistor, from the opposite charges at the ends of the

inductor as the voltage across the inductor alternates in

sign. At higher frequencies, capacitance also arises

between neighboring turns. This distributed capacitance

can become so large that the current in the coil varies

significantly along the length of the coil, invalidating the

lumped-parameter model in Fig. 12.83.

Most inductors are designed to operate at or near

certain frequencies, for example, those frequencies

assigned by the FCC for various uses. An important

property of an inductor is its quality factor Q, defined

as the ratio of inductive reactance to resistance at the

specified operating frequency. Thus

Q ¼ o0L

Rac
; (12.118)

where Rac is the effective resistance at the frequency

f0. The quality factor for an inductor is a measure of

how closely the inductor approximates an ideal induc-

tor at the intended operating frequency. The quality

factor for an ideal inductor would be infinite at any

frequency.

Inductors also are characterized by self-resonance,

which occurs at a frequency fr determined (theoreti-

cally) by the inductance, resistance, and capacitance in

the model shown in Fig. 12.83:

or ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

LC
� R

L

� �2
s

¼ 1ffiffiffiffiffiffi
LC

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

Q2

s
: (12.119)

The self-resonant frequency is the highest frequency

for which the coil is inductive, and thus establishes

an upper limit on the frequency for which the coil can

provide inductive reactance.

Manufacturers of inductors (for high-frequency

applications) usually specify inductance, quality fac-

tor, dc resistance, permissible power dissipation (or

maximum rms current), and (measured) self-resonant

frequency. A typical inductor intended for use at or

near 100 MHz might have inductance in the range

from 1 to 100 nH, a quality factor in the neighborhood
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of 20, dc resistance of 1mO to 1O, a self-resonant

frequency in the range 500 MHz to 5 GHz, and maxi-

mum rms current in the neighborhood of 500 mA.

The self-resonant frequency of an inductor usually

is well above the intended operating frequency, for

reasons given above. Specifying the self-resonant fre-

quency is a way of specifying the highest possible

operating frequency, and also is a backhanded way

of specifying (approximately) the effective shunt

capacitance C. From specified values for operating

frequency, inductance, and operating frequency, we

have from (12.118) that

Rac ¼ o0L

Q
:

From (12.119), we obtain

C ¼ Q2 � 1

Q2or
2L

ffi 1

or
2L

; Q2 � 1: (12.120)

The relation is a coarse approximation because the

circuit model parameters Q; L at the self-resonant

frequency are in general not the same as those at the

intended operating frequency. Nonetheless, the capac-

itance computed using (12.120) provides a starting

point for determining the capacitance to be placed in

parallel with the inductor if the inductor is to be used

in a tuned circuit (which is the usual case).

The model for an inductor shown in Fig. 12.83 often

provides a poor fit to measurements of impedance as a

function of frequency,Q as a function of frequency, and

self-resonant frequency, especially for inductors

designed for high-frequency operation. The model

shown in Fig. 12.86 can provide a much better fit.26

Unfortunately, few (if any) manufacturers provide

parameter values for this model in their data sheets.

Example 12.51. Figure 12.87 shows a model

used by one manufacturer for air-core rf

coils.27 The resistance rL accounts for skin

effect and is given by rL ¼ k
ffiffiffi
f

p
, where k is

an experimentally determined parameter.

In Fig. 12.87, let RC ¼ 6 O, RS ¼ 1 mO,
C ¼ 68 fF ¼ 68	 10�15 F, L ¼ 1 nH, and

k ¼ 3:4	 10�6 OHz�1=2. Construct a graph

of the magnitude in dB of the equivalent

impedance Zab at the terminals a–b versus fre-

quency f , for 100 MHz � f � 100 GHz. Use a

logarithmic scale for frequency and normalize

the impedance to the impedance at the self-

resonant frequency. Show also a graph of the

magnitude in dB of the impedance of an ideal

inductor having inductance L, also normalized

to the impedance at the self-resonant frequency.

Solution: From (12.88), the self-resonant fre-

quency of the circuit is given by

fr ¼ 1

2p
ffiffiffiffiffiffi
LC

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2L frð ÞC� L

R2
CC� L

s

¼ 1

2p
ffiffiffiffiffiffi
LC

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2fr C� L

R2
CC� L

s
;

which yields

fr ¼
�k2Cþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k4C2�16p2L2C R2

CC�L
	 
q

8p2LC L�R2
CC

	 

ffi 19:3 GHz:

From Fig. 12.87, the equivalent impedance

at the terminals a–b is given by

C

LRL

Rp

RC

Fig. 12.86 Improved circuit model for an inductor

a b
RS

RC C

LrL

Fig. 12.87 See Example 12.51

26Leslie Green, RF Inductor modeling for the 21st Century,
EDN, September 27, 2001. 27See http://www.coilcraft.com/models.cfm
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Z¼ RSþ
1

RCþ j2pf Cð Þ�1
� �1þ k

ffiffiffi
f

p þ j2pf L½ ��1

¼ RSþ
1

RCþ joCð Þ�1
� �1þ k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o= 2pð Þp þ joL

� �1
:

(12.121)

The equivalent impedance at the self-

resonant frequency fr is

Zr ¼ Z jorð Þ ¼ 2:27 kO;

where or ¼ 2 p fr. Figure 12.88 shows graphs

of the magnitude of the normalized impedance

of the model in Fig. 12.87 (solid line) and of

the normalized impedance of an ideal inductor

having inductance L (dashed line), where Z is

given by (12.121). The normalized impedance

(in dB) of the model and that of the associated

ideal inductor are given by

Zj j dBð Þ ¼ 20 log
Z joð Þ
Z jorð Þ
����

����;
ZLj j dBð Þ ¼ 20 log

joL
Z jorð Þ
����

����;

respectively. Figure 12.88 indicates that the

physical inductor approximates an ideal

inductor for 10 MHz< f < 10 GHz. Below

10 MHz, the series resistance RS becomes

significant and above 10 GHz, the shunt

capacitance is significant.

The models discussed above are for air-core induc-

tors. Models for magnetic-core inductors are more

complex, including frequency-dependent resistances

that account for core losses and (in some applications)

nonlinear effects.

As pointed out above, inductors tend to be bulky,

especially at low frequencies. In some cases, induc-

tance can be simulated by active RC circuits, but for

high-frequency and high-power applications, physical

coils must be used.

12.22.3 Capacitors

A capacitor consists essentially of conducting plates

separated by an insulating material, which can be air

(or other gas), a liquid (usually, oil), or a solid such as

paper, mica, polyester, polystyrene, or glass. The

plates can consist of a roll of strips of metallic film

separated by dielectric material or an alternating stack

of metallic and dielectric materials. However made,

capacitors (except some air-dielectric capacitors) are

enclosed in some kind of air- and moisture-tight con-

tainer. There are many more kinds of capacitors than

|Z| (dB) |ZL| (dB)

–60

–40

–20

0

–140

–130

–120

–110

–100

–90

0.1 1.0 10

1.0 10 100

f (GHz)

f (MHz)

|Z| (dB) |ZL| (dB)

Fig. 12.88 See Example 12.51
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can be described here.28 The principal applications of

capacitors are described in Chapter 8.

Figure 12.89 shows a common circuit model for a

capacitor. The capacitance C is the nominal capaci-

tance. The parallel resistance Rp is largely leakage

resistance. The resistance RS is the equivalent series

resistance (ESR) and the inductance LS is the equiva-

lent series inductance (ESL). ESR arises from lead

resistance, contacts, and dielectric losses. ESL arises

largely from leads. The parallel (leakage) resistance

Rp is typically several MO and can often be ignored in

high-frequency applications. All of the parameters in

the model are frequency-dependent and temperature-

dependent. They can also change with age, current,

and applied voltage. We ignore those refinements, but

they are important in most applications.

Power dissipation in the ESR generates heat. The

heat can be significant, especially in power supplies

where the power dissipated in the ESR is due to ripple

in a rectified voltage. Often, ESR and maximum ripple

current are specified for capacitors intended for use in

such applications (dc current does not cause signifi-

cant power dissipation in a capacitor). ESL causes self-

resonance. Above the self-resonant frequency, a

capacitor is inductive, not capacitive.

A capacitor can be characterized by a quality fac-

tor, which is the ratio of the capacitive reactance to the

series resistance in the model of Fig. 12.89. Thus

Q ¼ 1= oCsð Þ
Rs

¼ 1

oRsCs
:

The reciprocal of the quality factor is the dissipa-

tion factor:

D ¼ 1

Q
¼ oRsCs ¼ dissipation factor: (12.122)

The dissipation factor for a capacitor is (as shown

below) ameasure of losses in the capacitor. Figure 12.90

depicts the real and imaginary parts of the series

impedance Zs ¼ Rs þ jZs of a capacitor at some fre-

quency f ¼ o= 2pð Þ. If the losses are small, then the

angle d also is small, and the following relations exist

among the dissipation factor D, the loss angle d, and
the angle of the equivalent impedance Zs:

D ¼ oRsCs ¼ Rs

�Xs
¼ � tan dð Þ ffi cos yZð Þ: (12.123)

Example 12.52. In Fig. 12.91(a),C ¼ 100 mF,
v tð Þ ¼ V cos otð Þ with f ¼ 60 Hz and

V ¼ 15 V. The dissipation factor for the

capacitor is 0.03. The ESL and parallel resis-

tance Rp can be neglected. Find the power

dissipated in the capacitor (in the ESR).

Solution: We may determine the current

through the model and the power dissipated

in the ESR, as follows: we refer to the model

in Fig. 12.91(b), where (see Fig. 12.90)

Xs¼� 1

oC
¼� 1

2p 60Hzð Þ 100 mFð Þffi�26:5O

Rs¼�XsD¼ 26:5Oð Þ 0:03ð Þffi0:80O:

LSCRS

RP

Fig. 12.89 Circuit model for a capacitor

Rs

Zs

qz

d

Xs = − 
wCs

1

Fig. 12.90 See (12.122), (12.123), and surrounding discussion

–

+

n

–

+

V

i I

C

(a) (b)

~

~

Zs = Rs + jXs

Fig. 12.91 See Example 12.52

28See www.capacitorindustries.com
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Thus

Zs ¼ 0:80� j26:5ð Þ O ffi 26:5ff � 1:54O

and

~I ¼
~V

Zs
¼ 565ff1:54 mA:

The power dissipated in the ESR is

P ¼ Irms
2Rs ¼

~I
�� ��2
2

Rs ¼ 127 mW:

Summary

You should have gleaned from the discussion above

that components you might have thought simple are

not so simple, after all. The behavior of physical

resistors, inductors, and capacitors can be quite com-

plex, depending upon demands placed on them in

various applications.29 Moreover, which properties

of a resistor, inductor, or capacitor are important

differ from one application to another. A capacitor or

inductor suitable for reducing ripple in a large power

supply would be completely unsuitable for use in

a high-frequency tuned circuit. A high-precision,

high-power wirewound resistor might be an excellent

choice in an audio speaker crossover network, but a

poor one in high-frequency applications, where it

might behave more like an inductor than an resistor.

You should take at least three ideas away from this

brief discussion:

1. There is no such thing as an ideal resistor, inductor,

or capacitor. Physical resistors, inductors, and

capacitors are merely components for which one

of those properties is dominant under certain

operating conditions.

2. There is no such thing as a universal resistor, induc-

tor, or capacitor. For example, inductors designed

for use in tuned circuits at high frequencies are

quite different from those designed for smoothing

currents in large power supplies. A component that

is excellent in one application (e.g., for a certain

range of frequencies, powers, and temperatures)

might be completely unsuitable in another. Most

resistors, capacitors, and inductors are designed

and constructed with specific applications in mind.

3. In many applications, a designer must specify (or at

least consider) not only the presumed dominant

property of a component (e.g., capacitance), but

also other properties relevant to the application at

hand, such as size, weight, cost, precision, rated

power dissipation, expected lifetime (often given

as mean time between failure or MTBF), solderabil-

ity, and resistance to moisture and mechanical and

thermal shock. Some of the other properties are:

• For a resistor: Series inductance, temperature coef-

ficient, self-heating coefficient (or a power derating

chart or graph), and shunt capacitance

• For an inductor: Nominal operating frequency,

quality factor, dc resistance, maximum current,

and self-resonant frequency

• For a capacitor: Temperature coefficient; leakage

resistance; maximum voltage; maximum current;

maximum temperature; and ESR, ESL, quality fac-

tor, loss angle, or dissipation factor.

As you can see, choosing components is not a

trivial task.

A circuit designer must also be aware of skin effect,

proximity effect, stray capacitance and inductance,

sources and effects of electrical noise, limits on

lumped-parameter models, power and heat budgets,

and a number of other considerations in particular

applications. Those who design integrated circuits

must add a large number of other items to this list.

Experienced and competent circuit designers are

worth their weights in gold.

Manufacturers continue to improve and add to their

offerings. Components continue to get better, smaller,

and less expensive. Better and less expensive are

important for obvious reasons. Smaller has allowed

development of personal computers, laptops, cell

phones, PDA’s, and a host of other gadgets now

considered indispensable. Less obvious is the fact

that smaller size has extended the applicability of

analytical techniques treated in this book. Kirchhoff’s

laws, for example, can be applied to a circuit only if

the smallest wavelength is much larger than the lon-

gest conductor or component in the circuit. Thus the

highest frequencies for which Kirchhoff’s laws can be

applied to an integrated circuit are orders of magnitude

29http://www.eigroup.org/cmc/downloads/r2_cmc/r2_cmc_v1.0_r

0.0_2005nov12.pdf
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higher than those for a typical circuit having the same

function in 1950. In this sense, at least, you are getting

a lot more for your money than this author did when

introduced to this material some years back.

12.23 Problems

Section 12.1 is prerequisite for the following

problems.

P 12.1 Express each current or voltage as a single

sinusoid in standard form.

(a) � 10 cos o0 t� 0:5ð Þ A;
(b) 5 sin o0 tþ 1:57ð Þ mV;

(c) 3 cos o0 tð Þ � 4 sin o0 tð Þ½ � V;
(d) � 12 sin o0 t� p=2ð Þ mA;

(e) 3 sin o0 tð Þ � 4 cos o0 tð Þ½ � V:
P 12.2 Express each current or voltage as a single

sinusoid in standard form.

(a) v tð Þ ¼ 2 cos o0 tð Þ þ 3 cos o0 tþ p=4ð Þ½ � V;
(b) i tð Þ ¼ cos o0 tð Þ � sin o0 tþ p=4ð Þ½ � mA;

(c) i tð Þ ¼ 10 cos o0 tð Þ þ 30 cos o0 tþ p=4ð Þ½
�20 cos o0 t� p=3ð Þ� mA;

(d) v tð Þ ¼ cos o0 tð Þ þ 5 cos o0 tþ p=4ð Þ½
�2 sin o0 t� p=3ð Þ� mV;

(e) v tð Þ ¼ cos o0 tð Þ þ 2 cos o0 tþ p=6ð Þ½
þ3 cos o0 tþ p=3ð Þ� V:

Section 12.2 is prerequisite for the following

problems.

P 12.3 Refer to Fig. P 12.1. In each graph, the dotted

line represents a sinusoidal voltage and the solid line

represents a sinusoidal current. The current and the

voltage have the same frequency. Does the current

lead or lag the voltage? Express the voltage in standard

form, using the current as the reference.

P 12.4 In a certain circuit, a 1 kHz sinusoidal

branch current passes through zero with positive

slope 250 ms before the 1 kHz phase reference does

so. What is the relative phase of the current?

P 12.5 In a certain circuit, a positive peak of a 2 kHz

sinusoid occurs 500 ms later than does the nearest

positive peak of the 2 kHz phase reference. What is

the relative phase of the sinusoid?

P 12.6 In a certain circuit, the relative phase of a

10 kHz sinusoid is 0.25. Does the sinusoid lead or lag

the 10 kHz phase reference? By how much (time)?

P 12.7 In a certain circuit, two 5 kHz sinusoidal

voltages pass through zero at the same times, but with

opposite slopes. What is the initial phase of one rela-

tive to that of the other?

P 12.8 Two sinusoids having equal frequencies and

equal amplitudes are in phase quadrature. Is the ampli-

tude of their sum larger than, equal to, or smaller than

the amplitude of either one alone?

P 12.9 Two sinusoids having equal frequencies and

equal amplitudes are in phase opposition. Is the ampli-

tude of their sum larger than, equal to, or smaller than

the amplitude of either one alone?

Section 12.3 is prerequisite for the following

problems.

P 12.10 Give the phasor representation of each

sinusoid.

(a) i tð Þ ¼ �10 cos o0 t� 0:5ð Þ A;
(b) v tð Þ ¼ 5 sin o0 tþ 1:57ð Þ mV;

(c) v tð Þ ¼ 3 cos o0 tð Þ � 4 sin o0 tð Þ½ � V;
(d) i tð Þ ¼ �12 sin o0 t� p=2ð Þ mA;

(e) v tð Þ ¼ 3 sin o0 tð Þ � 4 cos o0 tð Þ½ � V.
P 12.11 Express the sinusoidal currents and vol-

tages represented by the following phasors as func-

tions of time. Let V0 cos o0 tð Þ denote the phase

reference in each case.

(a) ~V ¼ 50ff1:57ð Þ V;
(b) ~V ¼ V1ff0:5þV2ff� 0:3; V1 ¼ 5 V;V2 ¼ 2:5 V;

(c) ~I ¼ 250ff p=4ð Þ mA� 120� j200ð Þ mA;

(d) ~V ¼ 30þ j50ð Þ mVþ 45ff p=3ð Þ mV;
(e) ~I¼ 25ff0:8ð ÞmA� 30ff�1ð ÞmAþ 15þ j20ð ÞmA.

P 12.12 Repeat Problem P 12.2, using phasors.

P 12.13 Use phasors to express each current or

voltage as a single sinusoid in standard form.

(a) i tð Þ ¼ 4Re expð jo0tÞ½ � � 5Im expð jo0tÞ½ � A;
(b) v tð Þ ¼ Re 3� j4ð Þexpð jo0tÞ½ �V

�Im 2þ j2ð Þexpð jo0tÞ½ � V;
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(c) i tð Þ ¼ 4Re
jexpð jo0tÞ

4þ j

� �
mA

þ4Re
exp½ jðo0tþ p=2Þ�

4þ j

� �
mA;

(d) v tð Þ ¼ ½cos o0tð Þ þ cos o0tþ p=2ð Þ
þ sin o0tþ p=4ð Þ þ sin o0tþ p=3ð Þ� mV;

(e) v tð Þ ¼ Im
5expð jp=3Þ 1þ jð Þexpð jo0tÞ

2þ j3

� �
mV;

(f) v tð Þ ¼ Re
P3
n¼0

exp j o0tþ np
2

� �h i� �
kV:

P 12.14 A certain current is given by iðtÞ ¼
Idc þ Iac cos o0 tð Þ, with o0> 0, Idc ¼ 5:00 mA, and

Iac ¼ 10:0 mA. (a) Can the current be expressed as a

phasor? (b) Can the ac and dc components of the

current be represented individually by phasors? (c)

What is the rms amplitude of the current? (d) Calculate

the average value of the absolute value of the current.

P 12.15 Refer again to Fig. P 12.1. Assume each

graph shows a sinusoidal input (dotted line) and

the corresponding output (solid line) for a circuit.

Use the input as the phase reference and represent

the output as a phasor. Give the frequency of the

output (or input).

P 12.16 The phasors for two 100 kHz sinusoidal

voltages v1 tð Þ; v2 tð Þ are ~V1 ¼ 5ff0:2ð Þ V and
~V2 ¼ 10ff0:4ð Þ V, respectively. Find the phasor repre-

sentation v tð Þ ¼ v1 tð Þ þ v2 tð Þ. Express v tð Þ as a func-

tion of time.

P 12.17 Can you find the product of two sinusoids

by forming the product of their phasor representa-

tions? If so, show how. If not, explain why not.

200mV /div
50mA /div

1V / div
1A /div

200ms / div

150mV /div
25mA /div

75mV /div
4mA /div

25ms / div

500mV /div
100mA/div

20mV /div
2mA /div

200 μs / div

2.5 μs / div 100μs / div

20 μs / div

(a)

(c)

(e) (f)

(d)

(b)

Fig. P 12.1 See Problem

P 12.3, 15, 20, 27
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P 12.18 Can you find the quotient of two sinusoids

by forming the product of their phasor representa-

tions? If so, show how. If not, explain why not.

Section 12.4 is prerequisite for the following

problems.

P 12.19 A fellow student tells you that the phasor

representation of a sinusoid is a vector that rotates

about the origin of a complex plane with angular

frequency o ¼ 2 p f , where f is the frequency of the

sinusoid. Is he correct?

P 12.20 Draw a phasor diagram for each pair of

voltages in Fig. P 12.1, using the dotted voltage as the

phase reference.

P 12.21 Use a phasor diagram to illustrate the fact

that

X2
n¼0

V0 cos o0 tþ 2np
3

� �
¼ 0

P 12.22 Draw a phasor diagram for each pair of

sinusoids, using v1 tð Þ as the phase reference. For

scale, assume V1 ¼ V2. Be sure to first put each sinu-

soid in standard form. If necessary, adjust the initial

phase of each so that the reference phasor lies along

the positive real axis but the phase difference remains

the same.

ðaÞ v1 tð Þ ¼ V1 cos o0 tð Þ; v2 tð Þ ¼ V2 cos o0 tþ p=3ð Þ;
ðbÞ v1 tð Þ ¼ V1 cos o0 tð Þ; v2 tð Þ ¼ V2 cos o0 t� p=6ð Þ;
ðcÞ v1 tð Þ ¼ V1 cos o0 tð Þ; v2 tð Þ ¼ V2 sin o0 tð Þ;
ðdÞ v1 tð Þ ¼ V1 cos o0 tþ p=6ð Þ;

v2 tð Þ ¼ V2 cos o0 t� p=3ð Þ;
ðeÞ v1 tð Þ ¼ V1 sin o0 tð Þ; v2 tð Þ ¼ V2 cos o0 tþ p=4ð Þ;
ðfÞ v1 tð Þ ¼ V1 cos o0 tð Þ; f0 ¼ 1 kHz;

v2 tð Þ ¼ V2 cos o0 t� t0ð Þ½ �; t0 ¼ 250 ms;

ðgÞ v1 tð Þ ¼ V1 cos o0 t� p=4ð Þ; f0 ¼ 1 kHz;

v2 tð Þ ¼ V2 sin o0 t� t0ð Þ½ �; t0 ¼ 250 ms:

P 12.23 Fig. P 12.2 shows a phasor diagram.

Express the voltages as functions of time.

p / 6

p / 6
p / 4

- p / 6

V1
~

V2
~V3

~V4
~

V5
~

V6
~

Im(V ) (1mV/div)
~

Re(V ) (1mV/div)~

Fig. P 12.2 See Problem

P 12.23
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Section 12.5 is prerequisite for the following

problems.

P 12.24 If we say that an impedance Z1 is larger

than another impedance Z2, which of the following are

implied? Mark all that apply.

(a) ∡Z1 >∡Z2
(b) Z1j j> Z2j j
(c) Re Z1ð Þ>Re Z2ð Þ;
(d) Im Z1ð Þ> Im Z2ð Þ.

P 12.25 In general, can an impedance be described

as positive or negative? Justify your answer.

P 12.26 Refer to Fig. P 12.3, which depicts a rela-

tion among three quantities. In each of (a)–(e) below,

find the unspecified quantity.

(a) ~V ¼ 5ff0ð Þ V; ~I ¼ 3þ j4ð Þ mA;

(b) ~V ¼ 5ff0ð Þ V; Z ¼ 3þ j4ð Þ kO;
(c) ~V ¼ 3þ j4ð Þ V; Z ¼ 10ff p=4ð Þ O;
(d) ~V ¼ 3þ j4ð Þ V; ~I ¼ 4þ j3ð Þ mA;

(e) Z ¼ 3þ j4ð Þ O; ~I ¼ 4þ j3ð Þ mA.

P 12.27 Refer again to Fig. P 12.1, which shows

oscilloscope traces of the current through (solid line)

and voltage across (dotted line) an impedance Z. Esti-
mate the impedance using the voltage as the phase

reference.

P 12.28 Fig. P 12.4 shows a circuit and oscilloscope

traces of the voltages across the 1 kO resistor and an

unknown impedance Z. Estimate the impedance Z.

Express the estimate in both rectangular and polar form.

P 12.29 A 5 V, 10 kHz sinusoidal voltage is applied

to a linear element. It is observed that the current

entering the positive terminal of the element has a

peak amplitude of 5 mA and lags the applied voltage

by 10 ms. Find the impedance of the element at 10 kHz.

Section 12.6 is prerequisite for the following

problems.

P 12.30 Refer to Fig. P 12.5. In each of (a)–(e)

below, find the unspecified quantity.

(a) ~V ¼ 5ff0ð Þ V; ~I ¼ 3þ j4ð Þ mA;

(b) ~V ¼ 5ff0ð Þ V; Y ¼ 3þ j4ð Þ mS;

(c) ~V ¼ 3þ j4ð Þ V; Y ¼ 10ff p=4ð Þ mS;

(d) ~V ¼ 3þ j4ð Þ V; ~I ¼ 4þ j3ð Þ mA;

(e) Y ¼ 3þ j4ð Þ mS; ~I ¼ 4þ j3ð Þ mA.

P 12.31 Each phasor diagram in Fig. P 12.6 depicts

the current through and voltage across a two-terminal

circuit element. The scales are 100 mV/div and 50

mA/div. Find the impedance and admittance of the

element. Express both in both polar and rectangular

form.

P 12.32 Let y denote the angle by which the

current entering the positive terminal of a load leads

the voltage across the load. If the angle of the admit-

tance of the load is increased, does y increase or

decrease?

P 12.33 In Fig. P 12.7, v tð Þ ¼ V0 cos o0 tð Þ and

i tð Þ ¼ I0 cos o0 tþ yð Þ, where V0 and o0 are fixed.

The angle y is to be increased by increasing or

decreasing each of R, L, and C. Which ones should

V~

I~

Z

+

–
Fig. P 12.3 See Problem

P 12.26

R
Z vZ

+

–

vR+

+
–

–

vS

R = 1kΩ

10µs / div

2V / div 0

vR

vZ

Fig. P 12.4 See Problem

P 12.28
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be increased and which ones should be decreased?

What are the limiting values of the angle y as

o0 ! 0 and o0 ! 1? What is the admittance of the

circuit for o0 ¼ 1
� ffiffiffiffiffiffi

LC
p

?

P 12.34 It is known that the magnitude of the

impedance of a certain load equals 10 kO. The load

is connected in series with a 1 O resistor and a 25 V, 1

kHz sinusoidal source v tð Þ, as illustrated by

Fig. P 12.8. The voltages vR tð Þ across the resistor and
v0 tð Þ across the load are observed on an oscilloscope.

It is found that the voltage vR tð Þ leads the voltage v0 tð Þ
by 125 ms. (a) Is the load capacitive or inductive? (b)

Draw a phasor diagram for the voltages, with the

source voltage v tð Þ as the phase reference. (c) Find

the admittance of the load. You may use any reason-

able approximations.

Section 12.7 is prerequisite for the following

problems.

P 12.35 Express each impedance in dB at the

specified frequency, using Z 0ð Þj j as the 0 dB reference.

ðaÞ Z ¼ R

1þ j 2 p f RC
; R ¼ 10 kO;C ¼ 50 nF;

f ¼ 1 kHz;

ðbÞ Z ¼ Rþ jo L

1þ joRC� o2LC
;

R ¼ 1 kO; L ¼ 10 mH;C ¼ 100 nF;

f ¼ 5 kHz; o ¼ 2pf ;

ðcÞ Z¼ 1

Y
; Y¼ 1

Rþ j 2p f L
þ1þ j2pf RC

R
;

R¼2 kO; L¼25mH;C¼500 nF; f ¼5 kHz;

Im

(a)

(d)

(b) (c)

(e) (f )

Im

Im

V

I
~

~
Re

Re

I
~

I
~

V
~

V
~

Re

Im

I
~

V
~

Re

ImIm

I
~I

~

V
~

V
~

Re

Re

Fig. P 12.6 See Problem

P 12.31

R L C

i

v +
–

Fig. P 12.7 See Problem P 12.33

v (t)

vR

v0

+

–

+ –

?

R

+
–

Fig. P 12.8 See Problem

P 12.34

V~

I~

Y –1

+

–
Fig. P 12.5 See Problem

P 12.30
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ðdÞ Z ¼ 1

Y
; Y ¼ 1

R0

þ 1

R1 þ j 2 p f L1
þ 1

R2 þ j 2 p f L2

;

R0 ¼ 5 kO; R1 ¼ 100 O; R2 ¼ 50 O;

L1 ¼ 20 mH; L2 ¼ 10 mH; f ¼ 10 kHz:

P 12.36 Fig. P 12.9 shows graphs representing the

impedance of a certain two-terminal circuit, where

R ¼ 5 kO. The circuit is connected to a 10 kHz sinu-

soidal voltage source having peak amplitude 10 V.

Using the voltage source as the phase reference, find

the phasor representation of the current entering the

positive terminal of the circuit. Then express the cur-

rent as a function of time.

P 12.37 Construct graphs of the magnitude (dB)

and angle of each impedance given in Problem

P 12.35. Use Z 0ð Þ as the 0 dB reference in each case.

P 12.38 The equivalent impedance for f ¼ f0 at the

terminals of a certain circuit is given as

20 log
Z

R

����
���� ¼ 20 dB; ∡Z ¼ � p

6
;

with R ¼ 1 kO. Find the admittance for f ¼ f0 in

rectangular form (not in dB).

P 12.39 The the magnitude of the impedance of a

certain two-terminal load is given as 20 dB at 1 kHz

and 40 dB at 10 kHz. The load is connected to the

terminals of a sinusoidal voltage source, the rms

amplitude of the source is set to 10 V, the frequency

of the source is varied from 1 to 10 kHz, and the rms

current entering the load is measured. What is the ratio

of the rms load current at 1 kHz to that at 10 kHz?

P 12.40 Refer to Fig. P 12.9, which gives the

impedance of a certain two-terminal circuit. The cir-

cuit is connected to the terminals of a sinusoidal volt-

age source, the rms amplitude of the source is set to

10 V, and the rms current entering the circuit is

observed as the frequency of the source is increased

from 10 kHz to 10 MHz. At what frequency is the rms

amplitude of the current 100 times that at 100 Hz?

P 12.41 It is given that Z1 ¼ 5ff1:2ð Þ kO and that

Z2 is 35 dB greater than Z1. What is the magnitude

of Z2?

Section 12.8 is prerequisite for the following

problems.

P 12.42 Use phasors to show that for all time and

for any o0,

V0

�
cos o0 tð Þ þ cos o0 tþ 2p

3

� �

þ cos o0 t� 2p
3

� ��
¼ 0:

P 12.43 Use phasors to show that

cos o0 tð Þþcos o0 tþp
6

� �
þcos o0 tþ2p

6

� �

þcos o0 tþ3p
6

� �
þþcos o0 tþ11p

6

� �
¼0:

P 12.44 Use phasors to verify the following iden-

tities:

104 105
–50

–40

–30

–20

–10

0

10 100 103

–2

–1.5

–1

–0.5

0

(dB)
Z

R

f (Hz)

104 10510 100 103

f (Hz)

Z (rad)

Fig. P 12.9 See Problem P 12.36, 40
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(a) A cos o0 tð Þ þ B sin o0 tð Þ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2 þ B2
p

cos o0 t� Tan�1 A;Bð Þ� 
;

(b) cos o0 tþyð Þ� cos yð Þcos o0 tð Þ�sin yð Þsin o0 tð Þ:

Section 12.9 is prerequisite for the following

problems.

P 12.45 Refer to Fig. P 12.10. Obtain a symbolic

expression for the equivalent impedance at the terminals

a–b. Then use the parameter values given and compute

the equivalent impedance at the specified frequency.

P 12.46 Is it possible for the magnitude of the

impedance of a parallel connection of two impedances

to be larger than that of either impedance alone? If not,

show why not. If so, give an example.

P 12.47 Is it possible for the magnitude of the

impedance of a series connection of two impedances

to be smaller than that of either impedance alone? If

not show why not. If so, give an example.

P 12.48 Refer to Fig. P 12.11, where

v tð Þ ¼ V0 cos o0 tð Þ and i1 ¼ i2. Express RP and LP in

terms of RS, LS, and o0.

P 12.49 Show that if ∡Z1 ¼ ∡Z2, then

Z1 þ Z2j j ¼ Z1j j þ Z2j j.
P 12.50 Show that if∡Z1 ¼ ∡Z2 ¼ y, then the angle

of Z1jjZ2 also equals y.
P 12.51 Refer to Fig. P 12.12. Show that Z is real if

Z2 ¼ Z1
�.

Section 12.11 is prerequisite for the

following problems.

P 12.52 In Fig. P 12.13, vL tð Þ ¼ V0 cos o0 tð Þ. Can
you obtain a unique expression for the current i tð Þ? If
yes, do so. If not, explain why not.

P 12.53 In Fig. P 12.14, iS tð Þ ¼ I0 þ I1 cos o0 tð Þ.
Obtain an expression for the voltage vL tð Þ.

P 12.54 In Fig. P 12.15, i tð Þ ¼ I0 þ I1 cos o0 tð Þ.
Obtain an expression for the dc component of the

voltage vC tð Þ.
P 12.55 In Fig. P 12.16, the current through the

inductor is given by iL tð Þ ¼ I0 þ I1 cos o0 tð Þ. Obtain
an expression for the source current iS tð Þ.

P 12.56 For each circuit in Fig. P 12.17,

vS tð Þ ¼ VS cos o0 tð Þ, R ¼ 10 kO, C ¼ 100 nF,

R
C L

a

b

Z ⇒

a

b

2Z1

2Z1

4Z16Z1Z ⇒

a

b

L C

2R 4R
R

Z ⇒

L
a

b

C

C

R

R
Z ⇒

RR

CC

a

b

R R
Z ⇒

R R

RR

a

b

Z ⇒ L L

10 ,
1 + j w / w0

Z1 = f = f0 = 10kHz

R = 100 Ω, L = 10mH, C = 200nF, f = 1kHz

R = 5kΩ, L = 20mH, C = 100nF, f = 1kHz

R = 10kΩ, L = 50mH, f = 100kHzR = 10kΩ, C = 500pF, f = 1kHz

R = 100 Ω, L = 10mH, C = 200nF, f = 1kHz

(a)

(c)

(e) (f)

(b)

(d)

Fig. P 12.10 See Problem

P 12.45
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L ¼ 100 mH, and the switch is closed at t ¼ 0. Esti-

mate the time at which the circuit achieves sinusoidal

steady state.

Section 12.12 is prerequisite for the

following problems.

P 12.57 In each of (a)–(f) below, you are given

some of the six quantities ~VS; ~V1; ~V2; ~I; Z1; Z2 defined

in Fig. P 12.18. Find the remaining quantities. Express

currents and voltages in polar form and impedances in

rectangular form.

(a) ~VS¼ reference¼100mV; ~V1¼35ff p=6ð ÞmV;

Z2 ¼ 10þ j5ð ÞO
(b) ~VS ¼ reference ¼ 100 mV; ~V1 ¼ 35ff p=6ð Þ mV;

Z1 ¼ 5þ j5ð Þ O
(c) ~VS ¼ reference ¼ 100 mV; ~V1 ¼ 35ff p=6ð Þ mV;

I ¼ 5 mA

(d) ~V1 ¼ reference ¼ 50 mV; ~V2 ¼ 100ff p=4ð Þ mV;

Z1 ¼ 4 O

RS

LS RP LPv

+

–

v

+

–

i1 i2

Fig. P 12.11 See Problem P 12.48

Z1Z ⇒ Z2

Fig. P 12.12 See Problem P 12.51

R L vL

+

–

i

Fig. P 12.13 See Problem

P 12.52

iS R L vL

+

–
Fig. P 12.14 See Problem

P 12.53

vC

+

–

R

i

C
Fig. P 12.15 See Problem

P 12.54

iS R L

iL

Fig. P 12.16 See Problem

P 12.55

vS

vS vS

vS

C

C

C

L

L

L

R R

R R

R
RRR

R
R

R R

+
–

+
–

+
–

+
–

+
–

+
–

(a)

(f)(e)

(d)(c)

(b)

Fig. P 12.17 See Problem P 12.56
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(e) ~VS ¼ reference¼ 15 V; Z1 þ Z2 ¼ 50þ j25ð Þ O;
~V1 ¼ 8ff p=3ð Þ V

(f) ~VS ¼ reference ¼ 25 V; ~I ¼ 2ff p=4ð Þ A;
~V1 ¼ 12ff p=6ð Þ V:

P 12.58 Find all frequencies (if any) for which the

circuits shown in Fig. P 12.19 are equivalent at their

terminals.

P 12.59 Find all frequencies (if any) for which the

circuits shown in Fig. P 12.20 are equivalent at their

terminals.

P 12.60 In Fig. P 12.21, vS ¼ VS cos 2 p f tð Þ, with
VS ¼ 10 V and f ¼ 50 kHz. It is required that the rms

amplitude of the voltage vC equal 5 V. Express the

required value for the capacitance C in terms of the

resistance R.
P 12.61 Refer to Fig. P 12.21, where C ¼ 10 nF.

The source vS is sinusoidal, having frequency

f ¼ 1 kHz and rms amplitude 10 V. Specify the resis-

tance R such that the rms amplitude of the voltage vC
equals 7.5 V.

P 12.62 Refer to Fig. P 12.21. The resistance R and

the capacitance C must be such that the total imped-

ance (magnitude) of the series connection equals

5 kO. The frequency of the sinusoidal source vS is

1 kHz. Find the values of R and C such that the

phase difference between the source vS and the output

vC equals p=6. Does vC lead or lag vS?

P 12.63 Refer to Fig. P 12.21. The capacitance

C and the resistance R are each within 20% of their

nominal (specified) values; i.e., C ¼ C0 1� 0:20ð Þ
and R ¼ R0 1� 0:20ð Þ, where C0; R0 are the nominal

values. Express the ratio ~VC

�
~VS in terms of the

circuit parameters, assuming that R ¼ R0; C ¼ C0.

Let vS ¼ V0 cos 2 p f0 tð Þ, with V0 ¼ 1 V and o0 ¼
2 p f0 ¼ 1= R0C0ð Þ and determine the tolerances on
~VC

�� �� and ∡ ~VC, given the � 20% tolerances on R

and C.

P 12.64 In Fig. P 12.22, the resistance and capaci-

tance are to be adjusted such that the magnitude of the

total series impedance is 5 kO and the voltage vC lags

the voltage vS by p=6. Find the values of R and C.
P 12.65 Refer to Fig. P 12.23, where v tð Þ ¼

V0 cos o0 tð Þ. The resistance and inductance are fixed

and the capacitance is variable. The capacitance is

adjusted until the current i tð Þ is in phase with the

voltage v tð Þ. Express the capacitance C in terms of

the resistance R, inductance L, and frequency f0.
P 12.66 Refer to Fig. P 12.24, where

v tð Þ ¼ V0 cos o0 tð Þ. The resistance and capacitance

are fixed and the inductance is variable. The induc-

tance is adjusted until the current i tð Þ is in phase with

the voltage v tð Þ. Express the inductance L in terms of

the resistance R, capacitance C, and frequency f0.

V1
~

VS
~

V2
~

~

+ –

+

–I

Z1

Z2
+
–

Fig. P 12.18 See Problem P 12.57

L
LC CZs ⇒ Zp ⇒

Fig. P 12.19 See Problem P 12.58

Zs ⇒ Zp ⇒
L

LC C
R

R

Fig. P 12.20 See Problem P 12.59

C

R
+

VS
~

–

~
VC

+
–

Fig. P 12.21 See Problem

P 12.60, 61, 62, 63

R

+

–

C

vS (t) = V0 cos (w0t);  f0 = 800Hz

vS vC
+
–

Fig. P 12.22 See Problem P 12.64

LC
R

v
+

–

i

Fig. P 12.23 See Problem P 12.65
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P 12.67 A transformer having unity coupling and

negligible losses couples a source to a resistive load.

The circuit is modeled using an ideal transformer in

one case, and a unity-coupling model in another, as

shown in Fig. P 12.25. Obtain expressions for the

impedances seen at the primary terminals of the trans-

former for both circuits. Interpret the results in the

context of the claim that a transformer can be modeled

as ideal if the coupling coefficient equals unity and the

losses are negligible.

P 12.68 A resistor and variable capacitor are

connected in series and to the secondary of a trans-

former having negligible losses and unity coupling,

as shown in Fig. P 12.26, where R ¼ 1 kO; L1 ¼
20 mH; L2 ¼ 200 mH, and the frequency of the source

is 20 kHz. The capacitor is then adjusted such that the

input impedance on the primary side of the trans-

former is real. Find the capacitance and the input

impedance under the specified conditions.

P 12.69 In Fig. P 12.27, the transformers are ideal.

(a) Express ~V2; ~V3; ~VL and ~I1; ~I2; ~IL in terms of ~VS and

the circuit parameters. (b) What is the resistance seen

by the source ~VS? (c) What is the resistance seen at the

primary a–b of the second transformer? (d) What

fraction of the source voltage ~VS appears across the

load? (e) If the transformers are removed, and the load

is connected to the source through the transmission

line, what fraction of the source voltage appears across

the load?

P 12.70 In Fig. P 12.28 R ¼ 10 O, L ¼ 200 mH,
and vS ¼ V0 cos o1 tð Þ þ cos o2 tð Þ½ �, with f1 ¼ 1 MHz

and f2 ¼ 1:2 MHz. It follows that i¼ I1 cos o1 tþ y1ð Þþ
I2 cos o2 tþ y2ð Þ. Find the values of the capacitances

C1C2 such that I1=I2 is as large as possible.

P 12.71 In Fig. P 12.29, R1 ¼ R2 ¼ 10 O,
M ¼ 10 mH, and vS ¼ VS cos otð Þ with f ¼ 1 MHz.

The capacitance C2 is adjusted such that oC2ð Þ�1¼
oL2. The capacitance C1 is then adjusted such that the

impedance seen by the source is resistive. What is the

impedance Z seen by the source vS?

P 12.72 Refer to Fig. P 12.30. Write Kirchhoff’s

voltage law around the indicated paths for each of the

four possible dot locations on the transformer.

P 12.73 Refer to Fig. P 12.31, where Ry; Ly repre-
sent a coil. The purpose of the circuit is to measure the

inductance and resistance of the coil at the frequency

of the source vS ¼ VS cos o0tð Þ. The capacitance Cx

and the resistance Rx are adjusted until the voltage

vab equals zero. Express the inductance Ly and resis-

tance Ry in terms of the quantities R; Rx; Cx.

LC
R

v
+

–

i

Fig. P 12.24 See Problem P 12.66

R

N1 N2

L1 L2vS vS R

M = L1L2

+
–

+
–

Fig. P 12.25 See Problem P 12.67

L1 L2

M = L1L2
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R

C+
–

Fig. P 12.26 See Problem P 12.68

N1
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–
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~
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b
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~
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Fig. P 12.27 See Problem P 12.69
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C2
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Fig. P 12.28 See Problem P 12.70

R1 R2

C2

C1

L1 L2

M

vS

i1 i2

Z ⇒+
–

Fig. P 12.29 See Problem P 12.71
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P 12.74 Fig. P 12.32 shows a circuit and associated

phasor diagram. It is known that R ¼ 2 kO and that the

frequency of the sinusoidal source is 5 kHz. Find the

impedances Z1; Z2 and draw an RLC circuit equivalent

to the one given (at 5 kHz).

P 12.75 The circuit shown in Fig. P 12.33 is

intended to shift the phase of the output ~VC relative

to that of the sinusoidal input ~VS by an amount that can

be varied from � p=6 to � p=3. The total series

resistance can be varied from R1 to R1 þ R2. Obtain

expressions for the resistances R1; R2 in terms of the

(fixed) capacitance C and the frequency of the input.

P 12.76 Refer to Fig. P 12.34. (a) Show that the

impedance Z seen by the source is real for all frequen-

cies if RL ¼ RC ¼ ffiffiffiffiffiffiffiffiffi
L=C

p
. (b) Assume RL ¼ RC ¼ffiffiffiffiffiffiffiffiffi

L=C
p

and give expressions for the phasor currents

~IL; ~IC in terms of ~V0 and the circuit parameters. (c) Let

~V0 ¼ 50 V, C ¼ 18 pF, 2p
ffiffiffiffiffiffi
LC

p	 
�1 ¼ 800 kHz, and

RL ¼ RC ¼ ffiffiffiffiffiffiffiffiffi
L=C

p
. Draw a phasor diagram for the

currents ~I; ~IL; ~IC, with ~V0 as the phase reference.

Section 12.13 is prerequisite for the

following problems.

P 12.77 Obtain expressions for the frequencies for

which the impedance Z of the circuit in Fig. P 12.35 is

(a) inductive, (b) resistive, and (c) capacitive.

P 12.78 For the circuit in Fig. P 12.36, the value of

the inductance is given by L ¼ R1R2C. Show that

V

R Rx Cx

R

vS

a b

Ry

Ly

+
–

Fig. P 12.31 See Problem P 12.73
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–

Fig. P 12.32 See Problem P 12.74
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Fig. P 12.33 See Problem P 12.75
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Fig. P 12.30 See Problem P 12.72
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Fig. P 12.34 See Problem P 12.76

Z ⇒
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L

CFig. P 12.35 See Problem

P 12.77

R1 R2
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L
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–

V~

V
~ I1
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~

Fig. P 12.36 See Problem P 12.78
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the impedance Z is inductive for all frequencies if

R2 >R1 and capacitive for all frequencies if R2 <R1.

P 12.79 Fig. P 12.37 shows a phasor diagram for

the currents and voltages defined in Fig. P 12.36.

The frequency of the applied voltage (and phase refer-

ence) v tð Þ is 1 kHz. (a) Is the impedance Z inductive,

resistive, or capacitive? (b) What are the equivalent

resistance and inductance or capacitance? (c) Find the

values of the resistances R1; R2, the inductance L, and

the capacitance C. (d) If the frequency of the applied

voltage is increased but its amplitude remains the

same, do the magnitudes and angles of the currents
~I1; ~I2 increase or decrease?

P 12.80 In Fig. P 12.38, the op amp is ideal. Obtain

an expression for the impedance. ~VS

�
~I. Under what

conditions (if any) is the impedance inductive? Capac-

itive?

P 12.81 The variable capacitor in Fig. P 12.39 is

adjusted until the impedance Z is resistive. Express the

resulting capacitance and the impedance in terms of

the frequency of the applied voltage v tð Þ, the resis-

tance R, and the inductance L.
P 12.82 Explain why the angle of the impedance Z

of a passive two-terminal RLC circuit must satisfy

�p=2 � ∡Z � p=2.

Section 12.14 is prerequisite for the

following problems.

P 12.83 Obtain expressions for the frequencies for

which the admittance Y of the circuit in Fig. P 12.40 is

(a) inductive, (b) resistive, and (c) capacitive.

P 12.84 Obtain expressions for the frequencies for

which the admittance Y of the circuit in Fig. P 12.41 is

(a) inductive, (b) resistive, and (c) capacitive.

P 12.85 Refer to Fig. P 12.42, where the applied

voltage ~V is sinusoidal. Find the equivalent conductance,

the susceptance, the equivalent resistance, and the reac-

tance at the terminals a–b for frequency f ¼ 2:75 MHz.

Is the circuit inductive or capacitive at that frequency?

Would the current ~I lead or lag the voltage ~V?

+

–

C

R1

R2

vS

i

+
–

Fig. P 12.38 See Problem P 12.80

Z ⇒

R

C Lv

+

–

Fig. P 12.39 See Problem P 12.81
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Fig. P 12.37 See Problem P 12.79

Y ⇒ R L C

Fig. P 12.40 See Problem P 12.83

Y ⇒
R

LC

Fig. P 12.41 See Problem P 12.84
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L C

RL = 15 Ω, L = 75 μH, RC = 50 Ω,
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V
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+

–
b

a

Fig. P 12.42 See Problem P 12.85
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P 12.86 Given Z ¼ Rþ jX, Y ¼ Gþ jB, and

Z ¼ Y�1, Express R and X in terms of G and B. Then

express G and B in terms of R and X.
P 12.87 Fig. P 12.43 shows a sinusoidally excited

two-element circuit and associated phasor diagram. (a)

Is the reactive element (X) a capacitance or an induc-

tance? (b) Find the values of R and X. (c) If the

frequency of the applied voltage ~V is 15 kHz, what is

the capacitance or inductance represented by X? (d) If
the frequency of the excitation were increased, would

the angle of the current ~I relative to that of the voltage
~V increase or decrease?

Section 12.15 is prerequisite for the

following problems.

P 12.88 For each impedance given below: (i) Draw

the impedance triangle. (ii) Draw and label fully a

circuit diagram for a series circuit having the given

impedance. (iii) Assume a 10 V, 1 kHz sinusoidal

voltage is applied to the circuit. Draw a phasor dia-

gram for the resulting current and the voltages across

each element of the series equivalent circuit, using the

applied voltage as the phase reference.

(a) Z ¼ 5þ j6ð Þ kO;
(b) Z ¼ 120� j160ð Þ O;
(c) Z ¼ 4� j3ð Þ kO;
(d) Z ¼ 1þ jð Þ kO;
(e) Z ¼ 10ffp=3ð Þ kO;
(f) Z ¼ ½ 1� j2ð Þ mS��1

.

P 12.89 For each admittance given below: (i)

Draw the admittance triangle. (ii) Draw and label

fully a circuit diagram for a parallel circuit having

the given admittance. (iii) Assume a 10 V, 1 kHz

sinusoidal voltage is applied to the circuit. Draw a

phasor diagram for the resulting total current and the

currents through each element of the parallel equiva-

lent circuit, using the applied voltage as the phase

reference.

(a) Y ¼ 500� j600ð Þ mS;

(b) Y ¼ 12þ j16ð Þ S;
(c) Y ¼ 20þ j40ð Þ mS;

(d) Y ¼ 1þ j2ð Þ S;
(e) Y ¼ ½ 10þ j10ð Þ kO��1;

(f) Y ¼ 120ffp=4ð Þ mS.

P 12.90 In Fig. P 12.44, R ¼ 100 O, L ¼ 250 mH,

and vS is a 60 Hz sinusoidal voltage source. Draw the

impedance and admittance triangles for the impedance

Z and admittance Y seen by the source for (a)

C ¼ 100 nF and (b) C ¼ 40 mF. (c) Find the value of

C for which ∡Z ¼ 0.

Section 12.16 is prerequisite for the

following problems.

P 12.91 Refer to Fig. P 12.45. Use superposition to

find the voltage vC tð Þ.
P 12.92 Refer to Fig. P 12.46. Use superposition to

find the phasor node voltages ~VA; ~VB.

P 12.93 Refer to Fig. P 12.47. Find the voltage

vL tð Þ. Calculate the rms amplitude of vL tð Þ.
P 12.94 Refer to Fig. P 12.48, where RS ¼ 10 kO

and iS ¼ I0 cos 0:5o0 tð Þ þ cos o0 tð Þ þ cos 2o0 tð Þ½ �;

| I | = 75 mA

p / 3

~

|V | = 250 mV
~

Im

Re

I
~

V
~ XR+

–

Fig. P 12.43 See Problem P 12.87

C
R

LvS
+
–

Fig. P 12.44 See Problem P 12.90

vC

R
RSI0 i1 i2

+

–

vS

R = 1.59kΩ, C = 10nF, RS = 10kΩ
I0 = 1mA, i1(t) = I0 cos(w 0t), f0 = 1kHz,
i2(t) = I0 cos(10w 0t + q ); q = 0.75

Fig. P 12.45 See Problem P 12.91
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with I0 ¼ 2:5 mA and f0 ¼ 100 kHz. For frequencies

in the range 0:5 f0 � f � 2 f0, the coil has inductance

L ¼ 200 mH and quality factor QL ¼ o0L=RL ¼ 25.

The capacitor has capacitance C ¼ 12:67 nF and

ESR RC ¼ 0:25 O. Find the voltage v tð Þ:
P 12.95 Refer to Example 14.31 in the text. Use

simulation to find the load voltage vL tð Þ. Compare the

results with those calculated in the example.

Section 12.17 is prerequisite for the

following problems.

P 12.96 In Fig. P 12.49, vS ¼ VS cos o0 tð Þ and

iS ¼ IS cos o0 tð Þ. Find the Thévenin and Norton equiv-
alent circuits at the terminals a–b.

P 12.97 Refer to Fig. P 12.50. An rms voltmeter,

an rms ammeter, and a variable capacitor are

connected to a 15 kHz sinusoidal source, as shown.

The capacitance is varied from 100 pF to 10mF and

the voltmeter and ammeter readings are recorded,

yielding the graph shown. Find the Thévenin equiva-

lent for the source.

P 12.98 Refer to Fig. P 12.51. An rms voltmeter, an

rms ammeter, and a variable inductor are connected

to a 15 kHz sinusoidal source, as shown. The induc-

tance is varied from 10 nH to 100 mH and the voltme-

ter and ammeter readings are recorded, yielding the

graph shown. Find the Thévenin equivalent for the

source.

P 12.99A co-worker suggests obtaining the Thévenin

equivalent for an RLC circuit by measuring the rms

amplitude of the voltage across a variable resistor, as a

function of the resistanceR, as illustrated by Fig. P 12.52.

Will this work? Show how or explain why not.

Section 12.18 is prerequisite for the

following problems.

P 12.100 If you set the inductance of an inductor to

zero, does the inductor become equivalent to an open

circuit or to a short circuit? If you set the capacitance

of a capacitor to zero, does the capacitor become

equivalent to an open circuit or to a short circuit?

P 12.101 If you let the inductance of an inductor

approach infinity, does the inductor become equiva-

lent to an open circuit or to a short circuit? If you let

the capacitance of a capacitor approach infinity, does

the capacitor become equivalent to an open circuit or

to a short circuit?

P 12.102 Each Fig. P 12.53(a)–(f) shows a circuit

diagram and a result of analysis. All sources are sinu-

soidal. Without repeating the analysis, state whether

the result given might be correct or cannot possibly be.

If the result cannot possibly be correct, state why.

P 12.103 Re-draw each circuit diagram in

Fig. P 12.49 for (a) f ¼ 0 and (b) f ! 1.

Section 12.19 is prerequisite for the

following problems.

P 12.104 Refer to Fig. P 12.54. The rms

amplitude of the sinusoidal source is 25 mA. The

frequency of the source equals 480 Hz, which is

coil capacitoriS RS vC

+

–

Fig. P 12.48 See Problem P 12.94
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v1(t) = V0 cos(2w 0t + q ); V0 = 10v
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Fig. P 12.46 See Problem P 12.92
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–

Fig. P 12.47 See Problem P 12.93
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the resonant frequency of the circuit. The capaci-

tance C ¼ 125 nF and the resistance R ¼ 25 kO.
What is the rms amplitude of the current through the

inductor?

P 12.105 Refer to Fig. P 12.55, where i tð Þ¼
I0 cos o0tð Þ, with f0¼15 kHz, R¼220O; L¼120mH.

The circuit is in resonance and the rms amplitude of

the voltage across the resistor is 15 V. What is the rms

source
C

V

C (nF)

Vrms (V) I rms (mA)

rmsI
V

A

0

5

10

15

20

0

5

10
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20

0.1 1 10 100 1.103

rms

Fig. P 12.50 See Problem P 12.97
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b
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b
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RvS

iS

a

b

R
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C

iS

vS

Vs = 15V, f0 = 2kHz, Rs = 1 kΩ, R1 = 2.2 kΩ,
R2 = 5kΩ, C1 = 100nF, C2 = 200nF

Vs = 25V, f0 = 10kHz, R = 1 kΩ, C = 50nF

Vs = 15V, Is = 10mA, f0 = 1kHz, R = 1 kΩ, L = 300mH Vs = 15V, Is = 10mA, f0 = 1kHz,
R = 1 kΩ, C = 100nF

Is = 20mA, f0 = 5kHz, R = 1 kΩ, C = 30nF

Vs = 25V, f0 = 1kHz, R1 = 10 Ω, R2 = 50 Ω,
C = 100nF, L1 = 50mH, L2 = 1H, k = 1

+
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+– +–
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+
–

(a)

(c)

(e)
(f )

(d)

(b)

Fig. P 12.49 See Problem P 12.96,103
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amplitude of the current through the capacitor? What

is the rms amplitude of the source current? What is the

phase of the current through the capacitor relative to

that of the current through the resistor?

P 12.106 In Fig. P 12.56, v ¼ V0 cos o0tð Þ with

V0 ¼ 5
ffiffiffi
2

p
V and f0 ¼ 200 kHz. The capacitance C is

varied until the rms amplitude of the current i has its

maximum value, which is found to be 5 mA. At that

point the rms amplitude of the voltage across the

inductor equals 10 V. Find the capacitance C, the

inductance L, and the resistance R.
P 12.107 See Fig. P 12.57, where RS ¼ 10 kO and

iS ¼ IS cos o0tð Þ, with IS rms ¼ Is=
ffiffiffi
2

p ¼ 50 mA and

f0 ¼ 1:2 MHz. The variable capacitance C is adjusted

such that the rms voltage across the source has its

maximum value, at which point C ¼ 875:7 pF and

VS rms ¼ 78:39 V. Find the quality factor of the coil

(at 1.2 MHz).

P 12.108 See Fig. P 12.58, where RS ¼ 10 kO and

iS ¼ IS cos o0tð Þ, with IS rms ¼ Is=
ffiffiffi
2

p ¼ 50 mA and

f0 ¼ 1 MHz. The variable capacitance C is adjusted

such that the rms amplitude of the voltage vS across

the source has its minimum value, at which point

C¼ 1:01 nF and VSrms ¼ 400 mV. Find the quality

factor of the coil (at 1 MHz).

P 12.109 The two circuits shown in Fig. P 12.59 are

independently tuned to resonance at the same fre-

quency fr, such that

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

L1C1

� R1

L1

� �2
s

¼ 1ffiffiffiffiffiffiffiffiffiffi
L2C2

p ¼ 2 p fr:

The circuits are then connected at a–b, as indicated,

to form circuit #3.

(a) Is the resonant frequency of circuit #3 larger than,

smaller than, or equal to fr?

(b) If a sinusoidal source having frequency fr is now
connected at c–d, as indicated in the figure, is the

current i larger than, smaller than, or the same as

would have been drawn by circuit #1 alone?

P 12.110 Refer to Fig. P 12.60, where the coils (in

the dashed boxes) are identical and both circuits are

resonant at frequency f ¼ fr. (a) Which capacitor has

the larger capacitance? (b) Which circuit has the larger

input impedance (magnitude) at resonance?

P 12.111 In Fig. P 12.61, R1 ¼ 500 mO; L1 ¼
100 mH;R2 ¼ 2:5 O; L2 ¼ 500 mH and the coupling

coefficient k ¼ 0:7. Find the value of the capacitance

C such that the circuit is resonant at f ¼ 100 kHz.

P 12.112 Obtain an expression for the resonant

frequency of the circuit in Fig. P 12.62.

P 12.113 Obtain an expression for the resonant

frequency of the circuit in Fig. P 12.63.

P 12.114 Refer to Fig. P 12.64, where R ¼ 1 kO
and i tð Þ ¼ I0 cos 2pfr tð Þ, with I0 ¼ 5 mA and fr ¼
100 kHz is the resonant frequency of the circuit.

Show that iLðtÞ ¼ �iCðtÞ. Let iðtÞ serve as the phase
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Irms (mA)source LV
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rmsI

rmsV

A

0.01 0.1 1 10 100
0

5

10

15

20

25

30

35

40

45

50

100

150

200

250

300

350

400

450

Fig. P 12.51 See Problem P 12.98

R
RLC circuit V

~
+

–

Fig. P 12.52 See Problem P 12.99
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reference and draw phasor diagrams showing the rela-

tive phases of the currents iR; iL; iC.

P 12.115 Refer to Fig. P 12.65, where R ¼
100 O; L ¼ 15 mH, and v is a variable-frequency

sinusoidal source whose rms amplitude is 5 V. It is

found experimentally that the resonant frequency of

the circuit is 100 kHz. Find the value of the capacitance

RS R1 R1 R2

CvS vS CL1 L2

M

R R
4R

2R

CvS

C

C

RRiS

LC
RvS

vS
a b

R

RC

C

(R1 + jw L) VS
~ (1 − w 2L2C ) w R2C VS

~

2R (1− w 2LC ) − jw (3L + R2C )

(w RC )2 − 3w RC − j 4w RC

R1 + jw L +  jw RSC  + RS  − w 2RS LC 

(R + jw L) (1 + jw RC ) VS
~

R1 (1− w 2
 L2C ) − w 2

 L1R2C
+ j (w R1R2C  −w 3

 L1L2C + w L1 + w 3
 M

2
C )

~
V1 =

~
V1 =

~
V =

~
Vab =

~
Va  =

~
I1 =

10 + j 7w RC

2(1– jw RC )9VS
~

RIS
~

a

1

1

L

I1
~

v

+

–

RR R

(1+ (w RC )2  VS
~

+
–

+
–

+–

+
–

+
–

(a)

(c)

(e)

(f)

(d)

(b)

Fig. P 12.53 See Problem P 12.102
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Fig. P 12.54 See Problem P 12.104

LCI
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R

Fig. P 12.55 See Problem P 12.105

v L
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Fig. P 12.56 See Problem

P 12.106

CiS coilRSvS
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–

Fig. P 12.57 See Problem P 12.107

coil
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+

–

Fig. P 12.58 See Problem P 12.108
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C, the impedance of the circuit at resonance, and the

rms amplitude of the current i at resonance.

P 12.116 Refer to Fig. P 12.66, where

R¼ 200 O; L¼ 10 mH, and iS is a variable-frequency
sinusoidal source having peak amplitude IS ¼ 1 mA. It

is found experimentally that the resonant frequency of

the circuit is 159 kHz. Find the value of the capaci-

tance C, the impedance of the circuit at resonance, the

voltage across the capacitor at resonance and the cur-

rent through the inductor at resonance.

Section 12.20 is prerequisite for the

following problems.

P 12.117 What is the quality factor of an ideal

inductor? Of an ideal capacitor?

P 12.118 Two coils having quality factors

Q1 ¼ 25; Q2 ¼ 30 and reactances X1 ¼ 500 O;
X2 ¼ 1 kO at frequency f0 ¼ 10 kHz are connected

in parallel. Find the effective resistance, effective

inductance, and quality factor of an equivalent (for

f ¼ 10 kHz) series RL circuit.

P 12.119 The quality factor for a reactive compo-

nent having impedance Z ¼ Rþ jX is given by

i

C1

L1

R1

R2

L2

C2

a

b
circuit #1 circuit #2

c

d

vS

RS

source

+
–

Fig. P 12.59 See Problem P 12.109
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L

R R

L

C2

circuit #1 circuit #2

Fig. P 12.60 See Problem P 12.110
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M

Fig. P 12.61 See Problem P 12.111

C
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Fig. P 12.62 See Problem P 12.112

C

L R2
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Fig. P 12.63 See Problem P 12.113
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Fig. P 12.64 See Problem P 12.114
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R
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Fig. P 12.65 See Problem P 12.115

C L

R

iS

Fig. P 12.66 See Problem P 12.116
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Q ¼ X

R

����
����;

where the magnitude operation is necessary because

the reactance of a capacitor is negative. Show that the

quality factor is also given by

Q ¼ B

G

����
����;

where Gþ jB ¼ Y ¼ Z�1.

P 12.120 Show that the quality factor for the circuit
shown in Fig. P 12.67 is given by

Q ¼ R

oL
:

P 12.121 Two identical high-Q coils are connected

in parallel. Is the quality factor of the composite coil

larger than, smaller than, or equal to the quality factor

of either coil alone?

P 12.122 Two identical high-Q coils are connected

in series. Is the quality factor of the composite coil

larger than, smaller than, or equal to the quality factor

of either coil alone?

P 12.123 In Fig. P 12.68, the capacitor is a

laboratory-standard variable capacitor and the source

is a fixed-amplitude sinusoidal source having fre-

quency f ¼ 650 kHz. The current is monitored using

an accurate rms ammeter. As the capacitance is varied,

the rms amplitude of the current exhibits a maximum

when C ¼ 6:0 pF and falls to 0.707 times its maxi-

mum value when the capacitance is decreased to 5.0

pF. Find the quality factor, the series resistance, and

the inductance of the coil.

P 12.124 Refer to Fig. P 12.69. Obtain an expres-

sion for the value of C for which the magnitude of the

admittance Y is maximum. Obtain an approximation to

the expression for cases where Q ¼ oL=R � 1 for all

frequencies of interest.

P 12.125 In Fig. P 12.70, R ¼ 200 O and

L ¼ 10:0 mH. The current source is sinusoidal having

rms amplitude Irms ¼ 1 mA. The circuit is resonant at

f0 ¼ 159 kHz. Obtain symbolic expressions for and

then calculate the values of: (a) the capacitance C,
(b) the quality factor of the coil (consisting of R and

L) at that frequency, (c) the impedance of the circuit at

resonance, (d) the peak voltage across the capacitor at

resonance, and (e) the rms current through the coil at

resonance.

P 12.126 In Fig. P 12.71, the applied voltage v tð Þ is
sinusoidal. Obtain expressions for and then calculate

(a) the resonant frequency, (b) the impedance of the

circuit at resonance, (c) the magnitude of the imped-

ance for f1 ¼ 0:994 f0, where f0 is the resonant fre-

quency, and (d) the phase angle of the current i tð Þ
relative to that of the applied voltage at the frequency f1.

P 12.127 Refer to Fig. P 12.72. Obtain a symbolic

expression for and then calculate the resonant

LR
Fig. P 12.67 See Problem

P 12.120

L

R
C

vS

i

coil

+
–

Fig. P 12.68 See Problem P 12.123

Y ⇒
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C

Fig. P 12.69 See Problem

P 12.124

R

C Li (t)

Fig. P 12.70 See Problem P 12.125

R

C Lv
+

–

i

R = 6.24 Ω, L = 210 μH, C = 156 pF

Fig. P 12.71 See Problem P 12.126
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frequency with the switch open. Repeat with the

switch closed.

P 12.128 Refer to Fig. P 12.73. (a) Find the fre-

quency f0 below which the circuit is inductive and

above which the circuit is capacitive. (b) Model the

circuit for f ¼ f0=2 as an inductor in series with a

resistor and again as an inductor in parallel with a

resistor. (c) Model the circuit for f ¼ 2f0 as a capacitor

in series with a resistor and again as a capacitor in

parallel with a resistor. (d) Find the equivalent resis-

tance of the circuit for f ¼ f0. (e) Calculate the quality

factor for the circuit for f ¼ f0=2; f ¼ f0=4:
P 12.129 The specifications on a particular rf coil are

L ¼ 330 mH;Q ¼ 70;

SRF ¼ 6:4 MHz; fT ¼ 790 kHz;

where the test frequency fT is also the intended

operating frequency. (a) What is the ac resistance of

the coil at the operating frequency fT? (b) A parallel

RLC circuit using the coil is to be tuned to 790 kHz.

Estimate the capacitance required.

P 12.130 Two coils having quality factors Q1 ¼
25; Q2 ¼ 30 and reactances X1 ¼ 500 O X2 ¼ 1 kO;
at frequency f0 ¼ 10 kHz are connected in series.

Find the effective resistance, effective inductance,

and quality factor of an equivalent parallel RL circuit.

Section 12.21 is prerequisite for the

following problems.

P 12.131 Using the gyrator circuit and procedure

treated in the text, and with reference to Fig. 12.77,

design a singly-tuned circuit meeting the following

specifications:

Resonant frequency ¼ f0 ¼ 200 Hz;

Impedance at resonance ¼ Z0 ¼ 200 O;

Quality factor of the simulated coil ¼ Q ¼ 20:

Construct a graph of the magnitude of the normal-

ized (to R1) impedance in dB. On the same axes,

construct a graph of a comparable RLC tuned circuit.

P 12.132 Refer to Fig. P 12.74. (a) Specify the

circuit parameters such that the gyrator simulates an

inductor having inductance L ¼ 4 H and quality factor

Q ¼ 15 for frequencies near 100 Hz. (b) Use a simula-

tion to verify the design. Compare the measured

impedance with that implied by the specifications at

100 Hz. Show that ~I2 is only a very small fraction of the

current through a source attached to the terminals a–b.

P 12.133 Refer to Fig. P 12.75(a). In the text, we

show that

Z oð Þ¼R1 1þ joR2Cð Þ
1þ joR1C

ffiR1þ joR1R2C; oR1C�1;

which implies (for oR1C � 1) that the circuit simu-

lates an inductor having inductance L ¼ R1R2C in

series with a resistor having resistance R1, as shown

in Fig. P 12.75(b). Without making any approxima-

tions (other than assuming the op amp is ideal), show

that the circuit in Fig. P 12.75(a) is equivalent to the

circuit in Fig. P 12.76, with

Rp ¼ R2 � R1; L ¼ R1CRp:

R

C Lv
+

–

i

RL

RL = 4.80 Ω, L = 88.0 μH, C = 375 pF

Fig. P 12.72 See Problem P 12.127

RL

R

CL

a

b

RC

RL = 15 Ω , L = 75 μH, RC = 50 Ω ,
 C = 40pF, R = 1kΩ

Fig. P 12.73 See Problem P 12.128

+

–

R1

R2

C

a

b p

n

I
~
0
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~
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I
~
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I
~

3

Z (ω) ⇒

Fig. P 12.74 See Problem P 12.132

12.23 Problems 475



P 12.134 Show that the circuit in Fig. P 12.77(a) is

equivalent to the circuit in Fig. P 12.77(b), where

RB ¼ R2 þ R1 and L ¼ C2R1R2.

Section 12.22 is prerequisite for the

following problems.

P 12.135 A certain 10 kO resistor in a circuit

operating at 10 MHz exhibits a series inductance of

25 pH. The series resistance and inductance appear to

be shunted by a capacitance of 1.2 pF. What are the

effective series resistance and reactance exhibited by

the resistor?

P 12.136 For frequencies up to about 10 GHz,

certain kinds of axial-lead resistors can be modeled

as shown in Fig. P 12.78, where R is the nominal

resistance.

(a) Obtain an expression for the impedance of the

model.

(b) Let d denote the length of the resistor. Express the
minimum wavelength lmin for which the given

(lumped-constant) model is valid in terms of d.

Then express the maximum frequency fmax for

which the given (lumped-constant) model is

valid in terms of d. If we require lmin > 10d, and

if fmax ¼ 10 GHz, what is the maximum value of d
for which the model is valid?

(c) Let R¼ 1 kO; C1 ¼ 1 pF; C2 ¼ 2 pF; L¼ 3 nH.

Find all frequencies for which the impedance is (i)

real (resistive), (ii) inductive, and (iii) capacitive.

(d) Let d denote the length of the resistor. What is the

maximum value of d for which the frequencies

found in Part (c) are meaningful?

(e) Construct graphs of the magnitude and angle of

the impedance for 100 kHz � f � 10 GHz.

+

–
C

a

b

L = R1R2C

a

b

R1 R1

R2

Z (ω) ⇒ Z (ω) ⇒

(a) (b)
Fig. P 12.75 See Problem

P 12.133

R1
a

b

Z (ω) ⇒ RpL

Fig. P 12.76 See Problem P 12.133
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–C1
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b
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b
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L

Fig. P 12.77 See Problem P 12.134

R

L LC1
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Fig. P 12.78 See Problem P 12.136
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P 12.137 The self-resonant frequency of a 200 nH

coil is 150 MHz. The quality factor of the coil At 80

MHz is Q ¼ 40. Assume the quality factor and shunt

capacitance are approximately independent of fre-

quency for 20 MHz � f � 200 MHz and estimate

the shunt capacitance at 80 MHz.

P 12.138 The loss angle of a certain 4; 700 mF
capacitor is d ¼ 0:106 at 120 Hz. The power dissipated

by the capacitor must not exceed 2.5 W. What is the

maximum allowable 120-Hz rms ripple current?

P 12.139 Fig. P 12.79 shows a graph of the imped-

ance of a certain capacitor. Estimate (a) the self-

resonant frequency, (b) the capacitance, (c) the ESR,
and (d) the ESL. (e) Using your estimates, calculate the

quality factor, the dissipation factor, and the loss angle

at 15 kHz.
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Chapter 13

Complex Power

In this chapter, we treat power calculations for a linear

circuit in sinusoidal steady state, where the input and

every other current and voltage in the circuit are sinu-

soidal and have the same frequency. We show how to

perform and interpret power calculations in terms of

phasors and impedances (or admittances), without hav-

ing to refer to functions of time and without making

explicit use of time averages. Important applications

include power-factor correction and impedance match-

ing for maximum or efficient power transfer. We begin

by defining complex power and obtaining related

expressions for average power dissipated at a terminal

pair of a sinusoidally excited linear circuit or device.

As a reminder, when we compare impedances

by writing that one is larger or smaller than another,

magnitudes are implied (because complex numbers

cannot be ordered).

13.1 Definition of Complex Power

If the voltage across the terminals of a linear circuit or

device is sinusoidal, then the current into the terminals

also is sinusoidal, and vice versa, and the current and

voltage have the same frequency. In Fig. 13.1, let the

terminal current and voltage be expressed in standard

form as

vðtÞ ¼ V cos o tþ yvð Þ; iðtÞ ¼ I cos o tþ yið Þ:

The average power dissipated by the circuit or

device is the time average of the product of the current

and voltage; i.e.,

P ¼ V cosðo tþ yvÞ I cosðo tþ yiÞ

¼ 1

2
VI cosðyv � yiÞ; (13.1)

where we have used a result obtained in Chapter 5.

The average power dissipated by a sinusoidally ex-

cited linear two-terminal device or circuit equals one-

half the product of the peak amplitudes of the terminal

current and voltage and the cosine of the phase differ-

ence between the terminal current and voltage.

Equation (13.1) is the fundamental relation for

average power dissipated in sinusoidal steady state.

But in sinusoidal steady state analysis, where currents

and voltages are expressed as phasors and where linear

loads are represented by impedances (or admittances),

it is often convenient to perform and interpret power

calculations in terms of phasors and impedances (or

admittances), without reference to associated func-

tions of time.

The right side of (13.1) can be written

1

2
VI cos yv � yið Þ ¼ 1

2
VIRe e jðyv�yiÞ

h i
¼ 1

2
Re V e j yv
� �

I e�j yi
� �� �

:

But V e j yv ¼ ~V and I e�j yi ¼ ~I�, where ~I� is the

complex conjugate of ~I. Thus

P ¼ 1

2
Re ~V ~I�
� �

; (13.2)

Equation (13.2) inspires the following definition:

The complex power delivered to or dissipated by a

linear load is denoted by S and is defined by

S ¼ 1

2
~V ~I�; (13.3)

where the positive direction for current is into the

positive terminal of the load. Note that S (italic)

denotes complex power and that S (roman) denotes

T.H. Glisson, Introduction to Circuit Analysis and Design,
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the unit (siemens) of conductance and admittance. It is

difficult to distinguish italic and roman in written

work, so where misinterpretation is otherwise possi-

ble, you should underline a handwritten letter to

denote roman, indicating that the letter denotes a unit

and not a quantity.

Complex power has the dimension of real power

dissipated, but is non-physical and is not the same

thing as real power. To highlight the distinction, the

unit assigned to complex power is the volt·am-

pere (VA), not the watt. We can use (13.3) to express

(or compute) complex power from phasors for current

and voltage. The real average power dissipated can

then be obtained as

P ¼ Re Sð Þ ¼ 1

2
Re ~V ~I�
� �

: (13.4)

and is expressed in watts. Useful expressions for the

complex power and the real power dissipated by a

linear load can be obtained using the generalized

form of Ohm’s law in the definition (13.3). For exam-

ple, with reference to Fig. 13.2, we have

S ¼ 1

2
~V ~I� ¼ 1

2
Z ~I
� �

~I� ¼ 1

2
Z ~I
�� ��2:

It follows that

P ¼ Re Sð Þ ¼ 1

2
~I
�� ��2Re Zð Þ: (13.5)

Alternatively, from

S ¼ 1

2
~V ~I� ¼ 1

2
~V Y ~V
� ��¼ 1

2
~V
�� ��2 Y�;

it follows that

P ¼ Re Sð Þ ¼ 1

2
~V
�� ��2Re Yð Þ; (13.6)

where we have used the fact that Re Y�ð Þ ¼ Re Yð Þ.
Using rms amplitudes, we may write (13.5) and

(13.6) as

P ¼ Irms
2Re Zð Þ ¼ Vrms

2Re Yð Þ; (13.7)

which makes clear that (13.5) and (13.6) are (for

sinusoidal currents and voltages) generalizations of

Joule’s law

P ¼ Irms
2 R ¼ Vrms

2G

obtained in Chapter 5.

Example 13.1. Refer to Fig. 13.3, where

vSðtÞ ¼ V0 cos o tð Þ, V0 ¼ 170 V, f ¼ 60 Hz

R1 ¼ 100 O, C ¼ 5 mF, R2 ¼ 1 kO, and

L ¼ 400 mH. Find the average power

dissipated in the load.

Solution: The source and load impedances are

ZS ¼ R1

1þ joR1 C
ffi 96:6� j 18:2 O

ffi 98:3ff � 0:186 O;

ZL ¼ joR2 L

R2 þ jo L
ffi 22:2þ j 147 O

ffi 149ff1:42 O:

+

–

I
~

V
~

linear load having
impedance Z and
admittance Y = Z −1

Fig. 13.2 See (13.5) and (13.6)

+

–

v

i

linear circuit
or device

Fig. 13.1 See (13.1)

load

v0

R1
R2

C

L

i

v
+

+
–

–

source

Fig. 13.3 See Example 13.1
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The (phasor) load current and voltage are

~I ¼ V0

ZL þ ZS
ffi 655� j 713 mA

ffi 968ff � 0:827 mA;

~V ¼ ZL ~I ffi 120þ j 80:8 V ffi 144ff0:594 V:

The complex power dissipated in the load is

S ¼ 1

2
~V ~I� ffi 10:4þ j 69:1 VA

and the real power dissipated in the load is

P ¼ ReðSÞ ffi 10:4 W:

We could as well have used (13.5) or (13.6):

Thus

S¼1

2
~I
�� ��2ZLffi1

2
0:968Að Þ2 22:2þ j147ð ÞO

ffi10:4þ j69:1VA

or

S¼1

2
~V
�� ��2Y� ¼1

2

~V
�� ��2
Z�
L

ffi1

2

144Vð Þ2
22:2� j147ð ÞO

ffi10:4þ j69:1VA:

Finally, we could have used (13.1):

P¼1

2
VI cos yv�yið Þ

¼ 1

2

� �
144Vð Þ 0:968Að Þ cos 0:594þ0:827ð Þ

¼10:4W:

Exercise 13.1. Refer to Fig. 13.4. Find the

complex and real power dissipated in the

load, the complex and real power dissipated

in the source impedance, and the complex

and real power delivered by the voltage

source vS. Calculate each at least two ways

to check your answers.

13.2 Notation

In practice, and especially in electric power applica-

tions, amplitudes of currents and voltages often are

expressed as rms quantities. Recall that the magnitude

of a phasor current or voltage is indicated by removing

the tilde (�) from the symbol for the phasor; i.e.,

~I
�� �� ¼ I; ~V

�� �� ¼ V:

Recall also that rms phasor currents and voltages

are denoted by ~Irms and ~Vrms, respectively, where

~Irms ¼ 1ffiffiffi
2

p ~I; ~Vrms ¼ 1ffiffiffi
2

p ~V (13.8)

and

Irms ¼ ~Irms
�� ��; Vrms ¼ ~Vrms

�� ��: (13.9)

The relation (13.2) for real power is written in

terms of rms phasor load voltage ~Vrms and rms phasor

load current ~Irms as

P ¼ 1

2
Re ~V ~I�
� � ¼ Re ~Vrms

~Irms
�
 �

(13.10)

or as

P ¼ 1

2
~V ~I
�� �� cos yZð Þ ¼ Vrms Irms cos yZð Þ;

yZ ¼ ∡Z;

(13.11)

R1

R2

L1

L2vS

loadsource

R1 = 50 Ω,  L1 = 100mH,  R2 = 500 Ω,  L2 = 500mH,

vS = V0 cos (w0 t),  V0 = 440V, f0 = 60Hz

Fig. 13.4 See Exercise 13.1
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where yZ ¼ ∡Z is the angle of the load impedance.

Equations (13.5) and (13.6) are written in terms of rms

quantities as

S ¼ ~Vrms
~Irms

� ¼ Z ~Irms
� �

~Irms
� ¼ Z Irms

2

) P ¼ Re Sð Þ ¼ Irms
2Re Zð Þ (13.12)

and

S ¼ ~Vrms
~Irms

� ¼ ~Vrms Y ~Vrms

� ��¼ Vrms
2 Y�

) P ¼ Re Sð Þ ¼ Vrms
2Re Yð Þ; (13.13)

respectively.

When using this notation, keep in mind that

Irms; Vrms (no tildes) represent the magnitudes of rms

phasors, and that Kirchhoff’s laws apply to phasors,

not their magnitudes. For example, Kirchhoff’s volt-

age law for the circuit in Fig. 13.5 can be expressed as

R~I þ joL~I ¼ ~V; (13.14)

or as (note tildes)

R~Irms þ joL~Irms ¼ ~Vrms; (13.15)

but (no tildes)

RIrms þ joLIrms 6¼ Vrms;

because Vrms is real.

Whether we write Kirchhoff’s laws and other rela-

tions using phasors or rms phasors is a matter of

convenience, and might depend upon something as

minor as the number of subscripts involved. For exam-

ple, if a number of node voltages or loop currents are

involved, and each is subscripted, we might use pha-

sors (not rms phasors) simply to avoid multiple sub-

scripts and because there is no notational advantage to

using rms phasors in node and mesh equations. If

convenient, we can simply convert the solutions to

rms phasors after solving the equations. In electric

power industries and in specialized courses on power

generation and distribution, it is understood that all

phasors are rms phasors, and no rms subscript is

appended. We do not adopt that convention because

this book as a whole is not focused on that discipline.

13.3 Power Calculations

We can calculate the complex power dissipated in a

linear load in sinusoidal steady state if we know any

two of three quantities: The phasor voltage across the

load, the phasor current through the load, and the load

impedance (or admittance).

Equations (13.10) or (13.11) and the generalized

Ohm’s law ~V ¼ Z ~I are really the only relations needed

for real power calculations in a sinusoidally excitedRLC
circuit. The ancillary relations (13.12) and (13.13) fol-

low readily from those more fundamental relations.

Example 13.2. Refer to Fig. 13.6. Find the

complex power dissipated in each element,

including the source.

Solution: Because we are to find the complex

power dissipated in each element, we do not

reduce the circuit. Instead, we use Kirchhoff’s

current law to find the unknown node voltages,

and then compute the branch currents and

complex powers. Figure 13.7 shows the nota-

tion used in the solution.

We begin by writing Kirchhoff’s current

law at node a:

~Va � ~V0

R1

þ
~Va

ZC
þ

~Va

R2 þ ZL
¼ 0:

Solving this equation for ~Va gives

~Va ¼ ZC R2 þ ZLð Þ ~V0

ZL þ R2ð Þ ZC þ R1ð Þ þ ZC R1

ffi 113ff � 0:889 V;

R

L

v(t) = V cos (w 0t)

vS
i

+
–

Fig. 13.5 See (13.14) and

(13.15) and related discussion

R1 R2

C Lv0

v0 (t) = V0 cos(wt); V0 = 180 V, f = 400 Hz
R1 = 10 Ω, R2 = 100 Ω, C = 50 μF, L = 200 mH

+
–

Fig. 13.6 Circuit of Example 13.2
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from which we obtain

~IS ¼
~V0 � ~Va

R1

ffi 14:0ff0:678 A;

~IC ¼
~Va

ZC
ffi 14:2ff0:682 A;

~I2 ¼
~Va

R2 þ ZL
ffi 0:22ff � 2:26 A:

The complex power dissipated in the

source is

SS ¼ � 1

2
~V0

~I�S ffi �979:5þ j 789:6 VA

The complex powers dissipated in the other

elements are

R1: S1 ¼ 1

2
~V0 � ~Va

� �
~IS
� ffi 977:1 VA;

C : SC ¼ 1

2
~Va

~IC
� ffi �j 801:8VA;

R2 : S2 ¼ 1

2
~I2
�� ��2 R2 ffi 2:4 VA;

L : SL ¼ 1

2
~I2
�� ��2 ZL ffi j 12:2 VA:

In this example, there is no great advantage

to using rms phasors.

13.4 Reactive Power and Apparent
Power

The imaginary part of complex power, denoted by Q,
is called reactive power:

Q ¼ Im Sð Þ: (13.16)

We may write

S ¼ ~Vrms
~Irms

� ¼ Pþ j Q; (13.17)

where, by Euler’s identity,

P ¼ Sj j cos ySð Þ; Q ¼ Sj j sin ySð Þ: (13.18)

From (13.5), the complex power dissipated in a

load Z is given by

S ¼ 1

2
Z ~I
�� ��2¼ Irms

2Z ¼ Irms
2 Zj jffyZ;

which shows that the angle of the complex

power dissipated in an impedance Z equals the angle

yZ ¼ ∡Z of the impedance.

yS ¼ ∡S ¼ ∡Z ¼ yZ: (13.19)

The sign of the angle yZ determines the sign of

reactive power Q. The reactance of an inductance is

positive and the reactance of a capacitance is negative.

Thus the reactive power dissipated in an inductive
load is positive and the reactive power dissipated in

a capacitive load is negative.

Here again, because there is a finite number of

symbols, and because workers in different disciplines

have assigned meanings to symbols without regard to

their meanings in other disciplines, the symbol Q has

multiple meanings. In (13.17) and (13.16), Q denotes

reactive power. In other contexts, Q denotes quality

factor or electric charge. We could perhaps assign

some different seldom-used symbol to reactive

power or to quality factor and charge, but that would

put us at odds with usual practice. We are specific

where multiple interpretations are possible, but you

must ultimately rely on context to discern the meaning

of Q in any particular development.

The unit assigned to reactive power is the volt·am-

pere-reactive (VAR). The dimension of reactive

power is that of real power, but reactive power and

real power are different things. Real power is the

rate at which electrical energy is converted to another

form (often mechanical; e.g., heat or mechanical

work). Reactive power refers to energy being stored

in and released from magnetic and electric fields cre-

ated by inductance and capacitance. This back-and-

forth movement of energy is real, but does not entail

R1 R2

1
ZC = jwC

V0 = V0∠0
~

ZL = jwL

IS
~

IC
~

I2
~a b

ref

+
–

Fig. 13.7 Circuit of Example 13.2, showing notation used in

the solution
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conversion of any of the energy involved to heat or any

other mechanical form. Nonetheless, it is conventional

to refer to reactive power as being dissipated in (or by)

a source or reactive element, although no dissipation

takes place.

By way of further explanation, we offer the follow-

ing: If a sinusoidal voltage is applied to a pure reac-

tance (any combination of capacitors and inductors,

but no resistors or sources), the impedance is purely

imaginary, the resulting current is in phase quadrature

with the applied voltage (the phase difference is

�p=2) and the real average power dissipated equals

zero, because cos yZð Þ ¼ cos �p=2ð Þ ¼ 0 in (13.11).

The difference between real power and reactive

power is analogous to the difference between energy

(or work) and torque. Torque, like energy, has the

dimension of force � length, but torque is not the

same thing as energy. Energy is a scalar and is con-

served, whereas torque is a vector and is not con-

served.

Exercise 13.2. Find the reactive powers

dissipated in the source, the capacitor, and the

inductor in Example 13.2.

The magnitude of complex power is called appar-

ent power:

apparent power ¼ Sj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 þ Q2

p
¼ ~Vrms

~Irms
��� �� ¼ VrmsIrms: (13.20)

The SI unit of apparent power is the volt·ampere

(VA). Apparent power is significant because it deter-

mines the current required to deliver a specified real

power to a specified load at a fixed source voltage. For

example, refer to Fig. 13.8, where a load having

impedance Z requires real power P. From (13.11),

the power delivered to the load is given by

P ¼ VrmsIrms cos yZð Þ; yZ ¼ ∡Z:

If the rms line voltage Vrms is fixed, then the rms

line current Irms must assume the value necessary to

provide the required power:

Irms ¼ P

Vrms cos yZð Þ ¼
Sj j cos yZð Þ

Vrms cos yZð Þ ¼
Sj j

Vrms
:

The rms line current Irms is determined by the

apparent power Sj j, not merely by the real power P
dissipated. If the real power required is fixed, the

apparent power and hence the line current depend

upon load reactance (see (13.34)). To reiterate: The

real power delivered to a load is the real part of the

complex power delivered to the load. But the current

required to deliver the real power is determined by the

apparent power delivered to the load. This is because

reactive elements draw current but do no work. Appar-

ent (or reactive) power is significant because the cur-

rent drawn by a load causes losses in the generators,

transformers, and wires needed to deliver the required

power to the load.

Example 13.3. In Fig. 13.8, the load impedance

isZ ¼ 15þ j12ð Þ O at the frequency of the fixed-

amplitude source voltage ~Vrms ¼ 120 Vff0. The
load requires real power P ¼ 500 W. What rms

line current would be required if the load were

Z ¼ 15 O? What is the actual rms line current?

Solution: The rms current required to deliver

the specified power to the load is

Irms
2R¼P) Irms¼

ffiffiffi
P

R

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
500W

15O

r
ffi5:77A:

The actual line current is

Irms ¼ Sj j
Vrms

¼ Vrms

Zj j ¼ 120 Vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
152 þ 122

p
O
ffi 6:25 A:

We find

100� 6:25 A� 5:77 A

5:77 A
ffi 8:3%;

which means that the current is about 8% larger

than necessary to deliver the required power.
V~ Z

I
~

+
–

Fig. 13.8 Line current is

determined by apparent power

(see text)
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Also

100� 6:25ð Þ2 A2 � 5:77ð Þ2A2

5:77ð Þ2A2
ffi 17:3%;

which means that the losses in the line are about

17% greater than they would be if only the

required current were delivered. We show in

Section 13.8 how the load can be modified

such that the reactive power required is

reduced, thus reducing the line current and

attendant losses.

Example 13.4. The (rms) voltmeter and amme-

ter readings in Fig. 13.9 are 13.67 V and 24.00

mA, respectively. Find the complex power, the

apparent power, the real power, and the reactive

power delivered by the independent source vS.

Solution: We take the source as the phase refer-

ence, so

~VS ¼ V0ff0 ¼ V0:

We need the (complex) impedance of the load,

which means we must find the resistance R and

the capacitance C. The rms current through the

capacitor (the ammeter reading) is given by

I rms ¼ o0CVrms;

where o0 ¼ 2pf0 and Vrms is the voltmeter

reading. Thus

C ¼ Irms
o0Vrms

¼ 24 mA

2p 5kHzð Þ 13:7 Vð Þ ffi 56 nF:

From Kirchhoff’s current law,

~Va

R
þ

~Va � V0

RS
þ jo0C ~Va ¼ 0

) 1

R
þ 1

RS
þ jo0C ¼ V0

~VaRS

;

where ~Va is the phasor voltage across the load.

It follows that

1

R
þ 1

RS

� �2

þ o0Cð Þ2

¼ V0

~Va

�� ��RS

 !2

¼ V0 rms

VrmsRS

� �2

;

where Vrms is the voltmeter reading and

V0 rms ¼ 15 V. Thus

1

R
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V0 rms

VrmsRS

� �2

� o0Cð Þ2
s

� 1

RS

) R ffi 1:2 kO:

We now have the load impedance

ZL ¼ R

1þ joRC
ffi 221� j465ð Þ O

and the total impedance

Z ¼ RS þ ZL ffi 321� j465ð Þ
O ffi 565ff �0:967ð Þ O:

The complex power S, apparent power Sj j, real
power P, and reactive power Q delivered by the

source are

S ¼ V0 rms
2

Z� ffi 15 Vð Þ2
563:8ff0:967ð ÞO

ffi 399ff �0:967ð Þ mVA;

Sj j ffi 399 mVA;

P ¼ ReðSÞ ffi Sj j cos �0:967ð Þ ffi 226 mW;

Q ¼ ImðSÞ ffi Sj j sin �0:967ð Þ ffi �329 mVAR:

RS

R CvS V

A
a

RS = 100 Ω, vS(t) = V0 cos (w 0t), V0 = 15   2V, f0 = 5kHz

+
–

Fig. 13.9 See Example 13.4
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Alternatively (or as a check),

~Vrms ¼ 1

R
þ 1

RS
þ joC

� ��1
V0 rms

RS

ffi 13:49� j2:19ð ÞV;
~IS rms ¼ V0 rms � ~Vrms

RS
;

S ¼ V0 rmsIS rms
� ffi 226� j329mVA

ffi 399ff �0:967ð Þ mVA:

Apparent power is a measurable (physical) quan-

tity, as indicated by the product VrmsIrms in (13.20),

and the components of complex power delivered to a

load can be computed from the apparent power and the

angle of the load, denoted by yZ ¼ ∡Z. Thus

P ¼ VrmsIrms cos yZð Þ ¼ Sj j cos yZð Þ;
Q ¼ VrmsIrms sin yZð Þ ¼ Sj j sin yZð Þ: (13.21)

When using (13.21) and similar relations involving

the angle of a load or current or voltage or complex

power, take care to keep track of the sign of the angle. It

is easy tomakemistakes in this regard because the cosine

is an even function; i.e., because cos �yð Þ ¼ cos yð Þ.

13.5 Conservation of Complex Power

Complex power is conserved; that is,

XN
n¼1

Sn ¼ 0; (13.22)

where Sn is the complex power dissipated (according

to the passive sign convention) in the nth element of an

N-element circuit and the sum is over all elements in

the circuit.1

The fact that complex power is conserved can be

used to check results obtained by analysis of a circuit.

Example 13.5. Show that complex power is

conserved in the circuit of Example 13.2.

Solution: The sum of the complex powers is

SS þ S1 þ SC þ S2 þ SL ffi ð�979:5þ j 789:6

þ 977:1� j 801:8þ 2:4þ j 12:2ÞVA ffi 0:

This calculation serves as a check on the

accuracy of the calculated currents and vol-

tages and individual complex powers.

Because a complex quantity equals zero if and only

if both the real and imaginary parts of the quantity

equal zero, conservation of complex power implies

conservation of both real average power (the real

part of complex power) and of average reactive

power (the imaginary part of complex power). Appar-

ent power is not conserved, because apparent power is

non-negative.

Example 13.6. A voltage vðtÞ ¼ V0 cos o tð Þ
with V0 ¼ 25 V and f ¼ 1 kHz is applied to a

load consisting of a resistor having resistance

R ¼ 1:5 kO in parallel with an inductor having

inductance L ¼ 50 mH. Find the average

power dissipated in the load and the average

power delivered by the source.

Solution: The impedance of the load is

Z¼ joLR

Rþ joL
¼ j 2pð Þ 1 kHzð Þ 50mHð Þ 1:5 kOð Þ
1:5 kOþ j 2pð Þ 1 kHzð Þ 50mHð Þ

ffi63:0þ j301Offi307ff1:36O:

The load current is

~I ¼
~V

Z
ffi 25 Vff0

307 Off1:36 ffi 81:0ff � 1:36 mA:

The complex power is

S ¼ 1

2
~V ~I� ffi 1

2
25 Vff0ð Þ 81:0 mAff1:36ð Þ

ffi 1:01ff1:36 VA:
1Equation (13.22) is a degenerate case of Tellegen’s theorem,
which is a remarkable property of any pair of circuits having the

same topology. See Artice M. Davis, Linear Circuit Analysis,
PWS Pub. Co., (1998), pp 1052ff.
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The real average power dissipated in the

load is

P ¼ ReðSÞ ¼ Sj j cos ∡Sð Þ ffi 1:01 cos 1:36ð Þ
ffi 213 mW:

Because complex power is conserved, the

complex power S0 delivered by the source

equals the complex power dissipated in the

load: S0 ffi 1:01ff1:36 mVA.

A proof of (13.22) follows.2 Refer to Fig. 13.10,

where the box represents an element (e.g., impedance

or source) connecting nodes n and m in an arbitrary
circuit. If more than one element connects a pair of

nodes, we assume the elements are lumped into one,

such that each pair of nodes is connected by only one

element. Thus, if there are N elements, there are N

connected node pairs.

The complex power dissipated in the element join-

ing nodes n and m is given by

Sn ¼ 1

2
~Vnm

~Inm
� ¼ 1

2
~Vmn

~Imn
�
: (13.23)

The total complex power dissipated in the circuit is

given by

S ¼
XN
n�1

Sn ¼ 1

2

1

2

XN
m¼1

XN
n¼1

~Vnm
~Inm

�
: (13.24)

In (13.24), the sums are over all nodes in the circuit.

The extra factor of 1=2 is necessary because each

element is included twice, as indicated by (13.23)

(e.g., the double sum on the right side of (13.24)

includes both ~V12
~I12

�
and ~V21

~I21
�
, each of which is

the complex power dissipated in the element connect-

ing nodes 1 and 2). By definition,

~Vnm ¼ ~Vn � ~Vm: (13.25)

Using (13.25) in (13.24) gives

S ¼ 1

4

XN
n¼1

~Vn

XN
m¼1

~Inm
� � 1

4

XN
m¼1

~Vm

XN
n¼1

~Inm
�

¼ 1

4

XN
n¼1

~Vn

XN
m¼1

~Inm

 !�

� 1

4

XN
m¼1

~Vm

XN
n¼1

~Inm

 !�
: (13.26)

By Kirchhoff’s current law, the inner sums on the

right, being the sums of currents leaving nodes n and

m, respectively, equal zero. Equation (13.22) follows.

13.6 Power Relations in Resonant
Circuits

Complex power, real power, and reactive power are in

general functions of frequency because impedance is a

function of frequency. By definition, the equivalent

impedance of a circuit at resonance is real and equal

to the effective resistance of the circuit at the resonant

frequency. Because the equivalent impedance is real at

resonance, the complex power, given by (13.12), is

real at resonance. For a circuit at resonance,

S ¼ Irms
2Zr ¼ Irms

2Reff ¼ Re Sð Þ ¼ P; f ¼ fr; (13.27)

where fr is the resonant frequency, Zr is the impedance

at resonance, ~I is the terminal phasor current at reso-

nance, and Irms is the rms amplitude of the terminal

current. Also,

Im Sð Þ ¼ Q ¼ 0; f ¼ fr: (13.28)

It follows that, at resonance, the sum of the induc-
tive reactive power and the capacitive reactive power

equals zero.

Example 13.7. In Fig. 13.11, R ¼ 2:2 kO
and v ¼ V0 cos o0tð Þ, where V0 ¼ 25 V and

f0 ¼ 20 kHz equals the resonant frequency of

the circuit. The reactive power dissipated in the

inductor is QL ¼ 5VAR. Find the inductance L

and the capacitance C

mn Inm
~

Imn
~

Vnm
~

Vmn
~

+ –

+–

Fig. 13.10 Pertaining to the proof of (13.22)

2The proof can be skipped without ill effect.
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Solution: The impedance of the circuit at reso-

nance equals the resistance R. Thus the current
through the series circuit is

~I ¼ V0

R
ffi 11:36 mA ) Irms ¼

~I
�� ��ffiffiffi
2

p ffi 8:04 mA:

The reactive powers dissipated in the induc-

tor and in the capacitor are equal in magnitude

and opposite in sign, and are given by

QL ¼ Irms
2oL; QC ¼ � Irms

2

oC
:

Thus QC ¼ �QL and it follows that

L ¼ QL

o0Irms
2
ffi 5VAR

2pð Þ 20 kHzð Þ 8:04 mAð Þ2
ffi 616:2 mH;

C ¼ � Irms
2

o0QC
¼ Irms

2

o0QL

ffi 8:04 mAð Þ2
2pð Þ 20 kHzð Þ 5VARð Þ ffi 102:8 pF;

or

C ¼ 1

o0
2L

ffi 102:8 pF:

Example 13.8. In Fig. 13.12, the rms ampli-

tude of the sinusoidal current source is

Irms ¼ 5 mA and the frequency of the source

is 100 kHz, which is the resonant frequency of

the circuit. The coil has quality factor Q ¼ 34

and effective resistance R ¼ 3:6 O at 100 kHz.

Find the reactive power dissipated in the

capacitor. A quality factor Q and reactive

powers QL; QC appear in this example. Keep

the symbols (the Q’s) straight.

Solution: From Chapter 12, because the quality

factor of the coil is much larger than unity, the

coil (and the rest of the circuit) can be repre-

sented as shown in Fig. 13.13, where

R ¼ 3:6 O; L ¼ QR

o
ffi 34ð Þ 3:6 Oð Þ

2p 100 kHzð Þ
ffi 195 mH:

The effective resistance of the circuit at

resonance equals the resistance Q2R, and the

current through the resistance equals the

source current. It follows that the rms voltage

across the source and each element in the cir-

cuit above is given by

Vrms ¼ ~Vrms

�� �� ¼ Q2RIrms:

Thus the reactive power dissipated in the

inductor is given by

QL ¼ Vrms
2

oL
:

At resonance, the reactive powers dissipated

by the inductor and the capacitor are equal in

magnitude and opposite in sign. The reactive

power dissipated in the capacitor is

QC ¼ �QL ¼ �Vrms
2

oL
¼ �Q4R2Irms

2

oL
ffi �3:53 VAR:

C

L

R

v +
–

Fig. 13.11 See Example 13.7

C
i coil

Fig. 13.12 See Example 13.8

C LQ 2Ri

Fig. 13.13 See Example 13.8
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Alternatively, we could have obtained the

capacitance from o2 ¼ LCð Þ�1
and used

QC ¼ oCVrms
2

to obtain the same result.

13.7 Power Factor

Let ~V and ~I denote the voltage across and current

through a load having impedance Z ¼ Zj jffyZ. From
(13.5), the real power dissipated is given by

P ¼ ReðSÞ ¼ Re Irms
2 Zj j ffyZ

� �
¼ Irms

2 Zj j cos yZð Þ: (13.29)

The factor cos yZð Þ in (13.29) is called the power

factor for a load in question and is denoted by pf. The

power factor for a load is the cosine of the angle of the

load impedance:

power factor ¼ pf ¼ cos ∡Zð Þ ¼ cos yZð Þ: (13.30)

Equivalently, from (13.1), the power factor is the

cosine of the phase difference between the voltage

across and current into the terminals of a device or

circuit in question. Equivalently, also, the power factor

is the cosine of the angle of the complex power.

Example 13.9. A voltage vðtÞ ¼ V0 cos o tð Þ
is applied to the series combination of a capac-

itor and a resistor. Obtain expressions for the

power factor and the average power dissipated

in the load.

Solution: The impedance of the load is

Z ¼ Rþ 1

joC
¼ R� j

1

oC

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ oCð Þ�2

q
ff tan�1 � 1

oRC

� �
:

The power factor is

pf ¼ cos ∡Zð Þ ¼ cos tan�1 � 1

oRC

� �� 

¼ oRCffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ oRCð Þ2

q ;

as illustrated by Fig. 13.14. The load current

(phasor) is given by

~I¼
~V

Z
¼ V0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2þ oCð Þ�2
q ff� tan�1 � 1

oRC

� �
:

The peak load voltage equals V0 and the

peak load current (the magnitude of the phasor
~I obtained above) is given by

I0 ¼ V0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ oCð Þ�2

q ¼ oCV0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ oRCð Þ2

q :

It follows from (13.11) that the average

power dissipated is given by

P ¼ 1

2
V0 I0ð Þ pfð Þ

¼ 1

2

oCV0
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ oRCð Þ2
q oRCffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ oRCð Þ2
q

¼ 1

2

R oCð Þ2 V0
2

1þ oRCð Þ2
h i :

Why is the average power dissipated equal

to zero for f ¼ 0? Does the expression above

yield the correct average power dissipated for

f ! 1?

1

wRC

1+ (wRC )2

qZ

Fig. 13.14 See Example 13.9
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Example 13.10. Show that the real part of the

impedance of a source-free RLC load is non-

negative. (We make use of this fact in the

development following this example.)

Solution: From (13.12)

S ¼ Irms
2 Z ¼ Irms

2RZ þ j Irms
2XZ; (13.31)

where i(t) enters the positive terminal of the

load. The real power dissipated by the load is

given by

P ¼ ReðSÞ ¼ Irms
2 RZ: (13.32)

Because the load is source-free, P 	 0. Because

Irms
2 	 0, it must be that RZ 	 0.

Because the cosine is an even function, we cannot

tell from the numerical value of a power factor

cos yZð Þ whether load current lags or leads load volt-

age; i.e., whether the load is inductive or capacitive.

The distinction is immaterial when calculating real

average power, but is important in some applications.

Thus, a power factor is specified as either lagging,

meaning that current lags voltage and yZ > 0, or lead-

ing, meaning that current leads voltage and yZ < 0.

Refer to Fig. 13.15. We have

Z ¼ Rþ j X ) ∡Z ¼ yZ ¼ tan�1 X

R

� �
: (13.33)

As shown in Example 13.10 above, the real part

of the impedance of a source-free (passive) load is

non-negative.3 Therefore, if the reactance of a

source-free load is positive, then the angle of the

load impedance is positive, the angle of the load cur-

rent (relative to that of the load voltage) is negative,

and current lags voltage. If the reactance of a source-

free load is negative, then the angle of the load imped-

ance is negative, the angle of the load current (relative

to that of the load voltage) is positive, and current

leads voltage. Because the reactance of an inductor

is positive and the reactance of a capacitor is negative,

a load having a lagging power factor (positive reac-

tance) is called inductive and a load having a leading

power factor (negative reactance) is called capacitive.

Because reactance is a function of frequency, a load

containing both inductance and capacitance can be

inductive (lagging power factor) at some frequencies

and capacitive (leading power factor) at others. For

such a load, there is at least one frequency where the

impedance is real (where the power factor is unity).4

Example 13.11. Refer to Fig. 13.16. Obtain

expressions for the frequencies at which the

impedance at the terminals a–b is real.

Solution: The impedance is given by

Z ¼ jo Lþ R

1þ joRC
:

By inspection, the impedance is real (and

equal to R) for f ¼ 0, in which case Z ¼ R.

I
~

Z = |Z |∠qZ
= R + j X  

V
~+ –

V
Z

I =
~

V
|Z |

~~

I
~

I
~

V
~

V
~

current lags voltage current leads voltage

= ∠−qZ

−qZ < 0
−qZ > 0

Fig. 13.15 Lagging and leading power factors (see text)

RCL
Z ⇒

a

b

Fig. 13.16 See Example 13.11

3It is possible for the real part of the impedance of a load

containing one or more dependent sources to be negative. The

terminology introduced here is used only in references to

source-free loads.

4Again, these remarks pertain to source-free loads. A load con-

taining dependent sources, capacitors, and resistors (no induc-

tors) can be made to appear inductive, as shown in a subsequent

chapter.
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We wish to see if there is another frequency for

which the impedance is real. By inspection, the

impedance Z is real if

Im
R

1þ joRC

� �
¼ �o L;

which yields

oR2C

1þ oRCð Þ2 ¼ oL

)o¼ 1ffiffiffiffiffiffi
LC

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� L

R

� �
1

RC

� �s

or

f ¼ 1

2p
ffiffiffiffiffiffi
LC

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� tL

tC

� �s
; tL¼L

R
; tC¼RC:

If tL=tC > 1, the frequency f is imaginary,

in which case there is no frequency other than

zero for which the impedance is real. If

tL=tC ¼ 1, f ¼ 0 is the only frequency for

which the impedance is real. If tL=tC < 1, the

frequency f is real and positive and the imped-

ance at that frequency is real and given by

Z ¼ R 1þ 1ffiffiffiffiffiffi
LC

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� tL

tC

� �s !2

RCð Þ2
2
4

3
5
�1

¼ RtL
tC

:

Exercise 13.3. Obtain an expression for the

power factor of an RLC series circuit at the

resonant frequency of the circuit.

Electric utility companies are obliged to provide a

certain minimum average power to customers, espe-

cially industrial customers. Because of how electric

power is generated and distributed, rms line voltage is

approximately constant and rms line current varies to

meet power demand.5 Line current, in turn, is respon-

sible for losses in transmission lines and transformers,

so electric utilities do not wish to provide any more

current than is necessary to deliver the required power

at the specified line voltage. Most industrial loads

(largely motors) are inductive and exhibit lagging

power factors. Electric utility companies require

large industrial customers to maintain the power factor

for their total loads at or above a specified minimum

value to keep line losses to acceptable values. Power

factors for industrial plants are corrected (made closer

to unity) by adding capacitors in parallel with the feeds

to the plants or in parallel with individual inductive

loads. The usual method for determining the capaci-

tance required is based on reactive power calculations,

as described in the next section.

13.8 Power Triangle and Power-Factor
Correction

Equation (13.20) implies that apparent power, real

power, and reactive power form the sides of a right

triangle, as shown in Fig. 13.17. A triangle so con-

structed for a load is called the power triangle for the

load. By convention, the power triangle for a load is

drawn in the first quadrant if the reactive power is

positive and in the fourth quadrant if the reactive

power is negative. The power triangle for a load is a

useful visual aid in various applications.

The power triangle for a load is similar (geometric

sense) to the impedance triangle for the load, because

|S |
|S |

P

P

Q > 0 Q < 0

q

q

(a) (b)

Fig. 13.17 Power Triangles: (a) Q> 0 (inductive load or

lagging power factor); (b) Q< 0 (capacitive load or leading

power factor)

5Line voltage varies somewhat with load because of losses in

transmission, but not nearly to the degree that line current varies

with load.
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S ¼ ~Vrms
~Irms

� ¼ ~Irms Z
� �

~Irms
� ¼ ~Irms

�� ��2 Z
¼ Irms

2 Rþ j Xð Þ ¼ Pþ j Q: (13.34)

The rightmost equality shows that each side of

the power triangle for a load is proportional to the

corresponding side of the impedance triangle for the

load (the sides of the two triangles are in the same

proportion), as illustrated by Fig. 13.18.

Exercise 13.4. Show that the power triangle

and the admittance triangle for any particular

load are geometrically similar. Illustrate, using

a picture like that in Fig. 13.18.

Again, the real part RZ of an impedance Z does not
necessarily correspond to any particular resistor or

combination of resistors in the circuit comprising the

impedance. In general, the real part of impedance is a

function of not only resistance, but also of capacitance,

inductance, and the frequency of an applied current or

voltage. To illustrate this point, we refer to Example

13.6, where the real part of the impedance equals

63 O, whereas the only resistor in the circuit has

resistance 1:5 kO.

Example 13.12. The current through a load

lags the voltage across the load by p=6. The
real power dissipated by the load is P ¼ 2 kW.

The rms amplitude of the line (load) voltage is

480 V. (a) Is the load inductive or capacitive?

(b) What is the apparent power dissipated by

the load? (c) What is the reactive power

dissipated by the load? (d) What is the rms

amplitude of the line current? (e) What is the

impedance of the load?

Solution: (a) The load is inductive because the

load current lags the load voltage. (b) Refer to

Fig. 13.19. We are given the angle yZ ¼ p=6
and adjacent side P ¼ 2 kW of the power tri-

angle. The apparent power is

Sj j ¼ P

cos yZð Þ ¼
2 kW

cos p=6ð Þ ffi 2:31 kVA:

(c) The reactive power is

Q ¼ Sj j sin yZð Þ ffi 2:31 kVAð Þ sin p=6ð Þ
ffi 1:16 kVAR:

(d) From (13.34),

Sj j ¼ V Ij j
2

¼ Vrms Irms ) Irms ¼ Sj j
Vrms

ffi 2:31 kVA

480 V
ffi 4:81 A:

θ θ

RZ

XZ

|S | = Irms
2 |Z | |Z |

Q = Irms
2XZ

P = Irms
2RZ

(a) S = P+ jQ (b) Z = RZ + j XZ

Fig. 13.18 The power

triangle and impedance

triangle for any particular load

are geometrically similar

triangles

|S |

P = 2 kW

p / 6

Q = 1.16 kVAR

Fig. 13.19 See Example 13.12
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(e) From (13.34),

P ¼ Irms
2 R ) R ¼ P

Irms
2

ffi 2 kW

4:81 Að Þ2 ffi 86:4 O;

Q ¼ Irms
2 X ) X ¼ Q

Irms
2

ffi 1:16 kVAR

4:81 Að Þ2 ffi 50:1 O;

and so the load impedance is

Z ¼ Rþ j X ffi 86:4þ j 50:1ð ÞO
ffi 99:9ff0:524ð Þ O:

The reactive power dissipated by a load having

equivalent series reactance Xs is given by

Q ¼ Irms
2Xs ¼ Vrms

2

Xs
; (13.35)

where Vrms and Irms are the rms amplitudes of the

voltage across and current through the load, respec-

tively. It follows that if loads Z1; Z2; . . . ; ZN having

equivalent series reactances X1;X2; . . . ;XN are

connected in parallel across a source having rms

amplitude Vrms, the total reactive power dissipated is

given by

Q ¼ Vrms
2

X1

þ Vrms
2

X2

þ 
 
 
 þ Vrms
2

XN

¼ Q1 þ Q2 þ 
 
 
 þ QN : (13.36)

Equation (13.36) embodies the fundamental princi-

ple of power-factor correction

Example 13.13. Refer to Fig. 13.20. A certain

industrial load is fed by a 60 Hz 4 kV (rms) line

and requires 100 kW of (real) power. The load

has a lagging power factor of 0.7. Find the

shunt capacitance C that increases the power

factor to 0.9. Compute the line current before

and after the capacitance is added. Compute the

percent reduction in line loss.

Solution: The solution is based upon (13.36), as
illustrated by the power triangles shown in

Fig. 13.21. The triangle having sides P and Q1

represents the load alone. The triangle having

sides P and QC represents the capacitor alone.

The triangle having sides P;Q2 represents the

parallel connection of the load and the capaci-

tor. The (negative) reactive power dissipated by

the capacitor offsets some of the (positive)

reactive power dissipated by the load. The resid-

ual (positive) reactive power Q2 yields the

P

Q1

Q2 = Q1 + QC

q1

q2

qC = q2 − q1 

QC

0

Fig. 13.21 Power triangles for Example 13.13

VS
~

R

L

C
+
–

Fig. 13.20 See Example 13.13
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desired power factor. The necessary trigono-

metric calculations follow:

y1 ¼ cos�1 pf1ð Þ ¼ cos�1 0:7ð Þ;
Q1 ¼ P tan y1ð Þ ffi 102 kVAR;

y2 ¼ cos�1 pf2ð Þ ¼ cos�1 0:9ð Þ;
Q2 ¼ P tanðy2Þ ffi 48:4 kVAR;

QC ¼ Q2 � Q1 ffi �53:6 kVAR ¼ �oCvrms2

) C ¼ � QC

ovrms2
ffi 8:88 mF:

The line currents before and after correction

are

I1 rms ¼ S1j j
Vrms

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 þ Q1

2
p

Vrms
¼ 35:7 A;

I2 rms ¼ S2j j
Vrms

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 þ Q2

2
p

Vrms
¼ 27:8 A:

The percent reduction in line loss is

I1 rms
2Rline � I2 rms

2Rline

I1 rms
2Rline

� 100

¼ 100 1� I2 rms
I1 rms

� �2
" #

¼ 39:4%:

Large industrial plants have substations on their

premises, fed by a high-voltage (115 kV or more)

transmission line. That voltage is stepped down at

the substation to an intermediate voltage that can be

several kV. Large (100 hp or larger) machines usually

are powered from intermediate voltages, but smaller

machines, lighting, and other loads require lower vol-

tages, so the voltage is stepped down further, typically

to one or more of 120, 260, 480, and 600 V. In some

cases, so-called bulk correction is installed at the

substation on either the intermediate-voltage or low-

voltage line(s). Automated load monitoring equipment

switches capacitors in or out in appropriate steps to

maintain a nearly constant power factor.

In other cases, and especially in plants where not all

(or any) machines run continuously and loads vary

substantially, the power factor of each machine is

corrected locally by one or more capacitors installed

on the machine. In such installations, and especially

for large motors, load monitoring equipment on each

machine switches the capacitors in or out, automati-

cally, to maintain a specified power factor. Such

switching is necessary because the power factor of

an induction motor varies with the speed and the

(mechanical) load on the motor. In older plants, sepa-

rate correction might be employed for fluorescent or

other inductive lighting, but modern lighting systems

have power factors of 0.9 or more, so correction might

be unnecessary. Local correction can maintain a

nearly constant overall power factor, even as individ-

ual machines are turned on and off, provided both the

machine and its correction capacitor(s) are removed

from the line when shut down. Generally, it is neces-

sary to also disconnect the correction capacitor(s)

from the machine to eliminate the potential for gen-

erating damaging voltages as the machine slows down.

Because the frequency of electrical power is fixed

(in the US) at 60 Hz and the line voltages at which

capacitors are used are standardized, power-factor

correction capacitors are rated by reactive power

provided at a specific line voltage. Thus specifying a

capacitor requires determining the (negative) reactive

power needed to offset some of the positive reactive

power associated with an inductive load, the quantity

being determined by the real power required and by

the initial and corrected power factors.

Refer to Fig. 13.22, where pf1 ¼ cos y1ð Þ; pf2 ¼
cos y2ð Þ. The initial and corrected apparent powers

are given by

S1j j ¼ P

pf1
; S2j j ¼ P

pf2
:

P P

Q1

Q2

|S1|

|S2|

q1 q2

Fig. 13.22 Illustrating power-factor correction. See (13.37)
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The associated reactive powers are given by

Q1 ¼ S1j j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� pf1

2

q
¼ P

pf1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� pf1

2

q
;

Q2 ¼ S2j j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� pf2

2

q
¼ P

pf2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� pf2

2

q
:

The magnitude of the reactive power required of

the power-factor correcting capacitor is given by

QCj j ¼ Q1 � Q2 ¼ P

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

pf1
2
� 1

s
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

pf2
2
� 1

s !
:

(13.37)

The magnitude of the reactive power Q dissipated

by a capacitor having capacitance C is given by

QCj j ¼ Vrms
2oC; (13.38)

where Vrms is the rms line voltage and f ¼ o= 2pð Þ is
the line frequency.

Equation (13.38) shows that the reactive power

provided by a particular capacitor depends upon the

capacitance and the rms amplitude and frequency of

the line voltage. The frequency of the voltage (and

current) provided by electric utilities in the United

States is 60 Hz. In Europe it is 50 Hz. On board

some aircraft and ships, higher-frequency supplies

(usually 400 Hz) are used to reduce weight, primarily

by allowing smaller and much lighter power supplies,

transformers, and electric motors. Onboard power-

factor correction capacitors are proportionally smaller

and lighter, as well.

Example 13.14. The load on a 480 V line in an

industrial substation is 50 kW at a power factor

of 0.6. The desired power factor is 0.95. From

(13.37), the additional reactive power needed is

QCj j¼ 50 kWð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

0:6ð Þ2�1

s
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

0:95ð Þ2�1

s !

¼50:2 kVAR

Thus we would specify a 50.2 kVAR capaci-

tor with a rated voltage of 480 V.

Exercise 13.5. A certain capacitor provides

25 kVAR at 60 Hz and 240 V. (a) What is the

reactive power provided at 50 Hz and 220 V?

(b) If this capacitor is installed on a 75 hp

electric motor operating at 240 V and 60 Hz,

and having (uncorrected) power factor 0.7,

what is the resulting power factor?

If you have mastered the material above, you have a

good basic understanding of the objectives and means

of power-factor correction. However, the subject goes

far beyond the introductory treatment given here. We

conclude this section by mentioning a few of the many

complicating factors.

The power factor of a motor depends upon the load

on the motor, being largest when the motor is fully

loaded and least when the motor is idling. If the

correction capacitance is sized for a fully loaded

motor, the motor will be over-corrected when running

at less than full load, and problems referred to above

can surface. Power-factor correction usually is auto-

mated for large motors or large collections of smaller

motors. Power-factor correction equipment monitors

rms current, rms voltage, and real power, determines

the capacitance needed on the fly, and automatically

switches capacitors in or out, in small steps, as condi-

tions warrant.

Over-correction, resulting in a leading power factor,

is to be avoided, and most utilities recommend (or

require) power factors in the neighborhood 0.95, to

avoid over-correction. A main reason for avoiding

over-correction is the following: The majority of

motors used in industrial operations are induction

motors. When turned off (removed from the line),

a motor does not stop abruptly, but coasts to a stop

in a manner determined by the inertia and friction of the

mechanical load. While doing so, an induction motor

can act as a generator, producing a voltage proportional

to the angular velocity of the rotor. If the motor is

under-corrected (lagging pf < 1), the resonant fre-

quency of the circuit comprising the capacitor and

motor windings is above the line frequency, but if the

motor is overcorrected (leading pf ), the resonant fre-

quency of the capacitor and motor windings is below

the line frequency, and the frequency of the voltage

produced by the motor will pass through the resonant

frequency of the circuit as the motor slows down.When
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that happens, voltages and currents produced can be

large enough to damage the motor, the capacitor, or

both. For this reason, an induction motor must be dis-

connected from both the line and the power-factor

correction capacitor(s) when the motor is shut down.

A snubbing circuit might also be employed to dissipate

the energy produced by the motor as it coasts to a stop.

Finally, plants are increasingly using digital equip-

ment to control motor speed or torque, such as

variable-frequency drives (VFDs) that create variable-

frequency digitally synthesized sinusoidal voltages for

controlling the speed (angular velocity) of motors.

There also are nonlinearities in lighting ballasts, trans-

formers, and ac–dc converters (rectifiers) for running

dc motors and appliances. Such devices introduce

harmonics of the power-line frequency into the distri-

bution system. Thus, in addition to 60 Hz, there will be

120, 180 Hz, and higher harmonics on the lines. The

Cdv=dt currents produced by those voltages cause

additional real power dissipation (and thus heat) in

the ESR (equivalent series resistance) of power-factor

correcting capacitors. Also, the frequency of one or

more such harmonics might be near an unintentional

resonance associated with motor and transformer

windings and power-factor correction capacitors.

Overheating will at best shorten the lives of capacitors

and in severe cases (e.g., if boosted by a resonance)

can be instantly destructive. When conditions warrant,

plants take extra measures, such as tuned-circuit traps,

to eliminate harmonics and dangerous resonances.

13.9 Superposition of Complex Power

If two or more sinusoidal currents or voltages having

different frequencies are impressed simultaneously on

a load, the real average power dissipated by the load is
the sum of the real average powers that would be

dissipated if the sinusoidal currents or voltages were

applied individually.6 The same is true for the reactive

powers.

For example, refer to Fig. 13.23, where

v1 ¼ V1 cos o1 tð Þ; v2 ¼ V2 cos o2 tð Þ;
V1 ¼ 10 V;V2 ¼ 5 V; f1 ¼ 100 Hz; f2 ¼ 200 Hz;

(13.39)

and

Z joð Þ ¼ Rþ joL; R ¼ 100 O; L ¼ 100 mH:

Thus

~I1 ¼
~V1

Z jo1ð Þ ffi 84:67ff � 0:561ð Þ mA;

~I2 ¼
~V2

Z jo2ð Þ ffi 31:13ff � 0:899ð Þ mA:

The individual complex powers are given by

S1 ¼ 1

2
~V1
~I�1 ffi 358þ j225ð Þ mVA;

S2 ¼ 1

2
~V2
~I�2 ffi 48:5þ j60:9ð Þ mVA:

(13.40)

Thus the total real and reactive powers dissipated

are

P ¼ Re S1ð Þ þ Re S2ð Þ ffi 407 mW;

Q ¼ Im S1ð Þ þ Im S2ð Þ ffi 286 mVAR:

Complex powers can be superimposed (added) as

illustrated above. However, the total complex power

dissipated in this example cannot be calculated as

S 6¼ 1

2
~V1 þ ~V2

� �
~I1 þ ~I2
� ��

;

because a sum of phasors for sinusoids having differ-

ent frequencies is meaningless; e.g., if ~V1 and ~V2

represent sinusoids having different frequencies, then
~V1 þ ~V2 is meaningless.

13.10 Power Transfer

This section describes conditions for maximum power

transfer efficiency and for maximum power transfer.

I1
~

V1

v1 = V1 cos(w1t) v2 = V2 cos(w2t)

~ V2
~

I2
~

Z ( jw1) Z ( jw2)

Fig. 13.23 Pertaining to superposition of complex power. See

(13.39) and (13.40)

6Superposition of real power is treated in Chapter 5.
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13.10.1 Power Transfer Efficiency

Refer to Fig. 13.24. We assume the elements of the

model represent physical components. The current

through and voltage across the load are given by

~IL ¼
~VS

ZS þ ZL
; ~VL ¼ ZL ~VS

ZS þ ZL
: (13.41)

From (13.5), the power delivered to the load is

given by

PL ¼ 1

2
~IL
�� ��2Re ZLð Þ ¼ 1

2

~VS

�� ��2
ZS þ ZLj j2 Re ZLð Þ (13.42)

and the power delivered by the source ~VS is given by

PS ¼ 1

2
~IL
�� ��2Re ZL þ ZSð Þ

¼ 1

2

~VS

�� ��2
ZS þ ZLj j2 Re ZL þ ZSð Þ: (13.43)

It follows that the power transfer efficiency is

given by

� ¼ PL

PS
¼ Re ZLð Þ

Re ZL þ ZSð Þ

¼ Re ZLð Þ
Re ZLð Þ þ Re ZSð Þ : (13.44)

Equation (13.44) shows that power transfer effi-

ciency is near unity and nearly independent of fre-

quency if

Re ZSð Þ � Re ZLð Þ: (13.45)

We can maximize power transfer efficiency either

by minimizing Re ZSð Þ, maximizing Re ZLð Þ, or both,
depending upon which of those parameters can be

varied. No matter which of power transfer or power

transfer efficiency is most important, minimizing

Re ZSð Þ usually is desirable because that minimizes

wasted power (in the form of undesirable heat).

On the other hand, increasing power transfer effi-

ciency by increasing Re ZLð Þ decreases the load current
and thus decreases the power delivered to the load.

Moreover, the load impedance ZL might be beyond the

control of the circuit designer, in which case minimiz-

ing Re ZSð Þ is the only option.

Keep in mind that power dissipated by a circuit

element is physically meaningful only if the element

corresponds to a physical component, and that the

components of a Thévenin source model do not neces-

sarily correspond to physical components. If the

source in Fig. 13.24 is a Thévenin model for a more

complex physical source, such that the parameters

VS; ZS are non-physical, then the power dissipated in

the source is non-physical and not necessarily equal to

the power dissipated in the associated physical source.

Consequently, we cannot calculate power transfer effi-

ciency using the (non-physical) Thévenin equivalent

for a more complex physical source, as illustrated by

the following example.

Example 13.15. Figure 13.25(a) shows a

physical circuit, where the elements correspond

to physical components. Figure 13.25(b) shows

a circuit model, where the source is represented

by its Thévenin equivalent. We wish to show

that the power transfer efficiency calculated

from the model is not equal to the true power

transfer efficiency calculated from the physical

circuit. For specificity, let R0 ¼ R ¼ RL ¼
100 O and V0 ¼ 100 V. Then

VT ¼ RV0

R0 þ R
¼ 50 V;

RT ¼ R0 Rk ¼ 50 O:
(13.46)

Because the physical source and the Théve-

nin model are equivalent at their terminals, the

source load

ZS
ZLVS

~

IL
~

~
VL

+

–

+
–

Fig. 13.24 Circuit model used to examine power transfer effi-

ciency
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load current IL, the load voltage VL, and the

power PL dissipated in the load are the same

for both circuits. We find

IL ¼ VT

RT þ RL
¼ 333 mA;

VL ¼ RLIL ¼ 33:3 V;

PL ¼ VLIL ¼ 11:1 W:

The power produced by the Thévenin

equivalent voltage source is

PVT ¼ ILVT ¼ 16:7 W;

so the power transfer efficiency based upon the

Thévenin model in Fig. 13.25(b) is

�T ¼ PL

PVT
¼ 0:665:

For the model in Fig. 13.25(a), the power

produced by the voltage source is

P0 ¼ I0V0 ¼ V0 � VL

R0

� �
V0 ¼ 66:7 W;

so the actual power transfer efficiency is

� ¼ PL

P0

¼ 11:1 W

66:7 W
¼ 0:166;

which is far from the value obtained using the

Thévenin source model.

If the components of the source model in Fig. 13.24

correspond to physical components, and if the

source impedance ZS is variable, then power transfer

efficiency can be maximized by minimizing Re ZSð Þ.
But if the source is the Thévenin equivalent for a more

complex physical source, minimizing Re ZSð Þ by vary-
ing a physical parameter will not necessarily maxi-

mize power transfer efficiency because the Thévenin

equivalent voltage might depend upon the same phys-

ical parameter. For example, we can minimize the

Thévenin resistance RT in Fig. 13.25(a) by minimizing

the physical resistance R, but in so doing we would

minimize, not maximize, power transfer efficiency.

Example 13.16. Refer to Figure 13.26.

(a) Calculate and plot the power-transfer effi-

ciency versus the frequency f of the source

for 100 Hz � f � 1 MHz. Use a logarith-

mic scale for frequency. On the same axes,

plot the (dimensionless) quantity

Pn fð Þ ¼ P fð Þ
P f0ð Þ ;

where P fð Þ is the power delivered to the load

and f0 ¼ 10 kHz.

(b) Let the frequency of the source be fixed at

f ¼ f0 ¼ 10 kHz and let the capacitance C

be variable. Plot the power-transfer effi-

ciency versus the capacitance C for

5 nF � C � 100 nF. On the same axes,

plot the dimensionless quantity

RV0

R0

I0

source load

IL

VL RL

source load

RT
RLVT

(a) physical circuit (b) Thevenin model

+
+
–

+
–

–

IL

VL

+

–

Fig. 13.25 See Example

13.15

C
RS RL

VS
~ L

IL
~

source load

RS = 200 Ω
C = 50nF

L = 10mH
vS = V0cos(w0t ); V0 = 5V

RL = 1 kΩ+
–

Fig. 13.26 See Example 13.16
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Pn0 Cð Þ ¼ P0 Cð Þ
P0 C0ð Þ ;

where P0 is the power delivered to the load as a

function of the capacitance C for f ¼ f0 and

C0 ¼ 50 nF.

Solution: (a) Figure 13.27 shows the circuit

reduced to the Thévenin equivalent for the

source and the equivalent impedance for the

load, where

~VT ¼ V0

1þ j2pf RSC
; ZT ¼ RS

1þ j2pf RSC
;

ZL ¼ RL þ j2pf L:

From (13.44), the power-transfer efficiency

is given by

� ¼ Re ZLð Þ
Re ZLð Þ þ Re ZTð Þ ;

where, in this case,

Re ZLð Þ ¼ RL; Re ZTð Þ

¼ Re
RS

1þ j2pf RSC

� �

¼ RS

1þ 2pf RSCð Þ2 : (13.47)

Thus

� ¼ RL

RL þ RS

1þ 2pf RSCð Þ2
: (13.48)

The power dissipated in the load is given by

P ¼ 1

2
~IL
�� ��2RL ¼ 1

2

~VT

ZT þ ZL

����
����
2

RL:

Figure 13.28 shows the graph requested in

part (a). As the frequency is increased from

100 Hz to 1 MHz, the power-transfer effi-

ciency (solid line) increases from 0.833 to

unity. However, the actual power transferred

(dashed line) decreases from about 1:5P f0ð Þ to
nearly zero, whereP f0ð Þ ¼ 5:61 mW.Depend-

ing upon the application, we might say that

reasonable efficiency and power transfer are

achieved for frequencies below 10 kHz.

Above 10 kHz, the efficiency is approximately

unity, but the power transferred is quite small,

most being dissipated in the source impedance,

which is an undesirable situation.

Figure 13.29 shows the graph requested

in part (b). From (13.47) and (13.48), increas-

ing the capacitance decreases the real part

of the source impedance and thereby increases

the power-transfer efficiency. But increasing

the capacitance also decreases the magnitude

of the Thévenin equivalent voltage, so we pay

for increased power-transfer efficiency with a

reduction in the actual power transferred to the

source load

VT
~

ZT
ZL

+
–

Fig. 13.27 See Example 13.16

100 103 104 105 106
0

0.5

1

1.5

2

f (Hz)

h ( f ) Pn ( f )

Fig. 13.28 See Example 13.16
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load. Whether that is acceptable depends upon

the application.

13.10.2 Power Transfer

Refer again to Fig. 13.27, where the source and load

impedances are expressed in terms of their real and

reactive components as

ZT ¼ RT þ j XT ; ZL ¼ RL þ j XL: (13.49)

The complex power delivered to the load is given by

SL ¼ 1

2

RL þ j XLð Þ ~VT

�� ��2
RT þ RLð Þ2þ XT þ XLð Þ2 : (13.50)

Thus the real power dissipated in the load is given

by

PL ¼ Re SLð Þ ¼ 1

2

RL
~VT

�� ��2
RT þ RLð Þ2þ XT þ XLð Þ2 : (13.51)

In what follows, we consider two main cases: (1)

The source impedance ZT is variable and the load

impedance ZL is fixed and (2) The load impedance is

variable and the source impedance is fixed. In each

case, we seek the condition under which the power

transferred to the load is maximum.

First, it is clear from (13.51) that if the source

impedance is variable and the load impedance is

fixed, then the source impedance that maximizes

power transfer is

ZT ¼ �jXL; (13.52)

because in that case, RT ¼ 0, XT ¼ �XL, and (13.51)

becomes

PL ¼ 1

2

~VT

�� ��2
RL

;

which means that all of the real power delivered by the

source is dissipated in the load (none in the source

impedance).

Example 13.17. In Fig. 13.30, vS ¼
V0 cos o0 tð Þ. Obtain an expression for the

capacitance that maximizes the power trans-

ferred to the load.

Solution: From the perspective of the load, the

source (Thévenin equivalent) impedance is

given by

ZT ¼ jo0LS
1� o2

0LSC
:

From (13.52), the capacitance that maxi-

mizes the power transferred to the load is that

for which

ZT ¼ �jXL ¼ �jo0L ) LS
1� o0

2LSC
¼ �L:

0 20 40 60

C (nF)

80 100
0.4

0.6

0.8

1

1.2

1.4

h (C ) Pn0 (C )

Fig. 13.29 See Example 13.16

LS

L

R

C
vS

source load

+
–

Fig. 13.30 See Example 13.17
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Solving this equation for the capacitance C
gives

C ¼ LS þ L

o0
2LSL

:

Refer again to Fig. 13.27. Suppose the source (Thé-

venin) impedance ZT and source voltage ~VT are fixed,

but the load is variable. We assume the reactive com-

ponent of the load can be chosen independently of the

real component. From (13.51), the load reactance that

maximizes the power dissipated in the load for any

particular load resistance is

XL ¼ �XT ; (13.53)

in which case (13.51) becomes

PL ¼ 1

2

RL
~VT

�� ��2
RT þ RLð Þ2 : (13.54)

Because ~VT is fixed, the power PL is maximized by

maximizing the quantity

RL

RT þ RLð Þ2 :

The value of RL for which this quantity is maximum

is given by

d

dRL

RL

RT þ RLð Þ2
 !

¼ RT þ RLð Þ2�2RL RT þ RLð Þ
RT þ RLð Þ4 ¼ 0;

(13.55)

which yields

RL ¼ RT : (13.56)

Together, (13.53) and (13.56) show that maximum

power is delivered to the load if

ZL ¼ Z�
T: (13.57)

Keep in mind that unless the source impedance and

the load impedance are both real, maximum power

transfer is in general achieved at only a single fre-

quency.

Exercise 13.6. Consider a case where the load

impedance is complex and the source imped-

ance is real. Denote the load impedance by

ZL ¼ RL þ jXL and the source impedance by

RT . Show that the power transferred to the

load is maximized by adding a series reactance

XT ¼ �XL to the load, such that that the power

transferred to the load is given by

PL ¼ 1

2

RL
~VT

�� ��2
RT þ RLð Þ2þ XT þ XLð Þ2

¼ 1

2

RL
~VT

�� ��2
RT þ RLð Þ2 : (13.58)

Exercise 13.7. Consider a case where the

load impedance is real and the source imped-

ance is complex. Denote the source imped-

ance by ZT ¼ RT þ jXT and the load

impedance by RL. Show that the power trans-

ferred to the load is maximized by adding a

series reactance XL ¼ �XT to the load, such

that the power transferred to the load is given

by (13.58).

Exercise 13.8. Under what conditions on

source and load impedances can power transfer

be maximized at dc?

Exercise 13.9. Denote the Thévenin equiva-

lent impedance of a source by ZT ¼ RT þ jXT

and the impedance of the load on the source by

ZL ¼ RL þ jXL.

(a) Show that if the reactances XT ; XL cannot

be altered, then maximum power is trans-

ferred to the load if RL ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RT

2 þ XT þ XLð Þ2
q

.
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(b) Consider such a case, where RT <RL. Is

the power transferred to the load increased

by adding a resistance Rs ¼ RL � RT in

series with the load?

(c) If RT >RL, is the power transferred to the

load increased by adding a resistance

Rs ¼ RT� RL in series with the load?

Example 13.18. A certain amplifier having

(real) output impedance RS ¼ 50 O drives a

load whose input impedance is that of a

100 O resistor R in parallel with a 62 pF capac-

itor C, as illustrated by Fig. 13.31. Neither the

source impedance nor the load impedance can

be modified.

(a) Use physical reasoning (not mathematics)

to find the frequency f0 for which the

power delivered to the load is maximum.

(b) Assume the open-circuit voltage at the

amplifier output terminals is VS ¼ 20 V,

independent of frequency. Obtain an

expression for the power PL fð Þ delivered
to the load as a function of frequency.

Using a logarithmic scale for frequency,

plot the dimensionless quantity

Pn fð Þ ¼ PL fð Þ
PL f0ð Þ

for 100 kHz � f � 1 GHz, where f0 is the

frequency found in part (a).

(c) On the same axes used for the plot obtained

in part (b), plot the power transfer effi-

ciency versus frequency.

Solution:

(a) Refer to Fig. 13.31. For any non-zero fre-

quency, some of the current available from

the source is diverted through the capacitor

and contributes nothing to the power

dissipated in the load (because the average

power dissipated in a capacitance is zero).

Thus the power dissipated in the load is

maximum for f ¼ 0 (at dc).

Alternatively: the average power dis-

sipated in a capacitance is zero, so what-

ever power is dissipated in the load is

dissipated entirely in the resistance R. The

impedance of the capacitor (and thus of the

load) decreases with increasing frequency,

so (voltage division) the voltage across the

resistance R is maximum for f ¼ 0. It fol-

lows that the power dissipated in the load is

maximum for f ¼ 0 (at dc).

(b) Taking the source ~VS as the phase refer-

ence, the voltage across the load is given

by (voltage division)

~VL ¼ ZL
ZL þ RS

VS;

where VS ¼ ~VS

�� �� and
ZL ¼ R

1þ j2pf RC
:

Thus

~VL ¼ RVS

Rþ 1þ j2pf RCð ÞRS

¼ RVS

Rþ RS þ j2pf R RSC
:

The power dissipated in the load is given

by

PL fð Þ¼ 1

2R
~VL

�� ��2¼ RVS
2

2 RþRSð Þ2þ 2pf RRSCð Þ2
h i

For f ¼ f0 ¼ 0, we find

PL 0ð Þ ¼ RVS
2

2 Rþ RSð Þ2 ¼ 889 mWsource load

RC
RS

VT
~+

–

Fig. 13.31 See Example 13.18
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and

Pn fð Þ¼PL fð Þ
PL 0ð Þ¼

2 RþRSð Þ2

2 RþRSð Þ2þ 2pf RRSCð Þ2
h i:

(c) From (13.44), the power transfer efficiency

is given by

� fð Þ ¼ Re ZL fð Þ½ 
Re ZL fð Þ½  þ Re ZT fð Þ½ 

¼ R

Rþ RS 1þ 2pf RCð Þ2
h i

¼ 1þ RSR
�1 1þ 2pf RCð Þ2
h in o�1

:

Figure 13.32 shows the graphs requested in

parts (b) and (c).

Exercise 13.10. Repeat Example 13.18, with

R ¼ 10 kO; C ¼ 6:2 pF.

Example 13.18 illustrates that both power transfer

efficiency and power transfer generally are depen-

dent upon frequency and can be strongly so. In most

electronics applications, the source contains many fre-

quencies, spread over a band. For example, a current

or voltage representing a segment of audible music

contains sinusoidal components whose frequencies

range from about 20 Hz to more than 15 kHz, and it

is desirable that power transfer efficiency of a high-

fidelity amplifier be nearly independent of frequency

for frequencies in that band. In such applications,

one generally tries to minimize the magnitude of

the source impedance ZT , not just Re ZTð Þ, so that the

frequency dependence of ZT has little effect on the

frequency dependence of the overall response of

the circuit.

It is worth repeating that the condition (13.57)

ensures maximum power transfer from a fixed source
to a variable load; that is, where the source impedance

ZT is fixed and the load impedance ZL can be specified.

It also is worth noting that the derivation above of

(13.52) and the derivation of (13.58) called for in

Exercise 13.6 implicitly assume that the source volt-

age is independent of the source impedance. Such is

rarely the case if the model used (Fig. 13.24) is the

(non-physical) Thévenin equivalent for a more com-

plex circuit, where both the Thévenin equivalent

impedance and Thévenin equivalent source voltage

usually depend upon some of the same parameters of

the associated physical circuit. In that case, altering

the Thévenin equivalent impedance by changing one

or more physical parameters almost invariably also

changes the Thévenin equivalent voltage source. The

correct approach to such a problem is to use a model

that correctly represents the physical circuit, express

the power delivered to the load as a function of actual

(not Thévenin) circuit parameters and then maximize

that expression subject to constraints on the para-

meters. Such problems require mathematical methods

beyond the scope of this book. Usually, a more practi-

cal approach to modifying the output impedance of a

system is to append another circuit (e.g., a voltage

follower) to the output.

13.10.3 Insertion Loss

Insertion loss is the reduction (in dB) of power deliv-

ered by a source to a load when a circuit is inserted

between the source and the load. Insertion loss is used

105 106 107 108
0

0.2

0.4

0.6

0.8

1

1.2

f (Hz)

h ( f ) Pn ( f )

Fig. 13.32 See Example 13.18

13.10 Power Transfer 503



by telecommunication engineers to estimate how

much gain (amplification) is needed to balance losses

introduced by components such as filters, splitters, and

transmission lines. Generally, passive components,

such as passive filters and transmission lines, intro-

duce losses, whereas active components, such as

amplifiers and active filters, can provide gains.

Refer to Fig. 13.33. The insertion loss attributed to

the circuit is given by

b ¼ 10 log
P1

P0

� �
:

where P0 is the power delivered to the load before the

circuit is inserted and P1 is the power delivered to the

load afterward. The load is the same in both cases, so

b ¼ 10 log
P1

P0

� �
¼ 20 log

~V1

~V0

����
����

� �
:

By voltage division and the definition of voltage

gain,

j ~V0j ¼ ZL ~VS

ZL þ ZS

����
����; j ~V1j ¼ Avj ~VSj:

Thus the insertion loss is given by

b dBð Þ ¼ Av dB � 20 log
ZL

ZS þ ZL

����
����

� 
dB (13.59)

If ZSj j � ZLj j, as is often the case, then

b dBð Þ ffi Av dB; jZSj � jZLj: (13.60)

A negative insertion loss (dB) indicates insertion

gain.

Exercise 13.11. In a certain scenario, an

antenna is to be connected to a receiver by a

length of RG-6 coaxial cable. For frequencies

of interest, the maximum signal loss in the

cable is approximately 20 dB km�1. The max-

imum tolerable loss is 6 dB. What is the maxi-

mum allowable distance from the antenna to

the receiver? If the receiver must be 1.2 km

from the antenna, how much gain (dB) must be

provided by an auxiliary amplifier?

13.11 Impedance Matching

It is often impractical or impossible to achieve maxi-

mum power transfer or maximum power transfer effi-

ciency by altering parameters of a given physical

source or load. In such cases the desired result some-

times can be achieved by inserting a matching circuit
between the source and load. From the perspective of

the source, the purpose of the matching circuit is to

change the apparent load impedance. From the per-

spective of the load, the purpose of the matching circuit

is to change the apparent source impedance.

This section introduces impedance matching using

transformers and L sections.

13.11.1 Transformers

A transformer can provide the proper conditions for

maximum power transfer where the source and load

impedance are both resistive, because a transformer

can make a load (or the source impedance) seem larger

or smaller, depending upon the turns ratio. A trans-

former alone cannot provide matching for a complex

load or source impedance, because a transformer alone

cannot introduce the necessary conjugate relationship

between load and source impedance. But often, a good

match can be achieved with a transformer and one or

more reactive elements.

The next example uses an ideal transformer to

illustrate how a transformer can provide good match-

ing for a resistive load to a resistive source over a wide

band of frequencies. But bear in mind that the ideal

ZL ZL

ZS ZS

VS
~

VS
~

V0
~
+

–
V1
~
+

–

linear
circuit

(a) (b)

+
–

+
–

Fig. 13.33 Regarding the definition of insertion loss
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transformer is an inadequate model for a great many

matching applications. In practice, computer-aided

design programs are used to design matching circuits.

Example 13.19. In the circuit shown in

Fig. 13.34, the transformer is ideal. Obtain an

expression for the transformer turns ratio

n ¼ N2=N1 that maximizes the power trans-

ferred to the load RL.

Solution: The load seen by the source is that

seen looking into the primary of the trans-

former. For maximum power transfer, that

resistance must equal the source output resis-

tance RS. From Chapter 9, the resistance seen

at the primary terminals of the transformer is

given by

R0
L ¼ 1

n2
RL: (13.61)

The required turns ratio is given by

1

n2
RL ¼ Ro ) n ¼ N2

N1

¼
ffiffiffiffiffiffi
RL

Ro

r
:

As shown in Chapter 5, the power transferred by a

resistive source to a matched resistive load has a broad

maximum, in the sense that a slight mismatch between

a source and a load leads to only a small decrease in

power dissipated by the load. Consequently, it might

not be worthwhile to correct a small mismatch, as

illustrated by the following example.

Example 13.20. A 1 Vrms source having out-

put resistance RS ¼ 100 O is to drive a load

having resistance RL ¼ 120 O. Calculate the

power dissipated by the load (a) without

matching and (b) if a transformer is used to

achieve a match.

Solution: Refer to Fig. 13.35. The power

dissipated by the load is given by

PL ¼ Irms
2 RL ¼ Vrms

RS þ RL

� �2

RL:

(a) Without matching, the power dissipated by

the load is

P1 ¼ Vrms

RS þ RL

� �2

RL

¼ 1V

220O

� �2

120Oð Þ

ffi 2:48 mW:

(b) With matching, the apparent load resis-

tance equals the source resistance. There-

fore the power dissipated by the load with

matching is

P 2 ¼ Vrms

RS þ RS

� �2

RS

¼ 1V

200O

� �2

100Oð Þ

ffi 2:50 mW:

The difference 20 mWð Þ is a small fraction

of the total power and would be insignificant in

most applications.

An ideal transformer provides a perfect match of a

resistive source to a resistive load for all frequencies,

but such a match is unattainable using real compo-

nents. The range of frequencies for which a real trans-

former can provide such a match is limited by the

frequency response of the transformer, and in no case

Rs

vs RL

N2N1

+
–

Fig. 13.34 See Example 13.19

RT = 100 Ω

RL = 120 ΩVrms = 1V

Irms

+
–

Fig. 13.35 See Example 13.20
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extends to dc. Also, it can happen that power losses

in such networks approach those due to mismatch

between the original source and load, in which case

matching can be a waste of time and money.

Extending the procedure above to complex source

and load impedances requires introducing additional

elements (capacitors or inductors or both), because a

transformer alone cannot introduce the required con-

jugate relation between source and load impedances.

13.11.2 L Sections

The simple passive transformerless circuits shown in

Fig. 13.36 can often provide good matching for fre-

quencies at or near a particular frequency. These

matching networks are called L sections (because of

their shape). The circuit in Fig. 13.36(a) would be used

if the load impedance is larger than the source imped-

ance, because the series inductance increases the

source impedance and the shunt capacitance reduces

the load impedance. The circuit in Fig. 13.36(b) would

be used if the load impedance is smaller than the

source impedance, because the series inductance

increases the load impedance and the shunt capaci-

tance reduces the source impedance.

Example 13.21. In the circuit shown in

Fig. 13.37, the source output resistance is

RS ¼ 10 O and the load resistance is RL ¼
100 O. The source voltage is sinusoidal, with

frequency f ¼ 60 Hz. (a) Find the values of

the inductance L and capacitance C in the

L-section matching circuit for which maxi-

mum power is transferred to the load. (b)

Would you expect an insertion loss or insertion

gain from inserting the passive matching net-

work? Why? Calculate the insertion loss at

f ¼ 60 Hz.

Solution: Because the load resistance is larger

than the source resistance, we associate the

shunt capacitor with the load (to decrease the

apparent load impedance) and the series induc-

tor with the source (to increase the apparent

source impedance). The modified source and

load impedances are given by

Z0
S joð Þ ¼ RS þ jo L;

Z0
L joð Þ ¼ RL

1þ joRL C
:

For maximum power transfer at the match

frequency f0 ¼ 60 Hz, we require Z0
L jo0ð Þ ¼

Z0�
S jo0ð Þ, which leads to

RL 1� jo0RLCð Þ
1þ o0RLCð Þ2 ¼RS� jo0L; o0¼2pf0:

It follows that

RL

1þ o0RL Cð Þ2 ¼ RS;

RL
2 C

1þ o0RL Cð Þ2 ¼ RLRSC ¼ L:

Solving the first of these relations for the

capacitance and then using the second to cal-

culate the inductance yields

C ¼ 1

o0 RL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RL

RS
� 1

r
¼ 79:6 mF;

L ¼ RSRLC ¼ 79:6 mH:

(13.62)

The power delivered to the load (as a func-

tion of frequency) is given by

LL

(a) (b)

CC

|ZL| > |ZS| |ZL| < |ZS|

Fig. 13.36 L-section impedance matching networks

vS

RS

RL

L

C

source matching circuit load

+
–

Fig. 13.37 See Example 13.21
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PL fð Þ¼1

2
~I
�� ��2Re ZL½ ¼1

2

~V

ZoþZL

����
����
2

Re ZL½ :

Figure 13.38 shows the power transferred to

the load, normalized to the power transferred at

the match frequency, as a function of fre-

quency. The shape of the graph is typical of

L-section matching. The match is good at the

match frequency f0 and is within 5 dB of the

maximum below the match frequency, but falls

off sharply above the match frequency. (b) The

matching network increases the power deliv-

ered to the load, so we expect an insertion

gain (negative loss), even though the matching

network is passive. The voltage gain

Av ¼ 20 log
Z0
L

Z0
L þ Z0

S

����
����

and the voltage gain at 60 Hz is

Av 60 Hzð Þ ffi 3:98 dB

The insertion loss at 60 Hz is

b 60 Hzð Þ ¼ 20 log
RL

RS þ RL

����
����

� �
� Av 60 Hzð Þ

ffi �4:81 dB

so the matching network provides an insertion

gain of approximately 4.81 dB at the match

frequency f0 ¼ 60 Hz.

When using a matching circuit to match a load to a

source for maximum power transfer, you are finding

the matching-circuit parameters for which maximum

power is transferred to the load at the specified fre-

quency. That is different from finding the frequency at
which maximum power is transferred for a specified

set of matching-circuit parameters. In other words, if

you use a matching circuit that maximizes power

transferred to the load at a particular frequency, it is

possible for the power delivered to the load to be even

larger at a different frequency, as illustrated by the

next example.

Example 13.22. In the circuit shown in

Fig. 13.37, the source output resistance is

Ro ¼ 100 O and the load resistance is

RL ¼ 10 O. The source voltage is sinusoidal,

with frequency f ¼ 60 Hz. Find the values of

the inductance L and capacitance C in the

L-section matching circuit for which maximum

power is transferred to the load. For those values

of L and C, find the frequency for which maxi-

mum power is transferred to the load.

Solution: Because the source resistance is

larger than the load resistance, we associate

the shunt capacitor with the source (to decrease

the apparent source impedance) and the series

inductor with the load (to increase the apparent

load impedance). The modified source and

load impedances are given by

ZL joð Þ ¼ RL þ jo L;

Zo joð Þ ¼ Ro

1þ joRo C
; o ¼ 2pf :

For maximum power transfer at the match

frequency f0 ¼ 60 Hz, we require ZL jo0ð Þ ¼
Zo

� jo0ð Þ, which leads to

Ro 1� jo0RoCð Þ
1þ o0RoCð Þ2 ¼RL� jo0L; o0¼2pf0:

f

f0

(dB)
PL ( f )

PL ( f 0)

1010.1
–50

–40

–30

–20

–10

0

10

Fig. 13.38 See Example 13.21
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It follows that

Ro

1þ o0Ro Cð Þ2 ¼ RL;

R2
o C

1þ o0Ro Cð Þ2 ¼ RLRoC ¼ L:

Solving the first of these relations for the

capacitance and then using the second to cal-

culate the inductance yields

C ¼ 1

o0 Ro

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R0

RL
� 1

r
¼ 79:6 mF;

L ¼ RoRLC ¼ 79:6 mH:

(13.63)

The power delivered to the load (as a func-

tion of frequency) is given by

PL fð Þ ¼ 1

2
~I fð Þ�� ��2Re ZL j 2p fð Þ½ 

¼ 1

2

~V fð Þ
Zo j 2p fð Þ þ ZL j 2p fð Þ
����

����
2

RL:

Figure 13.39 shows the power transferred to

the load, normalized to the power transferred at

the match frequency, as a function of fre-

quency. The power transferred to the load is

maximum at a frequency slightly higher than

the match frequency f0. As an exercise, you

can show that the frequency for maximum

power transfer is f1 ¼ 65:8 Hz.

If a load is matched to a source according to

(13.57), the power dissipated by the load is exactly

half of the power produced by the source at the match

frequency, but not necessarily at any other frequency.

The other half of the power produced by the source is

dissipated in the source resistance (in the real part of

the source impedance).

L-section matching circuits can also be used to

match a reactive source to a reactive load, but the

match typically is good over a narrower band of fre-

quencies than when a resistive source is matched to a

resistive load, as illustrated by the following example.

Example 13.23. Refer to Fig. 13.40, where

R1 ¼ 1 kO; L1 ¼ 10 mH;

R2 ¼ 100 O;C2 ¼ 100 nF;

vðtÞ ¼ V0 cos o0 tð Þ; f0 ¼ 10 kHz:

Specify a matching circuit such that maxi-

mum power is delivered to the load.

Solution: For the parameter values given,

X1 ¼ o0 L1; Z1 ¼ ZS ¼ R1 þ j X1

¼ RS þ j XS ffi 1000þ j 628 O;

X2 ¼ � 1

o0 C2

; ZL ¼ j X2R2

R2 þ j X2

¼ RL þ jXL ¼ 71:7� j 45:0 O:

Because RS>RL and because the source is

inductive, we reduce the effective resistance of

1010.1
–30

–20

–10

0

10

f

f0

(dB)
PL ( f )

PL ( f 0)

Fig. 13.39 See Example 13.22

load

matching
circuit

R1 L1
v(t) C2 R2

source

+
–

Fig. 13.40 See Example 13.23
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the source by inserting a capacitor C in parallel

with the source, such that the apparent source

impedance is

Z0
S ¼

ZS ZC
ZS þ ZC

¼ R0
S þ j X0

S:

Subsequently, we complete the match by

inserting an inductor in series with the load.

Figure 13.41 shows the resulting matching

circuit.

We determine the capacitance C such that

R0
S ¼ RL. We must solve the equation

Re Z
0
S


 �
¼ Re

ZS ZC
ZS þ ZC

� �
¼ RL

for the capacitance C. We find

ZSZC
ZSþZC

¼ RSþ jXSð Þ jXCð Þ
RSþ jðXSþXCÞ

¼ RSþ jXSð Þ jXCð Þ½  RS� jðXSþXCÞ½ 
RS

2þðXSþXCÞ2

¼ jRS
2XC�XSXCRSþRSXC XSþXCð Þþ jXSXC XSþXCð Þ

R2
SþðXSþXCÞ2

¼RSXC
2þ jRS

2XCþ jXSXC XSþXCð Þ
RS

2þðXSþXCÞ2

)ReðZ0
SÞ¼

RSXC
2

R2
SþðXSþXCÞ2

:

We require

ReðZ0
SÞ ¼

RS XC
2

RS
2 þ ðXS þ XCÞ2

¼ RL

or

RS XC
2 ¼ RL RS

2 þ ðXS þ XCÞ2
h i

) XC
2 þ bXC þ c ¼ 0 ;

b ¼ 2RL XS

RL � RS
¼ �97:05 O;

c ¼ RL RS
2 þ XS

2
� �
RL � RS

¼ �1:077� 105 O2;

which yields

XC¼�b�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2�4c

p

2
¼ 48:5�331:8ð ÞO:

We must choose the negative solution

because the reactance of a capacitor is negative.

This gives

XC¼�283:3O)C¼� 1

o0XC
¼56:2 nF:

The modified source impedance is

Z0
S¼

ZSZC
ZSþZC

¼71:7� j308:0O¼R0
Sþ jX0

S

and the load impedance is

ZL¼ jX2R2

R2þ jX2

¼RLþ jXL¼71:7� j45:0O:

Finally, we add enough series inductance to

cancel the total capacitive reactance. The

required inductance is given by

jo0 L ¼ j 308þ j 45 ¼ j353O

) L ¼ 353O
2p104s�1

¼ 5:62 mH:

Figure 13.41 shows the completed design.

It is instructive to calculate and plot the

power delivered to the load as a function of

frequency. For this purpose, we may associate

all of the reactive components with the load,

because they dissipate no average power. Thus

we calculate the average power dissipated in the

load Z in the circuit shown in Fig. 13.42, where,

from Fig. 13.41,

R1 L1
v(t)

loadmatching
circuit

source

C
L

+
– C2 R2

Fig. 13.41 See Example 13.23
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Z¼ZL1þZC ZLþZC2 ZR2kð Þk

¼ joL1þ 1

joC

� �
joLþ 1

joC2

� �
R2k

� ����
¼ joL1þ 1

joC

� �
joLþ R2

1þ joC2R2

� ����
¼ joL1þ 1

joC

� �
R2�o2LC2R2þ joL

1þ joC2R2

� ����
¼ joL1

þ R2�o2LC2R2þ joL

1þ joC2R2þ joC R2�o2LC2R2þ joLð Þ:

The power dissipated in the load is given by

PL fð Þ¼1

2
~IZ
�� ��2Re Z½ ¼1

2

~V

R‘1þZ

����
����
2

Re Z½ :

Figure 13.43 shows a graph (computer gen-

erated) of the transfer efficiency PL fð Þ=PL f0ð Þ
versus frequency, where PL f0ð Þ is the maximum

power transferred. The graph shows that the

matching is very sensitive to frequency. The

power transfer efficiency drops sharply as fre-

quency departs from f0.

It is possible to match a source to a load using one

of the L sections shown in Fig. 13.44. The principles

involved are the same as those for the L sections in

Fig. 13.36. The L sections in Fig. 13.44 are less-often

used than those in Fig. 13.36 for low-(audio and some

video) frequency matching, because the combination

of series capacitance and shunt inductance tends to

keep low frequency currents from reaching a load.

A circuit in which an L section matches a source

impedance to a load impedance is resonant at the

match frequency because (by design) the equivalent

impedance of the circuit as a whole is real at that

frequency. The impedance of the circuit can be sharply

peaked at the resonant (match) frequency, and the

bandwidth of the match provided by an L section

often is inadequate.

Using more complex matching circuits, it is possi-

ble to achieve better (more wideband) matches than

those obtained using only an L section. In practice,

such matching circuits are designed using software for

that purpose. Nonetheless, working through the exam-

ples above and a few end-of-chapter problems will

help you grasp the ideas involved, which are applica-

ble in a variety of contexts.

13.12 Problems

Section 13.3 is prerequisite for the following

problems.

P 13.1 The complex power delivered to a certain

load is S ¼ 100ff1:02ð Þ VA. (a) What is the real power

delivered to the load? (b) If the load voltage is
~V ¼ 50ff0ð Þ V at 60 Hz, what is the load current (pha-

sor)? (c) Construct a series RL or series RC model for

the load, whichever is appropriate.

P 13.2 In Fig. P 13.1, R1 ¼ R2 ¼ 1 kO, C ¼ 50 nF,

the applied voltage ~V is the phase reference, and the

V
~

R1

Z VZ
~

IZ
~

+
–Fig. 13.42 See Example

13.23

CC
L L

Fig. 13.44 Alternative matching L-sections

103 104 105
0

0.2

0.4

0.6

0.8

1

PL ( f )

PL ( f 0)

f (Hz)

Fig. 13.43 See Example 13.23
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current through the resistor R2 is ~IR ¼ 250ff1:2ð Þ mA

at 1 kHz. Find the complex power dissipated by the

circuit.

P 13.3 In Fig. P 13.1, let R1 ¼ 1 kO, R2 ¼ 2:2 kO,
C ¼ 47 nF, and ~V ¼ 25ff0ð Þ V at 10 kHz. Find the

complex power delivered by the source and the

power dissipated by each resistor.

P 13.4 Refer to Fig. P 13.2. Find the power deliv-

ered by the independent source and the power deliv-

ered to the load. Where does the additional power

come from?

P 13.5 In Fig. P 13.3, ~VS ¼ 25ff0ð Þ V at 2 kHz and

the complex power dissipated by the circuit is

223:18� j 96:62ð Þ mVA. Specify the power-dissipa-

tion rating of each resistor as either 1=8 W or 1=4 W.

P 13.6 Refer to Fig. P 13.4. Obtain an expression

for the complex power dissipated by the circuit. Show

that your expression is dimensionally consistent and

that the expression behaves correctly for f ¼ 0 and

f ! 1.

P 13.7 Refer to Fig. P 13.5. (a) Find the complex

power S delivered by the source and the total power P
dissipated in the three resistors. (b) Find the Thévenin

equivalent for the circuit to the left of the inductor

and find the complex power ST delivered by the

Thévenin equivalent source. If ST is different from

S, explain why. (c) Find the power PT dissipated in

the Thévenin equivalent resistance. If PT is different

from P, explain why.

P 13.8 Refer to Fig. P 13.6, where the source is

sinusoidal and fixed amplitude. It is found that the

power dissipated by the load RL decreases as the

frequency of the source increases, for all finite fre-

quencies. Does the current through the load lead or lag

the voltage across the load?

P 13.9 A certain 2,000 mF electrolytic capacitor

has an ESR of 1:4 O. The voltage across the capacitor
is given by vC tð Þ ¼ Vdc þ Vac cos o0 tð Þ, where

f0 ¼ 120 Hz. The ac component is called the ripple

voltage. The real power dissipated by the capacitor

must not exceed 10 W. (a) If the real power dissipated

has its maximum value, what is the complex power

dissipated? (b) What is the maximum allowable rms

amplitude of the ripple voltage?

P 13.10 A certain coil has dc resistance 1:2 O. At
100 kHz, the inductance and quality factor of the coil

are L ¼ 250 mH and Q ¼ 30. The current through the

coil is given by i tð Þ ¼ I0 1þ 5 cos o0 tð Þ½ , where

f0 ¼ 100 kHz and I0 ¼ 200 mA. Find the complex

and real power dissipated by the coil.

Section 13.4 is prerequisite for the following

problems.

P 13.11 A 120 V (rms), 60 Hz sinusoidal voltage is

applied to the terminals of a certain RLC circuit. The

complex power delivered by the source is

S ¼ 400þ j300ð Þ VA:

Model the circuit as (a) a resistor in series with an

inductor and (b) a resistor in parallel with an inductor.

P 13.12 An RL series branch is driven by a sinusoi-

dal source vS. A capacitor is connected in parallel with

the branch, as illustrated by Fig. P 13.7. Which of the

following statements are unconditionally true, which

VS = 150mV,  f = 10kHz, RS = 50 Ω, R1 = 50kΩ, C1 = 15pF
Rx = 50kΩ, R2 = 1MΩ, C2 = 500nF, RL = 1kΩ

++
–

–
+
–VS

~

~

R1

C1

R1 R2

RL

C2

RX

n1

p1
n2

p2V1
~

V2
~

I
~

Fig. P 13.2 See Problem

P 13.4

R1

R2 C
V
~

+

–

IR
~

Fig. P 13.1 See Problem P 13.2, 3

13.12 Problems 511



are unconditionally false, and which might be true or

false, depending upon the capacitance?

(a) The real power delivered by the source

increases.

(b) The real power delivered by the source

decreases.

(c) The reactive power dissipated by the circuit

increases.

(d) The reactive power dissipated by the circuit

decreases.

(e) The apparent power dissipated by the circuit

increases.

(f) The apparent power dissipated by the circuit

decreases.

(g) The rms current drawn from the source

increases.

(h) The rms current drawn from the source

decreases.

(i) The angle of the impedance of the circuit

increases.

(j) The angle of the impedance of the circuit

decreases.

(k) The rms voltage across the resistor increases.

(l) The rms voltage across the resistor decreases.

(m) The power dissipated by the resistor increases.

(n) The power dissipated by the resistor decreases.

(o) The relative phase of the current increases.

(p) The relative phase of the current decreases.

P 13.13 Refer to Fig. P 13.8. (a) Find the complex

power, the real power, the reactive power and the

apparent power delivered by the source. (b) Find the

current through each resistor and the power dissipated

in each resistor. Verify that the power dissipated in the

resistors equals the real power found in part (a). (c)

Find the phasor voltage across the source and use

P ¼ VrmsIrms cos yð Þ to calculate the real power

dissipated. Verify that the result agrees with those

obtained in parts (a) and (b).

P 13.14 Refer to Fig. P 13.9. (a) Find the complex

power, the real power, the reactive power and the

apparent power delivered by the source. (b) Find the

current through each resistor and the power dissipated

in each resistor. Verify that the power dissipated in

the resistors equals the real power found in part (a). (c)

Find the phasor voltage across the source and use

P ¼ VrmsIrms cos yð Þ to calculate the real power

dissipated. Verify that the result agrees with those

obtained in parts (a) and (b).

P 13.15 Refer to Fig. P 13.10, where ~VS rms ¼
240 V. The real power dissipated by the load ZL is

PL ¼ 5:62 kW, the apparent power dissipated by the

load is APL ¼ 7:02 kVA, and the complex power

delivered by the source ~VS is S ¼ 7:02þ j5:62ð Þ kVA.
Find the rms phasor current ~Irms, and the ESR and ESX

of both the load and source impedance. There are two

solutions. Find both.

P 13.16 Refer to Fig. P 13.10, where ZS; ZL are

passive. Under what conditions are the current ~I and

voltage ~VS(a) in phase, (b) in phase quadrature?

P 13.17 Refer to Fig. P 13.11, where RS ¼ 2 O
and the rms amplitude of ~VS is 240 V. The reactance

X0 is adjusted until the current ~I is in phase with the

voltage ~VS, at which point X0 ¼ �8 O and the real

power delivered to the load ZL is 2.5 kW. Find the

load impedance, the complex power delivered by the

R1 R2

C CVS
~

+

–

R1 = R2 = 1kΩ, C = 100nF

Fig. P 13.3 See Problem P 13.5

(a)

(d)

(b)

(e)

(c)

(f)

R
L R C R L C

R
L

C
C

R
L

L
R

C

V
~

+

–
V
~
+

–

V~

+

–
V
~
+

–

I~

I
~

Fig. P 13.4 See Problem

P 13.6

512 13 Complex Power



source ~VS, the complex power dissipated by the load

ZL, and the reactive power dissipated by jX0. There are

two sets of solutions. Find both.

Section 13.5 is prerequisite for the following

problems.

P 13.18 In Fig. P 13.12, ~VS ¼ 120ff 0ð ÞV at 400 Hz,
~V1 ¼ 10ff � p=6ð Þ V, R1 ¼ 1 O, C ¼ 500 mF, and the

transformer is lossless. Find the fraction of the power

delivered by the source that is transferred to the

load ZL.

P 13.19 Refer to Fig. P 13.13, where ~VS ¼
100ff0ð Þ V at 1 kHz. The input impedance of the

passive RLC circuit (with the load attached) is

Z ¼ 10� j20ð Þ kO, where Zj j � RS. What is the

upper bound on the power that can be delivered to

the load?

P 13.20 Refer to Fig. P 13.14. The load dissipates

complex power SL ¼ 6þ j4ð Þ kVA. If the source and

R1= 150 Ω, R2 = 220kΩ, L = 5.5mH,
v(t) = V0 cos (w0t), V0 = 50V, f0 = 10kHz

v (t) L

R1

R2

R1

+
–

Fig. P 13.5 See Problem P 13.7

Z

vS RL
+
–Fig. P 13.6 See Problem

P 13.8

LvS C
R

+
–

Fig. P 13.7 See Problem P 13.12

i (t) CR1

R2

R1 = 22kΩ, R2 = 33kΩ, C = 470pF,
i(t) = I cos(w0t), I = 25mA, f0 = 10kHz

Fig. P 13.8 See Problem P 13.13

i (t) LR1

R2

R1 = 33kΩ, R2 = 22kΩ, L = 550mH,
i(t) = I cos(w0t), I = 25mA, f0 = 10kHz

Fig. P 13.9 See Problem P 13.14

ZL

ZS

VS
~

I
~

+
–

Fig. P 13.10 See Problem

P 13.15, 16

ZL

RS

VS
~

I
~

jX0
+
–

Fig. P 13.11 See Problem P 13.17

C R1
VS
~

+

+
–

V1
~

–

ZL

Fig. P 13.12 See Problem P 13.18

VS
~

RS

RLRLC circuit+
–

Fig. P 13.13 See Problem P 13.19
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circuit are replaced by a Thévenin equivalent at

the terminals of the load, what is the total real power

dissipated by the Thévenin source and the Thévenin

equivalent impedance (recall the passive sign conven-

tion)?

P 13.21 Refer to Fig. P 13.15. Find the power

dissipated by each resistor, the reactive power dis-

sipated by the capacitor, and the complex power deliv-

ered by the ideal op amp. What fraction of the real

power delivered by the op amp is dissipated in the

load RL?

P 13.22 Refer to Fig. P 13.16. Find the power

dissipated by each resistor, the reactive power dis-

sipated by each capacitor, the complex power deliv-

ered by the independent source, the complex power

delivered to the load, and the complex power deliv-

ered by the ideal op amp. What fraction of the real

power delivered by the op amp is dissipated in the

resistor RL?

P 13.23 Refer to Fig. P 13.16. Replace the op

amp by the linear model shown in Fig. P 13.17. Then

find the power dissipated by each resistor, the reactive

power dissipated by each capacitor, the complex

power delivered by the independent source, the com-

plex power delivered by the dependent source, and the

complex power delivered to the load. What fraction of

the real power delivered by the dependent source is

dissipated in the resistor RL? Verify that the total

complex power dissipated equals zero (within compu-

tational accuracy).

Section 13.6 is prerequisite for the following

problems.

P 13.24 Refer to Fig. P 13.18. The resonant fre-

quency of the circuit is 10 kHz. The real power deliv-

ered to the circuit at the resonant frequency is 15 W.

The quality factor of the coil at resonance is Q ¼ 25

and the effective resistance of the circuit at resonance

is 150 O. What is the rms current in the capacitor at

resonance? Hint: Employ a reasonable approximation

using the fact that Q � 1.

P 13.25 Refer to Fig. P 13.19, where the frequency

of the source is variable. (a) Find the resonant

linear
circuitVS

~ ZL
+
–

Fig. P 13.14 See Problem P 13.20

+

– RL

R2

CR1

VS
~

~
VS = (100∠0)mV at 10kHz, R1 = 10kΩ,

R2 = 500kΩ, C = 100pF, RL = 2kΩ

+
–

Fig. P 13.15 See Problem P 13.21

+

+
–

–

VS
~

RS C1

C2
RL

R1 R2

~
VS = 150mV, f = 1kHz, RS = 50 Ω, R1 = 50kΩ, C1 = 15nF

R2 = 1MΩ, C2 = 500nF, RL = 1kΩ

Fig. P 13.16 See Problem P 13.22, 23
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Fig. P 13.17 See Problem P 13.23

coilCi
Fig. P 13.18 See Problem

P 13.24

v(t) L

R

C+
–

R = 3 Ω, L = 26.2 μH, C = 4.7 nF
n (t) = V0cos (w0t), V0 = 50V,

Fig. P 13.19 See Problem P 13.25
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frequency fr of the circuit. (b) Express the complex

power delivered by the source as a function of the

frequency of the source (use symbols). (c) Calculate

the complex power delivered at the resonant frequency.

P 13.26 Fig. P 13.20 shows four circuits and a

qualitative graph of reactive power versus frequency.

Which of the four circuits could exhibit such behavior?

P 13.27 Fig. P 13.21 shows four qualitative graphs

of real power dissipated versus frequency and five

RLC circuits. Match each graph with one or more of

the circuits.

Section 13.7 is prerequisite for the following

problems.

P 13.28 A 5 hp electric motor draws 24 A from a 60

Hz 220 V source (both rms). Assume losses in the

motor are negligible. Find the power factor for the

motor and obtain a series RL model for the motor

windings.

P 13.29 Two loads having lagging power factors

pf1; pf2 are connected in parallel. When a voltage

having rms amplitude Vrms is applied to the parallel

connection, the average real powers dissipated by

the loads are P1; P2. (a) Express the current drawn

(not rms) by the parallel connection in terms of

the powers dissipated, the power factors, and the

applied voltage (phase reference). (b) Let Vrms ¼
100 V, P1 ¼ 1:6 kW, P2 ¼ 2:5 kW, pf1 ¼ 0:8, and

pf2 ¼ 1
� ffiffiffi

2
p

. Calculate the current. (c) What would

the current be if both power factors were leading?

P 13.30 The apparent power dissipated by a certain

load is 20 kVA with a lagging power factor of 0.7.

Find the real power, reactive power, and complex

power dissipated by the load.

P 13.31 Refer to Fig. P 13.22. Find the real, reac-

tive, complex, and apparent power dissipated by the

load and the impedance and power factor of the load

(all at the frequency f0) in each of the following cases.

(a) v tð Þ ¼ V0 cos o0 tð Þ; i tð Þ ¼ I0 cos o0 tð Þ;
V0 ¼ 10V; I0 ¼ 10 mA;

(b) v tð Þ ¼ V0 cos o0 tð Þ; i tð Þ ¼ I0 cos o0 t� p=6ð Þ;
V0 ¼ 10 V; I0 ¼ 10 mA;

(c) v tð Þ ¼ V0 cos o0 t� p=4ð Þ; i tð Þ ¼ I0 cos o0 tð Þ;
V0 ¼ 10 V; I0 ¼ 10 mA;

(d) v tð Þ¼V0 cos o0 t�p=4ð Þ; i tð Þ¼ I0 cos o0 tþp=4ð Þ;
V0¼10V;I0¼10mA;

(e) v tð Þ ¼ V0 cos o0 tð Þ; i tð Þ ¼ I0 cos o0 tþ p=2ð Þ;
V0 ¼ 10 V; I0 ¼ 10 mA:

P 13.32 Without making any calculations, state

whether the power factor of each load in Fig. P 13.23

increases or decreases as the frequency of an applied

voltage ~Vab is increased. Explain why.

P 13.33 In a certain industrial plant, three electric

motors are connected in parallel to a 480 V (rms)

source. Each motor is 95% efficient. The full-load

outputs (work done under full load) of the motors are

25, 30, and 50 hp. The power factors of the motors

(listed in the same order) are 0.7, 0.6, and 0.8, all

lagging. Find the power factor of the three-motor load.

P 13.34 If the overall power factor for a parallel

connection of several loads equals unity, does that

mean that the power factor of each load equals

unity? Justify your answer.

P 13.35 Two identical 25 hp, 480 V (rms), 60 Hz

electric motors are connected in parallel. The power

factor of the parallel connection is 0.8. What are the

power factors of the individual motors? If the motors

are 100% efficient, what is the current drawn by the

parallel connection?
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(c) (d)

Fig. P 13.20 See Problem P 13.26
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Section 13.8 is prerequisite for the following

problems.

P 13.36 A certain 230 V (rms), 60 Hz, Hz, 3 hp

(full-load output power) induction motor has a power

factor of 0.6 and an efficiency of 0.9.

(a) Find the complex power delivered to the motor

and the current drawn by the motor when the

motor is operating at full load.

(b) Assume the load presented by the motor to a

source can be modeled as a series RL circuit.

Find the values of R and L for the model.

(c) Find the capacitance required to increase the

power factor to 0.95.

R
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L L
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C
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R L C
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+

–
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~
+

–
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–

VS
~

+

–
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L

f

P
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P

f

P

(i)

(iii)

(ii)

(iv)

f

P

0 0

00

(a)

(c)

(e)

(d)

(b)

Fig. P 13.21 See Problem

P 13.27
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(d) Find the current drawn by the motor under full

load when the power factor is corrected to

0.95.

P 13.37 For purposes of steady-state power-factor

correction, an induction motor can be modeled as

either a series RL circuit or an equivalent parallel RL

circuit. (a) Obtain a series RL model for a 440 V (rms,

60 Hz) 30 hp induction motor having power factor

pf ¼ 0:75. (b) Find the capacitance required to obtain

unity power factor. (c) Obtain a parallel RL model for

the motor (excluding the capacitance) that is equiva-

lent to the series RL model at 60 Hz. (d) Show that

connecting the capacitance found in part (b) in parallel

with the parallel RL model yields a circuit that is

resonant at 60 Hz.

P 13.38 Given below are initial power factors pf1ð Þ,
load power requirements Pð Þ, line voltages Vrmsð Þ,
line-voltage frequencies fð Þ, and required power fac-

tors pf2ð Þ. In each case, determine the shunt capaci-

tance required to attain the required power factor and

the resulting percent saving in line losses.

(a) pf1 ¼ 0:6; P ¼ 500 kW; Vrms ¼ 10 kV;

f ¼ 60Hz; pf2 ¼ 1:0;

(b) pf1 ¼ 0:7; P ¼ 200 kW; Vrms ¼ 4 kV;

f ¼ 60Hz; pf2 ¼ 1:0;

(c) pf1 ¼ 0:5; P ¼ 600 kW; Vrms ¼ 10 kV;

f ¼ 60Hz; pf2 ¼ 0:9;
(d) pf1 ¼ 0:45; P ¼ 100 kW; Vrms ¼ 4 kV;

f ¼ 60Hz; pf2 ¼ 0:95;

(e) pf1 ¼ 0:5; P ¼ 5 kW; Vrms ¼ 440 V;

f ¼ 60 Hz; pf2 ¼ 0:9;

(f) pf1 ¼ 0:5; P ¼ 1 kW;Vrms ¼ 100V;

f ¼ 480Hz; pf2 ¼ 0:9;

(g) pf1 ¼ 0:6; P ¼ 100 W; Vrms ¼ 24 V;

f ¼ 480Hz; pf2 ¼ 1:0;
(h) pf1 ¼ 0:9; P ¼ 2 kW; Vrms ¼ 240 V;

f ¼ 60Hz; pf2 ¼ 1:0:

P 13.39 Two loads having identical power factors

but different power requirements are connected in

parallel. Obtain an expression for the power factor of

the parallel load.

P 13.40 Two loads are connected in parallel. One

draws 15 kW and has power factor 0.7. The other

draws 25 kW and has power factor 0.9. Find the

power factor of the parallel connection.

P 13.41 All else held constant, does increasing the

line voltage increase or decrease the capacitance

required for power-factor correction? Does increasing

the line voltage increase or decrease the actual (not

percent) line losses?

P 13.42 All else held constant, does increasing the

line frequency increase or decrease the capacitance

required for power-factor correction?

P 13.43 The power factor of a 50 kW load is

corrected to unity by a 4 mF shunt capacitor. The

capacitor has a tolerance of þ20%, �40%. The line

voltage is 10 kV (rms) and the frequency is 60 Hz.

What is the range of possible values for the actual

power factor?

P 13.44 Two loads are connected in parallel across a

4 kV (rms) 60 Hz line. One load requires 2 kW and has

power factor 0.6 lagging. The other requires 1.5 kW

and has power factor 0.7 lagging. What capacitance is

required to correct the overall power factor to 0.9?

P 13.45 Some manufacturing operations, such as

electroplating, have leading power factors. How

would you correct a leading power factor?

P 13.46 A small electroplating shop having a lead-

ing power factor of 0.7 is adjacent to a small machine

shop having a lagging power factor of 0.5. The elec-

troplating shop requires 8 kW and the machine shop

requires 10 kW. Both are fed by the same 60 Hz, 440 V

(rms) line. What capacitance is required to attain an

overall power factor of 0.95?

R
C

R

L R RC L

a

b

a

b

a

b

a

b

(a) (b) (c) (d)
Fig. P 13.23 See Problem

P 13.32
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i

load

+

–Fig. P 13.22 See Problem

P 13.31
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Section 13.10 is prerequisite for the

following problems.

P 13.47 At the output terminals of a certain circuit,

the open-circuit voltage equals 100 V(rms) and the

output impedance is Zout ¼ 4� j6 O. Find the maxi-

mum power the circuit could deliver to a load and the

current through the load in that case.

P 13.48 In Fig. P 13.24, the source is sinusoidal,

having frequency f ¼ 1:6 kHz and rms amplitude

Vrms ¼ 1 V. (a) What load impedance connected to

the terminals a–b would dissipate maximum power?

What is the power dissipated? (b) What real (resistive)

load connected to the terminals a–b would dissipate

more power than any other real load? What is the

power dissipated in that case?

P 13.49 Measurements made at 10 kHz on a certain

transformer reveal that the primary and secondary

resistances and inductances are R1 ¼ 100 O,
L1 ¼ 5 H, R2 ¼ 2 O, and L2 ¼ 100 mH. The shunt

capacitances are negligible and the coupling coeffi-

cient is approximately unity. (a) Find the impedance

at the primary terminals at 10 kHz when a 100 O load

is connected to the secondary terminals. (b) Find the

turns ratio three different ways. (c) Find the power

transfer efficiency of the transformer at 10 kHz when

driving a 100 O load. (d) Obtain the Thévenin equiv-

alent for the transformer and source at the secondary

terminals.

P 13.50 Refer to Fig. P 13.25, where vSis a 4

V, 1.6 kHz sinusoidal source, RS ¼ 900 O,
L ¼ 75 mH, and C1 ¼ 50 nF. Find the values of

C2 and RL such that maximum power is dissipated

in the load.

P 13.51 The rms voltage available from a certain

60 Hz source is 480 V. The output impedance of the

source is Zout ¼ 2:1þ j3:6 O. The complex power

dissipated by a certain load driven by the source is

SL ¼ 13:44þ j6:72ð Þ kVA. Find the load impedance.

Why are there two solutions?

Section 13.11 is prerequisite for the

following problems.

P 13.52 Refer to Fig. P 13.26, where the trans-

former is ideal, having turns ratio n ¼ 4. It is found

that the complex power delivered to the load ZL is

SL ¼ 5� j2ð Þ kVA when the real power delivered to

the load is maximum. (a) Find the complex power

dissipated by the source impedance ZS. (b) Find the

complex power delivered by the source ~VS. (c) If

the secondary current is ~I2 ¼ 51:89ff0ð Þ A, what is

the source voltage ~VS?

P 13.53 A 1 kHz source having output impedance

ZS ¼ 2þ jð Þ O and available voltage ~VS ¼ 50 V is to

drive a load having impedance ZL ¼ 200� j100ð Þ O¼
100Z�

S . Matching for maximum power transfer requires

a turns ratio n¼ 10. A transformer having approxi-

mately the desired turns ratio nffi ffiffiffiffiffiffiffiffiffiffiffiffi
L2=L1

p ¼ 10 is

used to achieve an approximate match, as shown in

Fig. P 13.27. The transformer is nearly lossless and has

a coupling coefficient near unity. (a) Find the power

delivered to the load. (b) What is the ratio of the power

actually delivered to the load to the theoretical maxi-

mum?

R = 900 Ω, L = 75mH, C = 50nF

LR

CvS

a

b

+
–

Fig. P 13.24 See Problem P 13.48

n = N2 /N1

ZS

ZLVS
~

I2
~

+
–

Fig. P 13.26 See Problem P 13.52

RL

RS

vS C1

L C2

source load

+
–

Fig. P 13.25 See Problem P 13.50
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P 13.54 A certain 20 kHz source having output

impedance Rs ¼ 20 O is to drive a load having input

impedance Rl ¼ 50 O, using a transformer to match

the source to the load (for maximum power transfer).

Which of the two transformers described in the table

below is best suited for that application? (R1; L1 and

R2; L2 denote the primary and secondary resistance

and inductance at 20 kHz and k denotes the coupling

coefficient.)

P 13.55A certain transformer is modeled as shown in

Fig. P 13.28. The primary is driven by a source having

frequency f , available voltage ~VS, and output impedance

ZS. Show that the load impedance ZL that draws the

available power from the secondary is given by

ZL ¼ R2 � joL2 þ oMð Þ2
R1 � joL1 þ Z�

S

Hint: Find the Thévenin equivalent at the terminals

of the secondary. Then ZL ¼ ZT
�.

P 13.56 In Fig. P 13.29, the transformer is

ideal, having turns ratio n ¼ N2=N1. The source

voltage is ~VS ¼ 1ff 0Vrms, the source impedance is

ZS ¼ 1þ jð Þ O and the load impedance is ZL ¼
100� j200ð Þ O.

(a) Find the turns ratio for which the power delivered

to the load is maximum. What fraction of the

available power is delivered to the load for that

turns ratio? Plot the power delivered to the load

versus the turns ratio.

(b) Add positive reactance to the source impedance

such that a turns ratio of 10 maximizes the power

delivered to the load. Plot the power delivered to

the load versus the turns ratio.

(c) Restore the original source impedance and add

negative reactance to the load impedance such

that a turns ratio of 10 maximizes the power deliv-

ered to the load. Plot the power delivered to the

load versus the turns ratio.

P 13.57 Fig. P 13.30 shows two possible L-sections

for matching a source to a load for maximum power

transfer and below those, an illustration of a matching

problem. For each case given in (a)–(h), state which

of the two matching sections you would use, and why.

Then determine the parameters of the selected match-

ing network.

(a) ZS ¼ 120þ j6ð Þ O; ZL ¼ 50þ j25ð Þ O
(b) ZS ¼ 20þ j50ð Þ O; ZL ¼ 10� j15ð Þ O
(c) ZS ¼ 10� j50ð Þ O; ZL ¼ 20� j15ð Þ O
(d) ZS ¼ 100þ j30ð Þ O; ZL ¼ 75þ j15ð Þ O

L1 = 5mH, L2 = 500mH, k ≅ 1

L1 L2
ZL

ZS

M

VS
~ +

–

Fig. P 13.27 See Problem P 13.53

L1 L2

M

R1 R2

Fig. P 13.28 See Problem P 13.55

n

ZL

ZS

VS
~ +

–

Fig. P 13.29 See Problem P 13.56

R1 Oð Þ L1 mHð Þ R2 Oð Þ L2 mHð Þ k

Transformer 1 1.5 1.78 4.2 3.10 0.99

Transformer 2 1.0 2.60 2.5 2.80 0.98

C C LL

1 2

ZS

ZLVS
~ matching

section
+
–

Fig. P 13.30 See Problem P 13.57
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(e) ZS ¼ 120þ j50ð Þ O; ZL ¼ 200þ j150ð Þ O
(f) ZS ¼ 10� j30ð Þ O; ZL ¼ 5þ j15ð Þ O
(g) ZS ¼ 1:2þ j5:5ð Þ O; ZL ¼ 2:0þ j15:0ð Þ O
(h) ZS ¼ 5:2þ j3:5ð Þ O; ZL ¼ 2:5þ j7:5ð Þ O

P 13.58 In Fig. P 13.31, the LC network is to match

the load to the source such that maximum power is

delivered to the load. The source is sinusoidal, having

frequency f ¼ 2pð Þ�1
MHz. Find the appropriate

values for L and C.

vS

RS

L

C RL

RS = 10kΩ, RL = 15kΩ

+
–

Fig. P 13.31 See Problem P 13.58
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Chapter 14

Three-Phase Circuits

Three-phase circuits are important in the power

industry, where electric power is distributed using

three-phase voltage and current (especially over long

distances) and also in almost any industrial facility

using many large electric motors. The main reasons

are:

(1) It is less costly to distribute three-phase power

than single-phase power.

(2) Three-phase motors are generally more efficient

than single-phase motors.

(3) Three-phase motors deliver constant power

whereas instantaneous power delivered by a sin-

gle-phase motor has an alternating component.

(4) It is easier to reverse (quickly) the direction of a

three-phase motor.

On first encounter, many students find three-phase

circuits confusing, primarily because they seem some-

how different from ordinary circuits. That is not the

case. A three-phase circuit is simply another circuit,

and like other circuits succumbs to analysis using

Kirchhoff’s laws. This does not mean that analysis of

three-phase circuits is easy, nor does it mean that there

is no new terminology to be learned. But there is

nothing magic about three-phase circuits. Stick with

Kirchhoff’s current law and Kirchhoff’s voltage law,

pay attention to notation and terminology, and all will

work out well.

It is conventional in the electric-power

industry to express voltages and currents as

rms quantities. We follow that convention in

this chapter. In this chapter, all phasor vol-

tages and phasor currents are expressed as

rms quantities. For example, if ~V denotes

a phasor voltage, then ~V
�� �� is the rms ampli-

tude of the voltage. It also is conventional in

the electric-power industry to express phase

in degrees, so we follow that convention

also.

14.1 Three-Phase Sources

Figure 14.1 Shows a simplified diagram of a three-

phase generator and a graph of the terminal voltages.

The generator windings are 120� apart but are other-

wise identical.

As the magnetized rotor turns clockwise, the north

pole passes the positive terminals of the three wind-

ings in the order a, b, c, called the abc sequence. If the

rotor direction is reversed (or if the wires are attached

differently), the voltages are generated in the sequence

a, c, b, called the acb sequence. The acb sequence also

is called the negative sequence. The acb sequence is

significant because if a three-phase motor using an abc

sequence is rewired (or switched) to the acb sequence,

the direction of rotation is reversed. (This is what

makes it easy to reverse the rotation of a three-phase

motor.)

In the abc sequence, because the windings are

120� apart, voltage vbn lags voltage van by 120� and

voltage vcn lags voltage van by 240�. In the acb

sequence, voltage vcn lags voltage van by 120� and

voltage vbn lags voltage van by 240�. The voltages

and corresponding phasor representations for the abc

sequence are given by

T.H. Glisson, Introduction to Circuit Analysis and Design,
DOI 10.1007/978-90-481-9443-8_14, # Springer ScienceþBusiness Media B.V. 2011
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vanðtÞ ¼ Vp cos 2 p f tð Þ; ~Van ¼ Vpff 0;
vbnðtÞ ¼ Vp cos 2 p f t� 120�ð Þ; ~Vbn ¼ Vpff � 120�;

vcnðtÞ ¼ Vp cos 2 p f t� 240�ð Þ; ~Vcn ¼ Vpff � 240�:

(14.1)

The voltages and corresponding phasor representa-

tions for the acb sequence are given by

vanðtÞ ¼ Vp cos 2 p f tð Þ; ~Van ¼ Vpff 0;
vcnðtÞ ¼ Vp cos 2 p f t� 120�ð Þ; ~Vcn ¼ Vpff � 120�

vbnðtÞ ¼ Vp cos 2 p f t� 240�ð Þ; ~Vbn ¼ Vpff � 240�:

(14.2)

The voltages van; vbn; vcn are called phase vol-

tages. Figure 14.2 shows phasor diagrams for the

phase voltages. The common line labeled n is called

the neutral line or simply the neutral. The phase vol-

tages all have the same magnitude but are 120� apart.
A generator or other device producing such voltages

is called a balanced source. There are few, if any,

af +

bf +

cf +

af -

cf -

bf -
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b
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60°
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Fig. 14.1 Three-Phase

generator and terminal

voltages for constant rotor
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abc sequence
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acb sequence

Fig. 14.2 Phasor representations of the phase voltages shown

in Fig. 14.1
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applications for unbalanced three-phase sources. We

consider only balanced sources.
The rotor angular speed is

s rpm ¼ 2 p s
60

rad s�1: (14.3)

The north pole of the rotor passes through the 12:00

position s=60 times in 1 s. The frequency of the gen-

erated voltage (each phase) is

f ¼ s

60
; (14.4)

so rotor speed s ¼ 3600 rpm generates a 60-Hz volt-

age.

For a balanced source, the sum of the phase vol-

tages equals zero:

van þ vbn þ vcn ¼ 0 ) ~Van þ ~Vbn þ ~Vcn ¼ 0: (14.5)

This is evident from the phasor diagrams and can be

shown as follows: From (14.1),

~Van ¼ Vpff0 ¼ Vp 1þ j 0ð Þ;
~Vbn ¼ Vpff � 120� ¼ Vp � 1

2
� j

ffiffiffi
3

p

2

� �
;

~Vcn ¼ Vpff � 240� ¼ Vpff120� ¼ Vp � 1

2
þ j

ffiffiffi
3

p

2

� �
:

(14.6)

The sum is

~Van þ ~Vbn þ ~Vcn ¼ Vp

"
1þ j0ð Þ

þ �1

2
� j

ffiffiffi
3

p

2

� �
þ �1

2
þ j

ffiffiffi
3

p

2

� �#
¼ 0:

(14.7)

A three-phase generator (or other three-phase

source) usually is represented using three independent

voltage sources connected in either a Y or D configu-

ration, as shown in Fig. 14.3. For the D-connected
source, Kirchhoff’s voltage law requires

~Vab þ ~Vbc þ ~Vca ¼ 0;

which holds if the voltages are given by (14.1) or

(14.2).

In practice, Y-connected sources are more common

than D-connected sources because they are less sus-

ceptible to problems arising from imbalance in the

phase currents. Such imbalance can arise from driving

an unbalanced load, where each source sees a different

impedance. Imbalance in a Y-connected source results

in a (usually small) current in the neutral (ground)

conductor, whereas in a D-connected source, there is

no neutral, and load imbalance can cause a loop cur-

rent in the delta (circulating through the three sources).

14.2 Power Transmission
and Distribution

Figure 14.4 shows a (greatly) simplified diagram of

how three-phase power is generated, transmitted, and

distributed.

Three-phase power is generated, then stepped up by

a three-phase transformer to high voltage (25 kVrms

or higher) for transmission. Transmitting power at

high voltage and low current reduces power losses

(so-called i-squared-r losses) in the resistance of the

lines. At the destination (a substation), the voltages are

stepped down to useable levels and distributed to

users. Three-phase power often is supplied to indus-

trial users at 480 Vrms or more. Power is supplied to

residential users at 240 Vrms, double-ended, single-

phase using a center-tapped transformer, as shown in

Fig. 14.5. Electric utility companies attempt to keep

loads balanced by distributing loads equally among

the three phases of a transformer secondary. A reason-

able balance can be achieved if there are a large

number of users on each phase. A main power line

from a power plant to an urban substation serves a

large number of users, and the effective load on the

a a

bbc c

n

Van

VbnVcn
~

~

~

~ ~

~

Vab

Vbc

Vca

(b) Δ– connected source(a) Y– connected source

+
–

+ +
–

–

+
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+

+

–
–

Fig. 14.3 Three-phase source models

14.2 Power Transmission and Distribution 523



power plant is very nearly balanced. Balance is more

difficult to maintain as the distribution lines spread out

and serve fewer and fewer users.

14.3 Residential Wiring

Figure 14.6 shows how power is supplied to a resi-

dence from one leg of a center-tapped, three-phase,

step-down transformer. The voltage from either end of

the secondary winding to the center tap is 120 Vrms.

These voltages are supplied to wall outlets, wall- and

ceiling mounted lights, and other 120-Vrms loads.

Electricians attempt to distribute the 120-Vrms

loads equally between the two branches. The end-to-

end voltage is 240 Vrms, which is supplied to loads

requiring 240 Vrms, such as air conditioners, electric

ranges, and 240-Vrms electric water heaters. Not

shown are circuit breakers and other protective

devices required by the national electrical code.

In the United States, electric services to most resi-

dences are 200–400 Arms, meaning that available

full-load power (at 240 Vrms) is 48–96 kW. A load

exceeding the maximum trips the main (200 or

400 Arms) circuit breaker in the distribution panel.

Average residential consumption in the U.S. is approx-

imately 1000 kWh/month.

Exercise 14.1. In Fig. 14.6, assume the 120

Vrms loads are all equal. Show that the current

i tð Þ equals zero.

14.4 Three-Phase Loads

As noted above, most large industrial plants use three-

phase motors which can be connected in either a Y orD
configuration, presenting a three-phase load to a three-

phase source. Plants also have single-phase loads, such

as lighting, which can be fed using one or more of the

three phases individually, or from an on-site center-

tapped three-phase transformer, as in a residence or

office. But as a whole, a large industrial plant presents

a three-phase load to a three-phase source.

three-phase
generator

three-phase
step-up

transformer

three-phase
step-down
transformer

long lines

three-phase,
center-tapped

step-down
transformer

residential
users

residential
users

residential
users

industrial
users

n

a

b

c

a

b

c

n

a

b

c

n

a

b

c

n

a b c n

a

b

c′

nc nb

naa′

c

b′

Fig. 14.4 Simplified power generation, transmission, and distribution diagram

n

c

nc

n = c′

b

nb

n = b′

a

na

n = a′

Fig. 14.5 Secondary of center-tapped three-phase transformer

(Y-connected)
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Figure 14.7 shows a Y-connected three-phase load.

A balanced three-phase Y load is one for which

Z1 ¼ Z2 ¼ Z3 ¼ Z. From (14.7), the neutral current

in a balanced Y load is given by

~In ¼ � ~I1 þ ~I2 þ ~I3
� �

¼ �
~Van þ ~Vbn þ ~Vcn

Z

� �
¼ 0: (14.8)

Consequently, only three wires are needed to pro-

vide 3-phase power to a balanced load. In practice, a

fourth wire is used inside industrial plants, but it is

smaller than the other three. Generally, power trans-

mitted over long distances is distributed at the destina-

tion to a great many loads. Although no one load is

balanced at all times, the large number of loads served

by a long-distance line can be very nearly balanced, on

average. Thus in long-distance, high-power trans-

mission, only three wires are used. The earth is used

as the neutral. The neutral current associated with

long-distance transmission is quite small, and little

would be gained by using a fourth wire.

In this chapter, we consider only balanced sources

and balanced loads. In practical terms, this means we

are considering effective loads on feeder lines to rela-

tively large numbers of users or to very large

manufacturing plants. It would be unusual for a small

plant or a small subdivision to present a balanced load

to the feeder line. If you take a subsequent course in

power systems, you will learn about effects associated

with unbalanced loads.

A three-phase circuit comprising a balanced source

and a balanced load is called a balanced three-phase

circuit, or in this chapter, a balanced circuit.

Figure 14.8 shows balanced Y and D loads. The

currents ~Ia; ~Ib; ~Ic entering the load terminals are

called line currents. The voltages ~Vab; ~Vbc; ~Vca

appearing across the load terminals are called line

voltages. Currents in the branches of the load (e.g.,
~I1 in the D load shown in Fig. 14.8) are called branch
currents. Voltages across the branches of the load are

called branch voltages.1

Phase voltages and currents are associated with a

source, branch voltages and currents are associated

with a load, and line voltages and currents are asso-

ciated with the lines (conductors) connecting a source

to a load. If the resistance of a transmission line is

c

nc

n = c′

+

+

–

120 Vrms

120 Vrms

–

120 Vrms
loads

240 Vrms
loads

transformer (at
street or on utility
pole)

residence

i

Fig. 14.6 Distribution of electric power to a

residence

a

b

n

c

Z2
Z

Z3

I1
I2

In

3I
~

~

~

~

Z1

Fig. 14.7 Y-connected three-phase load

1In some books, load branch voltages are called phase voltages

and load branch currents are called phase currents. To avoid

confusion, we use the terms phase voltages and phase currents

only in connection with three-phase sources.
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significant, the line voltages at the source end and at

the load end are different because of voltage drop

along the line.

Refer again to Fig. 14.8. In a Y load, the branch

currents equal the line currents, but the branch vol-

tages are different from the line voltages. In a Y load,

the branch voltages are ~Van, ~Vbn, and ~Vcn and the line

voltages are ~Vac, ~Vab, and ~Vbc. In a Y source, the phase

currents equal the line currents but the phase voltages

are different from the line voltages. In a balanced Y

load (or source), there is no need for a neutral because

the neutral current equals zero.

In a D load, the branch voltages equal the line

voltages, but the branch currents are different from

the line currents. In a D source, the phase voltages

equal the line voltages but the phase currents are

different from the line currents. There is no neutral in

a D load (or source).

Example 14.1. Refer to Fig. 14.9. The source

and load are balanced. (a) Express each line

voltage in terms of source phase voltages. Let

Vp denote the magnitude of the source phase

voltage and use ~VAN as the phase reference;

i.e., ~VAN ¼ Vpff0�. Draw a phasor diagram for

the line voltages.

(b) Express the load branch voltages in terms

of the source phase voltages and draw a phasor

diagram for the branch voltages. Use the nota-

tion described in part (a).

Solution:

(a) The source and load are balanced, so the

neutral current equals zero and there is no

need for a neutral–neutral (N-n) connection.

The line voltages are

~Vca ¼ ~VCN � ~VAN ¼ Vpff120� � Vpff0
¼

ffiffiffi
3

p
Vp ff150�:

(14.9)

Similarly,

~Vab¼ ~VAN� ~VBN ¼Vpff0�Vpff�120�

¼
ffiffiffi
3

p
Vpff30�;

~Vbc¼ ~VBN� ~VCN¼Vpff�120�

�Vpff120� ¼
ffiffiffi
3

p
Vpff�90�:

(14.10)

Figure 14.10 shows the phasor diagram for

the line voltages.

(b) Because the load and source are balanced,

and because like terminals are connected,

the source and load neutrals are at the same

potential. Thus the branch voltages are

Ia
~

Ic
~

Vab
~

a

b

c

Vbc
~

Vca
~

n

Z

Z

a

b

c

Vab
~

Vbc
~

Ia
~

Ib
~

Ic
~

Vca
~

I1
~

Z

Z Z

Z

Ib
~

Y– connected load Δ – connected load
Fig. 14.8 Balanced Y- and D-connected
loads

a

bc

A

BC
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n

VAN
~

VBN
~

VCN
~

Ia
~

Ib
~

Ic
~

Z

Z

Z+
–

+
–

+
–

Fig. 14.9 Circuit of Example 14.1

526 14 Three-Phase Circuits



~Van ¼ ~VAN ¼ Vp ff0;
~Vbn ¼ ~VBN ¼ Vp ff � 120�;
~Vcn ¼ ~VCN ¼ Vp ff120�:

(14.11)

Figure 14.11 shows the phasor diagram for

the branch voltages.

Exercise 14.2. If, in Fig. 14.9, a conductor is

connected from the source neutral N to the load

neutral n, will there be a non-zero current in

the conductor?

From Example 14.1, the magnitudes of the line and

branch currents and voltages in a balanced Y load

driven by a balanced source are related as

~Iline
�� �� ¼ ~Ibranch

�� ��; ~Vline

�� �� ¼ ffiffiffi
3

p
~Vbranch

�� ��: (14.12)

A typical three-phase circuit problem is that of

finding branch currents, branch voltages, and branch

impedances for a load, given one line voltage and one

line current. In solving such problems, we make use of

the facts that, in a balanced circuit,

(1) The three line voltages have the same magnitude

and are 120� apart.
(2) The three line currents have the same magnitude

and are 120� apart.

For example, if we take the line voltage ~Vab as the

phase reference in an abc phase sequence, then
~Vab ¼ V0ff0; ~Vbc ¼ V0ff � 120�; ~Vca ¼ V0ff120�,
where the value of the rms amplitude V0 is determined

by the source. These facts in hand, finding branch

currents and voltages is a matter of applyingKirchhoff’s

laws.

Example 14.2. Refer to Fig. 14.12. The line

voltage and line current at one terminal pair of

a balanced D connected three-phase load are

given by

vabðtÞ¼
ffiffiffi
2

p
V0 cos otð Þ; V0¼ 440V;

iaðtÞ¼
ffiffiffi
2

p
I0 cos ot�20�ð Þ; I0¼ 10A:

(14.13)

Assume the phase sequence is abc. Find (a)

the branch impedance and (b) the branch cur-

rents.

Solution: We are given ~Vab ¼ V0ff0, meaning

that ~Vab is the phase reference for voltages

and currents in the circuit. It follows that
~Vbc ¼ V0ff � 120� and ~Vca ¼ V0ff120�. We also

~

Vbc

Vab
~
Vca

~

3Vp3Vp

30°30°

3Vp

Fig. 14.10 Phasor diagram for the line voltages in Example

14.1

Van
~

Vbn
~

Vcn
~

Vp

Vp

Vp

60°

60°

Fig. 14.11 Phasor diagram for the branch voltages in Example

14.1

Vca
~

Vab
~

Ib
~

Ia
~

Ic
~ I3

~

I2
~

I1
~

Vbc
~

a

b

c

Z Z

Z

Fig. 14.12 Circuit considered in Example 14.2
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are given ~Ia ¼ I0ff � 20�. It follows that
~Ib ¼ I0ff � 140� and ~Ic ¼ I0ff100�.
(a) By Kirchhoff’s current law,

� ~Ia þ
~Vab

Z
þ

~Vac

Z
¼

� ~Ia þ
~Vab

Z
�

~Vca

Z
¼ 0; (14.14)

which yields

Z ¼
~Vab � ~Vca

~Ia
¼ V0ff0� V0ff120�

~I0ff � 20�

¼ 75:1� j 13:2 ¼ 76:2ff � 10� O: (14.15)

(b) The branch currents are (see Fig. 14.12)

~I1 ¼
~Vab

Z
¼ 5:77ff10� A;

~I2 ¼
~Vbc

Z
¼ 5:77ff � 110�A;

~I3 ¼
~Vca

Z
¼ 5:77ff130�A: (14.16)

Exercise 14.3. In Example 14.2, what is
~Ia þ ~Ib þ ~Ic? What is ~Vab þ ~Vbc þ ~Vca?

14.5 Balanced Y–D and D–Y Load
Transformations

The relations for transforming a balanced Y to an

equivalent balanced D are obtained by requiring that

impedances seen at corresponding terminal pairs are

equal. Thus, with reference to Fig. 14.13, we require

Zab ¼ ZAB ) 2ZY ¼ ZD 2ZDð Þ
ZD þ 2ZD

¼ 2

3
ZD

which yields

ZD ¼ 3 ZY: (14.17)

To transform a balanced Y to an equivalent bal-

anced D, multiply each impedance by three. To trans-

form from a balanced D to an equivalent balanced Y,

divide each impedance by three. Balanced loads satis-

fying (14.17) are equivalent at their terminals (cannot

be distinguished by any external measurement).

Equivalent balanced loads appear the same to a bal-
anced source; in particular, they draw the same cur-

rent and dissipate the same power. Externally

equivalent Y and D loads are not internally equivalent;
e.g., a branch current in a Y load is not equal to the

corresponding (or any other) branch current in the

equivalent D load.

Example 14.3. Transform the Y load in Exam-

ple 14.1 to an equivalent D load. Then:

(a) Express the branch voltages in the equiva-

lent D load in terms of the source phase

voltages. Use the assumptions and notation

described in Example 14.1.

(b) Show that the branch currents (phasors) are

120� apart.
(c) Show that the magnitude of each branch

current equals the magnitude of the line

current, divided by
ffiffiffi
3

p
. (The line currents

in a balanced-source – balanced load con-

figuration all have the same magnitude,

as do the branch currents.)

Solution: Figure 14.14 shows the equivalent

D load, obtained using (14.17).

(a) The branch voltages equal the line voltages.

From Example 14.1, we have

ZY ZY

ZY

a

b

A

B

ZΔ

ZΔZΔ

Fig. 14.13 Y and D circuits
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~Vca ¼ ~VCA ¼ ~VCN� ~VAN ¼ Vpff120�
�Vpff0¼

ffiffiffi
3

p
Vpff150�,

~Vab ¼ ~VAN� ~VBN ¼ Vpff0
�Vpff�120� ¼

ffiffiffi
3

p
Vpff30�,

~Vbc ¼ ~VBN� ~VCN ¼ Vpff�120�

�Vpff120� ¼
ffiffiffi
3

p
Vpff�90�: ð14:18Þ

(b) Each branch current equals the corres-

ponding branch voltage divided by the

branch impedance:

~Iab ¼
~Vab

3Z
¼

ffiffiffi
3

p
Vpff30�

3 Zj jffy

¼
ffiffiffi
3

p
Vp

3 Zj j ff 30��yð Þ;

~Ibc ¼
~Vbc

3Z
¼

ffiffiffi
3

p
Vpff�90�

3 Zj jffy

¼
ffiffiffi
3

p
Vp

3 Zj j ff �90��yð Þ;

~Ica¼
~Vca

3Z
¼

ffiffiffi
3

p
Vpff150�
3 Zj jffy

¼
ffiffiffi
3

p
Vp

3 Zj j ff 150��yð Þ: ð14:19Þ

The branch currents are 120� apart.
(c) By Kirchhoff’s current law,

~Ia¼ ~Iab�~Ica¼
ffiffiffi
3

p
Vp

3 Zj j ff 30��yð Þ

�
ffiffiffi
3

p
Vp

3 Zj j ff 150��yð Þ

¼
ffiffiffi
3

p
Vp

3 Zj j ff�y
� �

1ff30��1ff150�ð Þ

¼
ffiffiffi
3

p
Vp

3 Zj j ff�y
� �" ffiffiffi

3
p

2
þ j

1

2

� �

� �
ffiffiffi
3

p

2
þ j

1

2

� �#
ffiffiffi
3

p
Vp

3 Zj j ff�y
� � ffiffiffi

3
p

¼ Vp

Zj jff�y: ð14:20Þ

The ratio of the magnitude of the line current

to that of the branch current ~Ia is

~Ia
�� ��
~Iab
�� �� ¼ ðVp=ZÞff � y

�� ��
ð ffiffiffi

3
p

VpÞ=ð3ZÞff 30� � yð Þ�� ��
¼ Vp=Z

�� ��
ð ffiffiffi

3
p

VpÞ=ð3ZÞ
�� �� ¼ ffiffiffi

3
p

: ð14:21Þ

It follows that

~Iab
�� �� ¼ ~Ia

�� ��ffiffiffi
3

p : ð14:22Þ

By symmetry, the same ratio holds for the

other line and branch currents.

From Example 14.3, we have that for a balanced

D load driven by a balanced source, the magnitudes

of the line and branch currents and voltages are

related as

~Iline
�� �� ¼ ffiffiffi

3
p

~Ibranch
�� ��; ~Vline

�� �� ¼ ~Vbranch

�� ��; (14.23)

whereas for a balanced Y load driven by a balanced

source (see Example 14.1),

~Iline
�� �� ¼ ~Ibranch

�� ��; ~Vline

�� �� ¼ ffiffiffi
3

p
~Vbranch

�� ��: (14.24)

These relations are useful in power calculations.
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~
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Fig. 14.14 Load considered in Example 14.3
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14.6 Power Calculations for Balanced
Three-Phase Loads

By symmetry, the total power delivered by a balanced

source and dissipated in a balanced load is equally

divided among the three phases of the source or the

three branches of the load. The total complex power

delivered to a balanced load by a balanced source is

three times the complex power delivered by any one

phase of the source. The total complex power dissipated

in any one branch of a balanced load driven by a

balanced source is three times the complex power

dissipated in any one branch. The magnitudes of the
currents (voltages) are the same for each phase of the

source or each branch of the load. The phase angles of

the currents or voltages are in general different. For a

balanced load driven by a balanced source, the branch

currents are 120� apart, as are the branch voltages.

We can obtain a number of expressions for com-

plex power dissipated by using (14.23) and (14.24) in

the definition of complex power:

SY ¼ SD ¼ 3 ~Vbranch
~Ibranch

�: (14.25)

Equation (14.25) can be written

SY ¼ SD ¼ 3 ~Ibranch
�� ��2 Z ¼ 3

~Vbranch

�� ��2
Z� ; (14.26)

where Z is the branch impedance of the load. Using

(14.23) in (14.26) yields, for a D load

SD ¼ ~Iline
�� ��2 ZD ¼ 3

~Vline

�� ��2
ZD

� ; (14.27)

where ZD is the branch impedance of the load. Using

(14.24) in (14.26) yields, for a Y load,

SY ¼ 3 ~Iline
�� ��2 ZY ¼

~Vline

�� ��2
ZY

� ; (14.28)

where ZY is the branch impedance. Comparing

(14.27) with (14.28) shows that a balanced D load

and a balanced Y load dissipate the same complex

power if

ZD ¼ 3 ZY : (14.29)

in agreement with (14.17).

From (14.25), the apparent power delivered to a

balanced three-phase load is given by

SYj j ¼ SDj j ¼ 3 ~Vbranch

�� �� ~Ibranch
�� ��: (14.30)

Using (14.23) in (14.30) gives, for a D load,

SDj j ¼
ffiffiffi
3

p
~Vline

�� �� ~Iline
�� ��: (14.31)

Using (14.24) in (14.30) gives, for a Y load,

SYj j ¼
ffiffiffi
3

p
~Vline

�� �� ~Iline
�� ��: (14.32)

Thus, the apparent power delivered to either a

balanced D load or a balanced Y load is given by

Sj j ¼
ffiffiffi
3

p
~Vline

�� �� ~Iline
�� ��: (14.33)

From (14.27),

SD ¼ ~Iline
�� ��2 ZD ¼ ~Iline

�� ��2 RD þ j XDð Þ
¼ PD þ jQD: (14.34)

It follows that the real power dissipated in a bal-

anced D load is given by

PD ¼ ~Iline
�� ��2 RD ¼ SDj j cos yDð Þ (14.35)

where yD is the angle of the branch impedance. From

(14.28)

SY ¼ 3 ~Iline
�� ��2 ZY ¼ 3 ~Iline

�� ��2 RY þ j XYð Þ
¼ PY þ j QY : (14.36)

It follows that the real power dissipated in a bal-

anced Y load is given by

PY ¼ 3 ~Iline
�� ��2 RY ¼ SYj j cos yYð Þ; (14.37)

where yY is the angle of the branch impedance.

Equations (14.35) and (14.37) show that the real
power dissipated in either a D load or a Y load is

given by

P ¼ Sj j cos yð Þ; (14.38)

where S is the complex power delivered to the load

and y is the angle of the branch impedance.
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Example 14.4. (Continuation of Example 14.2).

The line voltage and line current at one ter-

minal pair of a balanced D connected three-

phase load are given by

vabðtÞ¼
ffiffiffi
2

p
V0cos otð Þ; V0¼440V;

iaðtÞ¼
ffiffiffi
2

p
I0cos ot�20�ð Þ; I0¼10A: (14.39)

Assume the phase sequence is abc. Find

(a) the complex power delivered to each branch,

(b) the real power delivered to each branch, and

(c) the apparent power delivered to the load.

Solution: (See Fig. 14.15.)

(a) From Example 14.2, the branch currents are

~I1 ¼
~Vab

Z
¼ 5:77ff10� A;

~I2 ¼
~Vbc

Z
¼ 5:77ff � 110� A;

~I3 ¼
~Vca

Z
¼ 5:77ff130� A: (14.40)

The branch voltages are the line voltages.

The load is balanced, so the complex powers

delivered to the branches are equal:

S1 ¼ S2 ¼ S3 ¼ ~Vab
~I�1

¼ 2500� j 441VA:
(14.41)

(b) The real power dissipated in each branch is

P1 ¼ P2 ¼ P3 ¼ 2:50 kW: (14.42)

(c) The complex power delivered to the load is

S ¼ 3 S1 ¼ 7500� j 1323VA; (14.43)

so the apparent power delivered to the load is

Sj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7; 500ð Þ2þ 1; 323ð Þ2

q
¼ 7:62 kVA: (14.44)

An alternative is to calculate the apparent

power using (14.33):

Sj j ¼
ffiffiffi
3

p
~Vab

�� �� ~Ia�� �� ¼ ffiffiffi
3

p
V0 I0

¼
ffiffiffi
3

p
V0 I0 ¼

ffiffiffi
3

p
440ð Þ 10ð Þ

¼ 7:62 kVA; (14.45)

as before.

14.7 Power-Factor Correction
for Three-Phase Loads

Only certain standard line voltages are available to

consumers of electric power; e.g., the line voltages

available to residences and most offices (in the United

States) are 120 Vrms and 240 Vrms,2 and line voltages

available to industrial users are those plus other stan-

dard values, ranging upward from 480 Vrms to about 4

kVrms or more, depending upon the size and needs of

the plant. No matter what the line voltage, an industrial

consumer, in particular, requires a certain real power,

which may vary somewhat with time of day, day of

week, and season. The supplier (the electric utility)

must be able to supply that real power at the user’s line

voltage.

Real power, not apparent power, corresponds to

work being done. But at a fixed line voltage, apparent

power determines the current required to do that work

and line losses are proportional to the square of line

current. If the reactive component of apparent power

Ia
~

Ib
~

Ic
~

Vab
~

Vbc
~

Vca
~

a

b

c

Z Z

Z

I1
~

I2
~

I3
~

Fig. 14.15 See Example 14.4

2Standard line voltages vary somewhat from one region

to another and even within regions; for example, 110 Vrms,

117 Vrms, and 120 Vrms all are standard wall-outlet voltages.
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equals zero (if the power factor equals unity), then real

power equals apparent power and the line current and

associated line losses are minimized. Most large

industrial loads are primarily inductive (electric

motors), so apparent power delivered to an industrial

load can be much larger than real power and the line

current required to deliver the apparent power can be

much larger than would be necessary if the load were

resistive.

Because line loss is power generated but not sold,

and because power companies must be able to meet

their customers’ power demands, power companies

wish to keep line currents as low as possible while

supplying the real power requirements of their custo-

mers. To that end, power companies require large

industrial companies to use power-factor correction

to keep power factors within certain limits.

From Chapter 13, the magnitude of the capacitive

reactive power required to increase the power factor of

a single-phase load from pf1 to pf2 is given by

QCj j ¼ P

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

pf1
2
� 1

s
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

pf2
2
� 1

s !
; (14.46)

where P is the real power required by the load. This

relation applies to each branch of a three-phase load.

The frequency of line voltages is fixed at 60 Hz in

North America and there is a finite number of line

voltages, so power-factor correction capacitors are

usually specified in VARs at a particular line voltage;

e.g., 50 kVAR at 480 Vrms. Thus (14.46) is usually

adequate for correction calculations. The magnitude

of the reactive power dissipated is given by

QC ¼ o ~VL

�� ��2C, so if needed, the capacitance required

can be calculated using

C ¼ QCj j
o ~VL

�� ��2 : (14.47)

Example 14.5. A load requiring 2 kW of

real power is fed by a 60-Hz, 240-Vrms

source. The power factor for the load is

pf1 ¼ 0:6. (a) Specify the added reactive

power that increases the power factor to

pf2 ¼ 0:9. (b) Find the line current before and

after correction.

Solution: (a) From (14.46)

QCj j¼P

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

pf1ð Þ2�1

s
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

pf2ð Þ2�1

s" #

¼ 2 kWð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

0:6ð Þ2�1

s
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

0:9ð Þ2�1

s" #

ffi1:70 kVAR:

We would require a capacitor that provides

1.70 kVAR at 240 Vrms. The capacitance of

such a capacitor is

C¼ QCj j
o ~VL

�� ��2¼ 1:70 kVAR

2p 60Hzð Þ 240Vð Þ2ffi78:3mF:

(b) The apparent powers before and after

correction are

S1j j¼ P

pf1
¼2;000

0:6
¼3:33 kVA;

S2j j¼ P

pf2
¼2;000

0:9
¼2:22 kVA: (14.48)

The corresponding line currents are

~I1
�� �� ¼ S1j j

~VL

�� �� ¼ 13:9Arms;

~I2
�� �� ¼ S2j j

~VL

�� �� ¼ 9:26Arms:

The line losses are reduced from

PL ¼ ~I1
�� ��2 R to P0

L ¼ ~I2
�� ��2 R, where R is the

line resistance, or by the factor

~I2
�� ��
~I1
�� ��

 !2

ffi 9:26

13:9

� �2

ffi 0:44;

which is significant.
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Refer to Fig. 14.16. For a D-connected load, the

lines connect to the branch ends, so capacitors placed

between the lines are in parallel with the branch impe-

dances. That is not the case for a Y-connected load;

but a Y-connected load can be transformed to an

externally equivalent D-connected load having the

same power factor, so line-to-line D-connected capa-

citors work in either case. Consequently, we find the

values of the corrective capacitors for a three-phase

load in the same manner as for a single-phase source

and load. Figure 14.17 shows an assortment of three-

phase power-factor correction capacitors.

Example 14.6. A balanced 60-Hz D source

drives a balanced Y load. At the load, the line

current ~Ia and the terminal voltage ~Vab are

~Ia ¼ 12ff0Arms;

~Vab ¼ 12ff105� kVrms:
(14.49)

(a) Find the power factor for the load.

(b) Find the capacitance and reactive power

required to increase the power factor to

0.9.

(c) Find the factor by which the line current is

reduced by the correction (b).

(d) Find the factor by which the line loss is

reduced by the correction (b).

Solution: (a) Refer to Fig. 14.18

For a balanced load, the line currents are

120� apart, so

~Ia ¼ I0ff0; ~Ib ¼ I0ff � 120�;
~Ic ¼ I0ff120�; I0 ¼ 12Arms:

By Kirchhoff’s voltage law, the line voltage
~Vab is Given by ~Vab ¼ ~Ia Z � ~Ib Z, so the line-

to-line impedance is

Z¼
~Vab

~Ia� ~Ib
¼ 12ff105�ð ÞkV

12ff0ð ÞA� 12ff�120�ð ÞA
ffi577ff75�Offi 149þ j558ð ÞO

The power factor is

pf1 ¼ cos 75�ð Þ ¼ 0:259:

(b) The power required by the load (one

branch) is evidently

P ¼ ~Ia
�� ��2 Re Zð Þ ffi 21:5 kW:

Fig. 14.17 Three-phase power-factor correction capacitors.

Photograph Courtesy ABB Ltd.
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Fig. 14.16 Placement of capacitors for power-factor correction

of a three-phase D load
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Fig. 14.18 See Example 14.6
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The specified power factor is pf2 ¼ 0:9.

From (14.46), the reactive power required is

QCj j ¼ P

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

pf 21
� 1

s
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

pf 22
� 1

s !

ffi 69:8 kVAR:

The frequency is f ¼60Hz)offi377 s�1.

The capacitance required is

C ¼ QCj j
o ~VL

�� ��2 ffi 1:29 mF:

This is not a large capacitance (numeri-

cally), but a 5 mF capacitor that must operate

at 12 kV is large physically.

(c)

Sj j¼ P

pf2
ffi23:9 kVA¼ ~Vab

�� �� ~I 0a�� ��
) ~I 0a
�� ��¼ Sj j

~Vab

�� ��ffi 23:9 kVA

12 kV
ffi3:44A

The line current is reduced by the factor

~I 0a
�� ��
~Ia
�� �� ffi 3:44A

12A
ffi 0:288

(d) The line losses are reduced by the factor

~I 0a
�� ��2R
~Ia
�� ��2R ffi 3:44A

12A

� �2

ffi 0:083

Residences in the U.S. contain many motors; e.g.,

air-conditioning compressor and fan motors, washing-

machine and dryer motors, furnace air handling units,

and ventilating fans. Thus the power factor for a

residence is typically (on average) lagging. There

are companies that manufacture and sell residential

power-factor correction units and there are folks

that buy them. But the watt-hour meter monitored

by the power company records real power, not appar-

ent power, so if you buy and install a power-factor

correction unit, you are helping only the power

company, not yourself. Perhaps electric utilities will

eventually require residential power-factor correc-

tion, but at present it is a poor investment for a

residential user.

14.8 Instantaneous Power Delivered
to a Balanced Load

An advantage of a three-phase system is that the

instantaneous power delivered by a balanced three-

phase source to a balanced three-phase load is con-

stant, whereas for a single-phase system instantaneous

power pulsates at a rate equal to twice the line fre-

quency, as shown below.

From Chapter 5, the instantaneous power delivered

to a load by a single-phase source is given by

p1ðtÞ ¼ vi ¼ V I cos otð Þ cos ot� yð Þ

¼ V I

2
cos 2ot� yð Þ þ cos yð Þ½ �; (14.50)

where V is the peak load voltage, I is the peak load

current, and y is the angle of the load impedance.

The instantaneous power has a constant (average)

component

V I

2
cos yð Þ

and a time-varying component

V I

2
cos 2ot� yð Þ ;

which pulsates at twice the frequency of the applied

voltage (or current).

The instantaneous power delivered by a balanced

source to a balanced three-phase load is given by

p3ðtÞ ¼ VI cos otð Þ cos ot� yð Þ
þ VI cos ot� 120ð Þ cos ot� 120� yð Þ
þ VI cos ot� 240ð Þ cos ot� 240� yð Þ

¼ VI

2

cos 2ot� yð Þ þ cos yð Þ
þ cos 2ot� 240� yð Þ þ cos yð Þ
þ cos 2ot� 480� yð Þ þ cos yð Þ

2
664

3
775:
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But

cos 2ot� yð Þ þ cos 2ot� 240� yð Þ
þ cos 2ot� 480� yð Þ

¼ cos 2ot� yð Þ þ cos 2ot� 240� yð Þ
þ cos 2ot� 120� yð Þ ¼ 0;

so

p3ðtÞ ¼ 3V I

2
cos yð Þ; (14.51)

which is constant (no time-varying component). The

absence of a time-varying component of power

translates into a smoother-running motor and makes

three-phase power preferable to single-phase power

in applications such as precision metal machining,

where pulsating power can cause vibration and tool

chatter. This is especially true for machines using

variable-frequency drives, which control speed by

varying the frequency of the voltage driving the

motor. The power-output of a single-phase motor

powered by a variable-speed drive has a time-varying

component that is equal in amplitude to the constant

component and which alternates in sign at twice the

drive frequency. The resulting pulsating torque would

be intolerable in precision machining and especially so

at low frequencies (low speeds).

14.9 Problems

In the problems below, all three-phase loads

and sources are balanced. In problem state-

ments, “Y load” means “Y-connected load,”

“Y source” means “Y-connected source.”

Similar abbreviated descriptions are used for

D-connected loads and sources.

P 14.1 Figure P 14.1 shows a balanced residential

load supplied by a center-tapped secondary leg of a

three-phase transformer. Show that the neutral (center-

tap) current equals zero.

P 14.2 In Fig. P 14.2, ~V1 ¼ V0ff 0; ~V2 ¼ Vff � 120�;
~V3 ¼ Vff � 240�. Obtain an expression for the current ~I.

P 14.3 A three-phase D source drives a three-phase

D load. The magnitude of the source phase voltage is

Vp ¼ 4 kV. The branch impedance of the load is

Z ¼ 10þ j 50O.

(a) Find the line current (magnitude).

(b) Find the complex power and the real power deliv-

ered to the load.

P 14.4 Is there such a thing as a three-phase current

source? If so, is it Y-connected or D-connected, or can
it be either?

P 14.5 A three-phase, D source drives a three-phase

D load. The magnitude of the source phase voltage is

Vp ¼ 480V. The branch impedance of the load is

Z ¼ 5þ j 25O. Without any other changes, the source

is rewired as a Y source. Does the power delivered to

the load change? If so, by what factor?

P 14.6 A three-phase, D source drives a three-phase

D load. The magnitude of the source phase voltage is

Vp ¼ 480V. The branch impedance of the load is

Z ¼ 5þ j 25O. Without any other changes, the load

is rewired as a Y load. Does the power delivered to the

load change? If so, by what factor?

P 14.7 A three-phase, Y source drives a three-phase

D load. The magnitude of the source phase voltage is

Vp ¼ 480V. The branch impedance of the load is

Z ¼ 5þ j 25O. Without any other changes, the load

Z

Z

In
~

V
~
+

–

V
~
+

–

Fig. P 14.1 See Problem P 14.1

Z

Z

V1
~

V2
~

V3
~

I
~

+
–

–

– +

+

Fig. P 14.2 See Problem P 14.2
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is rewired as a Y load. Does the power delivered to the

load change? If so, by what factor?

P 14.8 A three-phase Y load is connected to a three-

phase D load, as shown in Fig. P 14.3, where

ZD ¼ 3ZY . The combined load is connected to a bal-

anced Y source having phase-a voltage ~Vp ¼ Vpff0.
Express the line current and the branch currents in

each branch in terms of the source phase voltages

and the load impedances ZY ; ZD.

P 14.9 Repeat Problem P 14.8 for a D source.

P 14.10 If possible, obtain a D equivalent for the

load shown in Fig. P 14.3.

P 14.11 If possible, obtain a Y equivalent for the

load shown in Fig. P 14.3.

P 14.12 A D load is connected to a Y source. The

resistance of each of the lines connecting the source to

the load is 2 O. The source phase voltage is 10 kV and

the load branch impedance is Z ¼ 400þ j 200O.
Find: (a) The line voltages at the load end, (b) the

branch currents, (c) the real power delivered to the

load, and (d) the real power lost in the lines.

P 14.13 Two Y loads are connected as shown in

Fig. P 14.4. The combined load is connected at the

points a, b, c to a D source having phase voltage

(magnitude) ~Vp

�� �� ¼ 480V. The branch impedances

are Z1 ¼ 5þ j 10 O and Z2 ¼ 2þ j 8 O. Using phase

voltage a as the zero-phase reference, find the line

currents and line voltages and the real power delivered

to each load.

P 14.14 The current through and voltage across one

branch of a Y load are

iðtÞ ¼ 5 cos otð ÞA;
vðtÞ ¼ 408 cos ot� 30�ð Þ V; f ¼ 60Hz:

(14.52)

(a) Find the power factor for the load.

(b) Is the load inductive or capacitive?

(c) Find the line voltage across two of the three lines

connecting the load to the source.

P 14.15 The (60-Hz) voltage across branch ab of a

D load is 240ff0Vrms. The power factor for the load is

0.8 lagging (inductive) and the magnitude of the load

impedance is Zj j ¼ 15O.

(a) Find the branch current in branch ab.

(b) Find the line current ~Ia.

(c) Find the total power dissipated in the load.

(d) Find the parallel capacitance that increases the

power factor to 0.95.

(e) Find the line current for the new power factor.

P 14.16 The power factor for a certain D load is

0.7 and is increased to 0.9 by connecting a capaci-

tor having capacitance C in parallel with each

branch. The line frequency is 60 Hz and the resis-

tive part of the load impedance is 5O. The line

voltage is 400 Vrms.

(a) Find the capacitance C.

(b) Find the branch impedance (including the capaci-

tor) and the branch current ~Ia.

(c) Find the magnitude of the line current.

P 14.17 A three-phase source feeds a 50-kW three-

phase load using three transmission lines. The phase

voltage for the source is 4 kVrms. The load is approxi-

mately 10 miles from the source. The lines are alumi-

num, having resistivity r ¼ 2:71 mO cm. The power

factor for the load is 0.7. An acceptable line loss is

1.2 kW (total). (a) Calculate the required diameter of

the wires if no capacitive correction is employed. (b)

Repeat, assuming the power factor is corrected to 0.9.

c
b

a

Z1

Z1

Z1

Z2

Z2

Z2

n

Fig. P 14.4 See Problem P 14.13

ZY
ZY

ZΔ ZΔ

ZΔ

ZY

a

b
c

Fig. P 14.3 See Problem P 14.8
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(c) The mass density of aluminum is approximately

2:7� 10�3 kg cm�3. What is the mass of the alumi-

num saved by using power-factor correction and thus

the smaller wire?

P 14.18 A small plant has added some additional

machinery requiring 12 kW with a lagging power

factor of 0.6. Prior to adding the machinery, the plant

required 50 kW and had added shunt capacitance to

increase the power factor from 0.6 to 0.95. The plant is

fed by a 10 kV 60 Hz line. What is the new power

factor? What additional capacitance is required to

maintain a power factor of 0.95?

P 14.19 The machinery in a small woodworking

shop uses two 25 hp motors having power factors of

0.6, three 10 hp motors having power factors of 0.65,

five 5 hp motors having power factors of 0.68, and

eight 2 hp motors having power factors of 0.7. All

power factors are lagging. All machines are

connected in parallel to a 240 V line. (a) What is

the power factor for the shop and what capacitance is

required to correct the power factor to 0.95? (b)

Because each machine is turned on and off a few

times each working day, the utility suggests that the

power factor for each machine be corrected individu-

ally to 0.95. Determine the capacitance required for

each machine. (c) Show how a capacitor should be

connected in relation to the power (on–off) switch for

a machine and explain why.
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Chapter 15

Transfer Functions and Frequency-Domain Analysis

This chapter describes frequency-domain representa-

tions of circuits, focusing on circuits having one input

port and one output port, where the input port is driven

by a source and the output port drives a load. The

essential feature of any such circuit is the relation the

circuit establishes between the available current or

voltage from the source and the corresponding current

or voltage impressed on the load. In the frequency

domain, such relations are expressed using transfer

functions, which are generalizations of the transfer

ratios described in Chapter 6. The definitions and

uses of transfer functions are among the most impor-

tant things electronic circuit and system designers

must know.

15.1 Transfer Functions

Refer to Fig. 15.1, where the two-port circuit (in the

box) is linear and contains no independent sources,

and the voltage and current sources are sinusoidal. The

Thévenin and Norton source models are equivalent,

so the models in Figs. 15.1(a) and (b) are essentially

identical.

All dependent phasor currents and phasor voltages

in a sinusoidally excited stable linear circuit have the

frequency of the excitation, and differ only in ampli-

tude and relative phase from the excitation. The phasor

response is proportional to the phasor excitation, the

proportionality being expressed as a complex function

of the frequency of the excitation. It follows that the

load voltage ~VL and load current ~IL in Fig. 15.1 can be

expressed in terms of the available source voltage as

~VL ¼ Hv
~VS; ~IL ¼ Hy

~VS; (15.1)

or in terms of the available source current as

~VL ¼ Hz
~IS; ~IL ¼ Hi

~IS; (15.2)

where Hv;Hy;Hz;Hi are complex functions of the fre-

quency of the sinusoidal source, the source and load

impedances, and circuit parameters.

The relations (15.1) and (15.2) are the frequency-

domain transfer characteristics of the two-port cir-

cuit in the box. By convention, a transfer characteristic

for a circuit relates either the load current ~IL or the load

voltage ~VL to either the available source current ~IS or
the available source voltage ~VS.

1 The quantities

Hv;Hy;Hz;Hi defined implicitly by (15.1) and (15.2)

are the transfer functions for the circuit, and are

defined explicitly as follows:

Voltage Transfer Function

Hv ¼
~VL

~VS

; (15.3)

Current Transfer Function

Hi ¼
~IL
~IS
¼

~VL

�
ZL

~VS

�
ZS

¼ ZS
ZL

Hv; (15.4)

1Recall that the available source voltage is the open-circuit

(Thévenin-equivalent) source voltage and the available source

current is the short-circuit (Norton-equivalent) source current.

Bear in mind that the available voltage (or current) is not

necessarily the voltage across (or current entering) the input

terminals of the circuit.

T.H. Glisson, Introduction to Circuit Analysis and Design,
DOI 10.1007/978-90-481-9443-8_15, # Springer ScienceþBusiness Media B.V. 2011
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Transimpedance

Hz ¼
~VL

~IS
¼

~VL

~VS

�
ZS

¼ ZSHv; (15.5)

Transadmittance

Hy ¼
~IL
~VS

¼
~VL

�
ZL

~VS

¼ 1

ZL
Hv: (15.6)

The transfer functions defined by (15.3–15.6) are func-

tions of the frequency of the source current iS or source

voltage vS represented by the phasors ~IS and ~VS,

respectively. In this regard, we face a little notational

dilemma. In practice, frequency is invariably expressed

in hertz, which makes it desirable to regard a transfer

function as a function of frequency f . On the other

hand, as shown in Chapter 18, we achieve a desirable

notational consistency if we regard a transfer function

as a function of the imaginary variable jo, where

o ¼ 2pf . Thus, whenever it is necessary to make

explicit the dependence of a transfer function on fre-

quency, we shall write H joð Þ or H j2pfð Þ, rather than
H fð Þ, even though the latter seems (at this point) more

natural and reasonable. But unless confusion would

otherwise result, we simply omit such indications. For

example, we may write

H ¼ K

1þ jot
or H ¼ K

1þ j2pf t

rather than

H joð Þ ¼ K

1þ jot
or H j2pfð Þ ¼ K

1þ j2pf t
:

A transfer function is determined with a source
(including the source impedance) attached to the input

terminals and a load attached to the circuit output

terminals. In fact, neither a current transfer function

nor a transadmittance can be determined unless a load

is attached to the circuit output terminals, because

there must be a path for the load current that appears

in the definitions of those quantities. It might turn out

that a transfer function is independent of the load, but

we often don’t know that until an analysis is complete.

Example 15.1. Obtain expressions for the

voltage transfer function and the current trans-

fer function of the circuit in Fig. 15.2(a).

Assume the op amp is ideal.

Solution: We transform the circuit to the fre-

quency domain, as shown in Fig. 15.2(b),

where

R0
1 ¼ R1 þ RS

and

Z ¼ R2= joCð Þ
R2 þ 1= joCð Þ ¼

R2

1þ joR2C
:

Kirchhoff’s current law gives

�
~VS

R0
1

�
~VL

Z
¼ 0 ) ~VL ¼ � Z

R0
1

~VS:

From (15.3), the voltage transfer function is

Hv ¼
~VL

~VS

¼ � Z

R0
1

¼ �R2= R1 þ RSð Þ
1þ j2pfR2C

:

linear
circuit

linear
circuit

ZL ZLZS

ZS
VS
~

IS
~

VS = ISZS
~ ~

IS = VSZS
–1~ ~

VL
~ VL

~
+ +

– –

IL
~

IL
~

(a) (b)

+
–

Fig. 15.1 Equivalent source

models driving a loaded two-

port circuit
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From (15.4), the current transfer function is

Hi ¼
~IL
~IS
¼

~VL

�
RL

~VS

�
RS

¼ RS

RL
Hv

¼ � RS

RL

R2

R1 þ RSð Þ 1þ j2pfR2Cð Þ

Example 15.2. (a) Obtain expressions for the

voltage transfer function, the current transfer

function, the transimpedance, and the transad-

mittance of the circuit (amplifier) in Fig. 15.3.

(b) Let ZS ¼ 100 O; Zi ¼ 10 kO; Zo ¼ 10 O;
ZL ¼ 5 kO, and

g ¼ g0
1þ j f=f0

; g0 ¼ 0:2 S; f0 ¼ 2 kHz:

Find the load voltage for

vS ¼ V0 þ V1 cos 2pf1tð Þ
þ V2 cos 2pf2tþ 0:7ð Þ;

where V0 ¼ 100 mV;V1 ¼ 800 mV;V2 ¼ 400

mV; f1 ¼ 1 kHz; f2 ¼ 5 kHz.

Solution: (a) The load and the output subcircuit
comprise a current divider, for which

~IL ¼ Zog ~Vin

Zo þ ZL
) ~VL ¼ ~ILZL

¼ ZLZog ~Vin

Zo þ ZL
: (15.7)

vS +

–
RS R1

R2

RL

C

+

– RL
R′1

VS
~

vL

VL
~

Z

+
–

+
–

(a)

(b)

Fig. 15.2 See Example 15.1

load

ZS

source amplifier

Zi Zo ZL

+

–

VL
~
+

–

VS
~

Vin
~

IL
~

gVin
~

+
–

Fig. 15.3 See Example 15.2
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The source and the input subcircuit com-

prise a voltage divider, for which

~Vin ¼ Zi ~VS

Zi þ ZS
: (15.8)

Using the right side of (15.8) to replace ~Vin

in the right side of (15.7) gives

~VL ¼ ZiZoZLg ~VS

Zo þ ZLð Þ Zi þ ZSð Þ :

From (15.3), the voltage transfer function is

given by

Hv ¼ ZiZoZLg

Zo þ ZLð Þ Zi þ ZSð Þ : (15.9)

From (15.4–15.6), we obtain the current

transfer function

Hi ¼ ZS
ZL

Hv ¼ ZiZoZSg

Zo þ ZLð Þ Zi þ ZSð Þ ; (15.10)

the transimpedance

Hz ¼ ZSHv ¼ ZSZiZoZLg

Zo þ ZLð Þ Zi þ ZSð Þ ;

and the transadmittance

Hy ¼ 1

ZL
Hv ¼ ZiZog

Zo þ ZLð Þ Zi þ ZSð Þ :

(b) We use superposition. From part (a), the

voltage transfer function is

Hv ¼
~VL

~VS

¼ ZiZoZLg

Zo þ ZLð Þ Zi þ ZSð Þ ;

where (in this example) the impedances are all

resistive. Only the intrinsic transconductance g

depends upon the frequency of the excitation.

For the parameter values given in the problem

statement,

Hv ¼ ZiZoZLg

Zo þ ZLð Þ Zi þ ZSð Þ

¼ 104 Oð Þ 10 Oð Þ 5;000 Oð Þ
5;010 Oð Þ 10;100 Oð Þ

� 0:2 S

1þ j f=f0
¼ 1:976

1þ j f=f0
; f0 ¼ 2 kHz:

For each sinusoidal component of the exci-

tation, the associated phasor load voltage is

given by

~VL ¼ Hv
~VS; (15.11)

where ~VS is the phasor for the component hav-

ing frequency f . We need only (1) calculate the

value of the voltage transfer function Hv for

each frequency represented in the excitation,

(2) use (15.11) to find the corresponding com-

ponent of the load voltage, and (3) add the

results (superposition). Table 15.1 summarizes

the required calculations. The load voltage is

given by

vL tð Þ ¼ 0:198þ 1:414 cos 2pf1t� 0:464ð Þ
þ 0:294 cos 2pf2t� 0:490ð Þ V

with f1 ¼ 1 kHz; f2 ¼ 5 kHz

Exercise 15.1. (a) Obtain the voltage transfer

function for the circuit in Fig. 15.4, where vS is

the input and vL is the output. (b) Let

RS ¼ 50 O, Ri ¼ 100 kO, C1 ¼ 50 nF,

Ro ¼ 100 O, RL ¼ 5 kO, C2 ¼ 10 nF,

g ¼ 500 mS, and

vS ¼ V0½1þ cos 2pf1tð Þ þ cos 2pf2tþ 0:7ð Þ
þ cos 2pf3t� 0:7ð Þ�;
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with V0 ¼ 250 mV, f1 ¼ 30 Hz, f2 ¼ 10 kHz,

and f3 ¼ 150 kHz. Find the load voltage

vL tð Þ:

In addition to defining current transfer, transimpe-

dance, and transadmittance (15.3–15.6) relate those

functions to voltage transfer. This does not imply that

voltage transfer is any more fundamental or important

than the other three. Nor does (15.3) imply that the

voltage transfer function is independent of the source

and load impedances. We could as well have defined

current transfer first and then related voltage transfer,

transimpedance, and transadmittance to current trans-

fer, in which case we would have found (e.g.)

Hv ¼ ZL
ZS

Hi:

Exercise 15.2. Complete the table shown

below, where each entry is the factor that pro-

duces the transfer function in the row heading

from the transfer function in the column heading.

Transfer functions are defined in terms of avail-

able voltage or available current (at the input) and

load voltage or current (at the output) because we

want a transfer function to describe the associated

circuit when loaded and driven by a realistic source.

In other words, we want a transfer function to

describe how a circuit behaves when actually used.

We can illustrate this point with reference to

Fig. 15.5. If we defined the voltage transfer function

in terms of terminal voltages for an unloaded circuit

(voltage divider), as shown in Fig. 15.5(a), the

resulting transfer function alone does not tell us

how the circuit will perform in use, because the

function R2= R1 þ R2ð Þ contains no parameters asso-

ciated with the source or load.

On the other hand, the voltage transfer function in

Fig. 15.5(b), defined as load voltage (phasor) divided

by available voltage (phasor) does tell us how the

circuit will perform in actual use. The transfer func-

tion in Fig. 15.5(b) can be used to compute load

voltage from available source voltage, whereas that

in Fig. 15.5(a) cannot be so used (unless the source

resistance equals zero and the load resistance

approaches infinity).

In general, the relation between available voltage

(or current) and load voltage (or current) estab-
lished by a circuit depends not only upon properties

of the circuit alone, but also upon properties of the

source and load. Such dependence is not always

desirable, and can often be minimized for any par-

ticular transfer function, as described in the next

section.

C1

C2Ri Ro RL

RS

vS vL

+

–
gv1

v1

+
+
–

–Fig. 15.4 See Exercise 15.1

Table 15.1 See Example 15.2

f ðHzÞ f=f0 Hv ¼ 1:976= 1þ jf=f0ð Þ; f0 ¼ 2 kHz ~VS ðVÞ ~VL ðVÞ ¼ Hv
~VS

0 0 1:976 0:1 0:198

1000 0.5 1:768ff � 0:464 0:8ff0 1:414ff � 0:464

5000 2.5 0:734ff � 1:190 0:4ff0:7 0:294ff � 0:490

Hv Hi Hz Hy

Hv 1 ZL=ZS Z�1
S

ZL
Hi ZS=ZL 1

Hz 1

Hy 1
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15.2 Dependence of a Transfer Function
upon Source and Load

Any engineered2 two-port circuit is designed to

achieve a specified relation between either the current

or voltage available from a source and either the cur-

rent or voltage delivered to a load. It is almost always

desirable that the specified transfer function be at most

only weakly dependent upon properties of the source

and load, for at least two reasons:

• We would like the circuit to enforce the desired

relation for any source and load (within reason),

because in that case, the circuit can be used in a

variety of applications. Also, one charged with

designing the circuit can proceed without detailed

knowledge of the source and load.

• The terminal characteristics of the source, the load,

or both might be nonlinear, which means (loosely)

that the source and load impedances depend upon

the amplitudes of the input and output. But if the

transfer function of interest is independent of the

source and load impedances, then the desired linear

relation between input and output often can be

achieved even if the source and load are nonlinear.

Example 15.3. Refer to Fig. 15.6, What

constraints would you impose on the input

impedance Zi and the output impedance Zo if

it is desired that the voltage transfer function

be only weakly dependent upon the source

impedance ZS and the load impedance ZL?

Solution: From Fig. 15.6, we have (by voltage

division)

~V1

~VS

¼ Zi
Zi þ ZS

;
~VL

~V1

¼ mZL
ZL þ Zo

) Hv ¼
~VL

~VS

¼ Zi
Zi þ ZS

mZL
ZL þ Zo

:

If Zij j � ZSj j and ZLj j � Zoj j, then
Hv ffi m;

independent of ZS and ZL

Exercise 15.3. Based upon results obtained in

Example 15.3, we may say that the voltage

transfer function of a two-port is independent

of the source and load impedances if the input

impedance approaches infinity and the output

impedance equals zero. In other words, such a

two port can achieve a specified voltage trans-

fer function for wide ranges of source and load

impedances. Using reasoning similar to that

employed in Example 15.3, give conditions

on the input impedance and the output imped-

ance of a two port if the current transfer func-

tion is to be independent of source and load

impedances. Repeat for the transimpedance

and transadmittance transfer functions.

For any particular circuit, at most one of voltage

transfer, current transfer, transimpedance, and trans-

admittance can be independent of the source and load.
For example, from (15.3–15.6), if the voltage transfer

function for a circuit is independent of both the source

V1

~
V2

~
VS
~ VL

~R1 R1
R2R2

RS
RL

+

–

+
+
–

–

+

–

VL(b) Hv =
~

VS
~ RS + R1 +R2  RS

R2  RL
=

V1

~
V2

~
R2(a) Hv = R1 + R2

=
?

Fig. 15.5 (a) Unloaded and (b) loaded transfer functions

+
–VS

~

ZS

Zi

Zo

ZLmV1
~V1

~
+

+
–

–

VL
~
+

–

Fig. 15.6 See Example 15.3

2As opposed to arising as a model for an existing component or

circuit.
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impedance ZS and the load impedance ZL, then the

other three transfer functions are not. For example, if

the voltage transfer function for a two port is given by

Hv ffi gZo; (15.12)

as in Example 15.3, then the current transfer function

is given by

Hi ¼ ZS
ZL

Hv ffi ZSZog

ZL
; (15.13)

and is dependent upon both the source impedance ZS
and the load impedance ZL. Note that in order to

determine conditions under which a transfer function

is independent of the source and load, we must define

(and determine) the transfer function in terms of avail-
able current or voltage and load current or voltage.

15.3 Gain and Phase Shift

A transfer function is a complex function of fre-

quency. The magnitude of a transfer function is called

gain, and is denoted by A.3 The angle of a transfer

function is called phase shift and is denoted by f:

A ¼ gain ¼ Hj j; f ¼ phase shift ¼ ∡H: (15.14)

Subscripts are used to indicate which of the four

transfer functions is intended; for example, Av ¼ Hvj j
and fv ¼ ∡Hv.

It follows from (15.14) that a transfer function can

be expressed in polar form as

H ¼ Afff ¼ Aejf: (15.15)

The notational consideration that leads us to regard

a transfer function as a function of jo does not exist for

gain and phase shift, so we may regard gain and phase

shift as functions of real frequency f Hzð Þ. If we need

to show dependence on frequency, we would write

(15.15) as

H joð Þ ¼ H j2pfð Þ ¼ A fð Þfff fð Þ ¼ A fð Þejf fð Þ:

The inspiration for the terms gain and phase shift

is as follows. Suppose the voltage available from a

source is given by

vS tð Þ ¼ VS cos o0tð Þ ) ~VS ¼ VSff0; (15.16)

and suppose the source drives a linear circuit having

voltage transfer function Hv. From (15.3) and (15.15),

the output (load) voltage is given by

~VL ¼Hv jo0ð Þ ~VS ¼ Av f0ð Þfffv f0ð Þ½ � VSff0½ �
¼ Av f0ð ÞVSfffv f0ð Þ
) vL tð Þ ¼ Av f0ð ÞVS cos 2p f0tþfv f0ð Þ½ �:

(15.17)

Comparing (15.17) and (15.16) reveals that the

effect of the circuit is to scale (increase or decrease)

the peak amplitude of the input by the gain Av f0ð Þ ¼
Hv jo0ð Þj j and shift the initial phase of the input by

the phase shift fv f0ð Þ ¼ ∡Hv jo0ð Þ, where o0 ¼ 2pf0.
Although this terminology can be applied to any of the

four transfer functions defined above, gain does not

have the same intuitive meaning for transimpedance

and transadmittance that it has for voltage and current

transfer, because current and voltage have different

dimensions. We may say that one voltage is larger

than another, but it makes no sense to say that a

voltage is larger or smaller than a current.

A gain and associated phase shift are frequency-

domain generalizations of the gains defined for resis-

tive circuits in Chapter 6. Both gain and phase shift are

real functions of frequency (and of circuit, source, and

load parameters).

In general, the gains and phase shifts associated

with the four transfer functions for a particular circuit

exhibit different dependencies on frequency. But if the

source and load impedances are resistive (real and

independent of frequency), then the four phase shifts

are equal and the four gains differ one from another

only by a real, frequency-independent scale factor;

e.g., if ZS ¼ RS and ZL ¼ RL, then (15.13) becomes

Hi ¼ RS

RL
Hv ffi RSZog

RL
; (15.18)

so the current transfer function differs from the volt-

age transfer function by only the real, frequency-

independent scale factor RS=RL. In other words, if

the source and load impedances are resistive, the four

transfer functions defined by (15.3–15.6) all exhibit

the same frequency dependence.

3Although the name seems to imply otherwise, gain is not

necessarily greater than unity at any frequency.
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Example 15.4. In Fig. 15.7, ZS ¼ 100 O and

ZL ¼ Rþ joL, with R ¼ 10 O and L ¼ 80 mH.
The available voltage is vS ¼ VS cos o1tð Þ, with
VS ¼ 750 mV and f1 ¼ 20 kHz. The voltage

transfer function of the circuit is

Hv ¼ K

1þ j f=f0
;

with K ¼ 100 and f0 ¼ 10 kHz. Use the voltage

gain and phase shift to find the load voltage

vL tð Þ.
Solution: The voltage gain and phase shift at the

frequency of the source are

Av ¼ Kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f1=f0ð Þ2

q ¼ 100ffiffiffi
5

p ffi 44:72;

fv ¼ � tan�1 f1
f0

� �
¼ �1:107:

From (15.17), the load voltage is given by

vL ¼ AvVS cos 2pf1tþ fv½ �
¼ 44:72ð Þ 750 mVð Þ cos 2pf1tþ 1:107ð Þ
¼ 33:54 cos 2pf1t� 1:107ð ÞV; f1 ¼ 20 kHz:

Exercise 15.4. Find the current transfer func-

tion for the circuit of Example 15.4. Replace

the Thévenin-model source with the equivalent

Norton model and use the current transfer func-

tion to find the phasor load current ~IL. Then

find the phasor load voltage from ~VL ¼ ZL~IL.

Verify that the result equals that obtained in

Example 15.4.

15.4 Gain in Decibels (dB)

In applications, the ratio of one power, current, or

voltage to another is often of more interest than actual

power, current, or voltage. For example, suppose the

total average power delivered to (dissipated in) the

voice coil of a loudspeaker is given by P ¼ PS þ Pn,

where PS is dissipated by a desirable signal (represent-

ing music) and Pn is dissipated by an undesirable noise
signal. Whether we hear the noise depends upon the

power produced by the signal relative to that produced

by the noise. In other words, whether the noise is

perceptible depends upon the ratio PS=Pn.

As another example, suppose you are listening to

your audio system at a certain loudness (output power)

denoted by P1 and you change the loudness to another

loudness denoted by P2. Whether the change in loud-

ness is perceptible depends upon the ratio P2=P1.

Power ratios of interest in applications usually span

several orders of magnitude. For example, for a person

having normal hearing, the smallest (quietest) discern-

ible sound corresponds to an acoustic power density at

the eardrum of about 1 pW m�2 and the loudest sound

(perhaps accompanied by pain) corresponds to an

acoustic power density at the eardrum of about

1 W m�2, so the range of normal human hearing

spans about 12 orders of magnitude of power density;

i.e. 1 Wð Þ= 1 pWð Þ ¼ 1
�
10�12 ¼ 1012.

It is difficult to display (graphically) on a linear

scale a quantity whose range exceeds more than

about two orders of magnitude (e.g., from 1 to 100).

Thus in almost all applications, it is impossible to

display the full range of powers, currents, or voltages

of interest on a linear scale. Additionally, human sen-

sory perception is more nearly logarithmic than linear.

For example, doubling perceived loudness requires

squaring the power, current, or voltage delivered to a

loudspeaker.

For reasons given above and others, powers, cur-

rents, and voltages often are expressed as relative

values on a logarithmic scale and assigned a dimen-

sionless unit called the decibel (dB). A power ratio in

dB is defined by

P

P0

� �
dB

¼ 10 log
P

P0

� �
dB: (15.19)

For example, if P ¼ 50 W and P0 ¼ 2 W, then

linear
circuit

ZL

ZS

+

–

VS
~ VL

~

IL
~

+
–

Fig. 15.7 See Example 15.4
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P

P0

� �
dB

¼ 10 log
50 W

2 W

� �
ffi 14 dB;

and we would say that the power P is 14 dB above P0.

If P0 ¼ 50 W and P ¼ 2 W, then

P

P0

� �
dB

¼ 10 log
2 W

50 W

� �
ffi �14 dB;

and we would say that the power P is 14 dB below P0.

The historical reason for the factor 10 (as opposed to

unity) in (15.19) is that a 1 dB change in sound intensity

is (approximately) the smallest change in loudness

that a person having normal hearing can detect.

In some disciplines, the denominator P0 in (15.19)

is a fixed reference, understood by all who work in that

discipline. In such cases, it is conventional to refer to

the left side of (15.19) as the power P expressed in
decibels. For example, in acoustics the standard refer-

ence for sound intensity is 1 pW m�2, i.e., 1 pW of

acoustic power incident on a 1 m2 surface, which

corresponds approximately to the threshold of normal

(average) human hearing.4 Thus sound intensity in dB

at a point is given by (15.19), where P0 ¼ 1 pW and P
is the actual acoustic power incident on a 1 m2 surface

at that point. For example, it has been found experi-

mentally that the sound intensity on the stage of a

performing rock band can exceed 100 dB. This

means that the acoustic power incident on a 1-m2

surface on the stage with the band is given by

100 ¼ 10 log
P

P0

� �
¼ 10 log

P

10�12 W

� �
;

which yields

P ¼ 10�12 W
� �� 1010 ¼ 10 mW:

For perspective, the sound intensity of adult male

conversational speech 1 m from a speaker is about

50–70 dB and the sound intensity 10 m from a jet

airliner backing away from a terminal can exceed

110 dB. Sustained sound intensity above about

80–90 dB can cause permanent hearing loss. Sound

intensities above about 120 dB are painful and can

instantly rupture an eardrum.

Exercise 15.5. What is the sound intensity in

watts per meter corresponding to 130 dB?

Current and voltage ratios also are expressed in dB,

and the definitions are based on that for power

((15.19), above). Because power is proportional to

the square of current or voltage, current and voltage

ratios are expressed in dB as

I2rms
I1rms

� �
dB

¼ 10 log
I2rms

2

I1rms
2

� �
¼ 20 log

I2rms
I1rms

� �
(15.20)

and

V2rms

V1rms

� �
dB

¼ 10 log
V2rms

2

V1rms
2

� �
¼ 20 log

V2rms

V1rms

� �
:

(15.21)

The ratio of two currents or voltages in dB is not the

same as the ratio of the corresponding powers in dB

unless the loads seen by the currents or voltages are

identical; that is, if i1 and i2 are the currents through

loads R1 and R2, respectively, then

P2

P1

� �
dB

¼ 10 log
I2rms

2R2

I1rms
2R1

� �

¼ 20 log
I2rms
I1rms

� �
þ 10 log

R2

R1

� �
:

The current (or voltage) ratio in decibels equals the

power ratio in dB only if R1 ¼ R2.

If the currents or voltages of interest are the input

(iS or vS) and output (iL or vL) of a linear circuit, then
(15.20) and (15.21) can be written

ILrms
ISrms

� �
dB

¼ 20 log Aið Þ (15.22)

and

VLrms

VSrms

� �
dB

¼ 20 log Avð Þ: (15.23)

Equations (15.22) and (15.23) define current gain
in dB and voltage gain in dB. Equations (15.22) and4The threshold of hearing depends upon frequency as well as

incident power.
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(15.23) are general. In cases where the input and

output are sinusoidal and expressed as phasors, then

~IL
�� ��
~IS
�� ��

 !
dB

¼ IL
IS

� �
dB

¼ 20 log Aið Þ (15.24)

and

~VL

�� ��
~VS

�� ��
 !

dB

¼ VL

VS

� �
dB

¼ 20 log Avð Þ; (15.25)

where

VL ¼ ~VL

�� ��; IL ¼ ~IL
�� ��;VS ¼ ~VS

�� ��; IS ¼ ~IS
�� ��:

Instead of attaching the subscript dB to the symbol

for a gain expressed in dB, we attach the unit dB to the

numerical value (if given). For example, if we write

Av ¼ 200, we mean actual voltage gain (not dB). If we

wish to express that same gain in dB, we write

Av ¼ 46 dB. In practice, gain is almost always

expressed in dB.

Example 15.5. The voltage gain of a certain

circuit at a certain frequency is 400. What is

the gain in dB?

Solution: From (15.23),

Av ¼ 20 log 400ð Þ ¼ 52 dB:

Exercise 15.6. For f ¼ 20 kHz, express the

voltage gain and the current gain of the circuit

considered in Example 15.4 in dB.

Example 15.6. The voltage gain of a certain

circuit at a certain frequency is 55 dB. What is

the actual voltage gain (not dB) at that fre-

quency?

Solution: From (15.23) and the data given,

Av ¼ 20 log Avð Þ¼ 55 dB)Av ¼ 1055=20 ¼ 562:

Not only gains, but also frequencies of interest

usually span several orders of magnitude. For exam-

ple, normal adult human hearing extends from about

20 Hz to about 15 kHz, and spans almost three orders

of magnitude. As another example, frequencies of

interest in an analog (not HDTV) television signal

extend from dc to about 5 MHz. Consequently, it is

necessary to somehow compress frequency when plot-

ting gain versus frequency. The compression is ordi-

narily achieved by using a logarithmic scale on the

frequency axis, as illustrated by the next example.

Example 15.7. The voltage transfer function

for a certain circuit is

Hv ¼ 100

1þ j f=f0
; f0 ¼ 100 Hz:

Plot the voltage gain in dB versus frequency

for 1 Hz � f � 10 kHz. Use a logarithmic

scale for frequency.

Solution: The voltage gain is given by

Av ¼ Hvj j ¼ 100

1þ j f=f0

����
���� ¼ 100ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ f=f0ð Þ2
q ;

f0 ¼ 100 Hz

and in dB by

Av ¼ 20 log
100ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ f=f0ð Þ2
q

0
B@

1
CA

¼ 20 log 100ð Þ�20 log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f=f0ð Þ2

q� �

¼ 40�20 log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f=f0ð Þ2

q� �
; f0¼ 100 Hz:

The gain in dB is a reasonably smooth func-

tion of frequency, so only a few points are

needed. Calculating a few values yields the

graph shown in Fig. 15.8. For future reference,

note that the gain is nearly constant (and equal

to 40 dB) for frequencies much smaller than

f0 and is very nearly a straight line sloping

downward at 20 dB/decade of frequency for

frequencies much larger than f0.
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Were we to plot the same gain function on

a linear scale for 1 Hz � f � 10 kHz, most

of the frequency axis would be devoted to fre-

quencies between 1 and 10 kHz, and the struc-

ture of the gain for frequencies below 1 kHz

would be compressed and difficult to discern.

Neither transimpedance nor transadmittance can be

expressed directly in dB because we cannot take the

logarithm of a dimensioned quantity. However, trans-

impedance and transadmittance can be normalized to a

specified impedance or admittance, after which the

normalized transimpedance or transadmittance can

be expressed in dB. For example, we can express

normalized transimpedance as

H0
z ¼

Hz

Z0
; (15.26)

where Z0 is a particular impedance suggested by a

problem at hand. It might be the circuit input imped-

ance, or the circuit output impedance, or the load

impedance, or the value of the transimpedance Hz at a

particular frequency. It might even be agreed by those

involved that Z0 ¼ 1 O. In any case, the normalized

transimpedance can then be expressed in dB as

A0
z ¼ 20 log H0

z

�� �� ¼ 20 log
Hz

Z0

����
���� dB: (15.27)

Example 15.8. Refer to Fig. 15.9. (a) Obtain

expressions for the voltage transfer function,

the current transfer function, the transimpe-

dance, and the transadmittance. (b) Express

the associated gain for each in dB, where each

gain is normalized to its value for f ¼ 0,

and construct a plot of each gain for

10 Hz � f � 1 MHz.

Solution: (a) Kirchhoff’s current law gives

1

Ro
þ 1

RL
þ joC

� �
~VL ¼ b fð Þ~I1 ¼ b fð Þ ~VS

RS þ Ri
;

which yields the voltage transfer function

Hv ¼
~VL

~VS

¼ b fð ÞRoRL

RS þ Rið Þ Ro þ RL þ joCRoRLð Þ

¼ b fð Þ RokRLð Þ
RS þ Rið Þ 1þ joC RokRLð Þ½ �

¼ 100 RokRLð Þ
1þ j f=f0ð Þ RS þ Rið Þ 1þ j2pfC RokRLð Þ½ �

¼ Kv

1þ j f=f0ð Þ 1þ j f=f1ð Þ ;

where

Kv ¼ 100 RokRLð Þ
RS þ Ri

ffi 303; f0 ¼ 15 kHz;

f1 ¼ 1

2pC RokRLð Þ ffi 47:8 kHz:

The current transfer function is

Hi ¼
~VL

�
RL

~VS

�
RS

¼RS

RL
Hv ¼ Ki

1þ j f=f0ð Þ 1þ j f=f1ð Þ ;

Ki ¼RS

RL
Kv ffi 6:06;
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Fig. 15.8 See Example 15.7

Ri

100
RS = 100 Ω, Ri = 1 kΩ, Ro = 10kΩ, C = 1nF, RL = 5 kΩ

1 + j f / f0

vS vL

i1 iL

b i1
Ro RL

C

RS

+
–

+

–

, f0 = 15kHzb ( f ) =

Fig. 15.9 See Example 15.8
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the transimpedance is

Hz ¼
~VL

~VS

�
RS

¼RSHv¼ Kz

1þ j f=f0ð Þ 1þ j f=f1ð Þ ;

Kz ¼RSKv ffi 30:3 kO;

and the transadmittance is

Hy ¼
~VL

�
RL

~VS

¼ 1

RL
Hv ¼ Ky

1þ j f=f0ð Þ 1þ j f=f1ð Þ ;

Ky ¼ Kv

RL
ffi 61 mS:

(b) The values of the transfer functions for f ¼ 0

are

Hv 0ð Þ ¼ Kv; Hi 0ð Þ ¼ Ki;

Hz 0ð Þ ¼ Kz; Hy 0ð Þ ¼ Ky:

Therefore the four normalized transfer func-

tions are identical; i.e.,

Hv joð Þ
Hv 0ð Þ ¼Hi joð Þ

Hi 0ð Þ ¼Hz joð Þ
Hz 0ð Þ ¼Hy joð Þ

Hy 0ð Þ

¼ 1

1þ j f=f0ð Þ 1þ j f=f1ð Þ

and the four normalized gains are identical; i.e.,

Av

Av 0ð Þ ¼
Ai

Ai 0ð Þ ¼
Az

Az 0ð Þ ¼
Ay

Ay 0ð Þ

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f=f0ð Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f=f1ð Þ2

q :

Thus

A ¼� 10 log 1þ f

f0

� �2
" #

� 10 log 1þ f

f1

� �2
" #

;

f0 ¼ 15 kHz; f1 ffi 47:8 kHz:

Being identical, the four normalized gains all

have the same graph, shown in Fig. 15.10.

Exercise 15.7. At a particular frequency, the

transadmittance of a certain circuit, normal-

ized to 1 mS, is 25 dB. Find the magnitude

of the transadmittance in mS at that frequency.

15.5 Standard Form of a Transfer
Function

The frequency dependence of a transfer function arises

from inductance, capacitance or both. Because of the

forms of the associated impedances (joL for an induc-

tor and 1=joC for a capacitor), a transfer function can

be expressed as a ratio of polynomials in jo having

real coefficients. Thus the general form of a transfer

function is

H ¼ bM joð ÞMþ bM�1 joð ÞM�1þ 	 	 	 þ b1joþ b0

aN joð ÞNþ aN�1 joð ÞN�1þ 	 	 	 þ a1joþ a0
;

(15.28)

where the coefficients a0; a1; 	 	 	 ; aNf g and b0;f
b1; 	 	 	 ; bMg are real and independent of frequency.

In electronic circuits, the degree of the numerator

rarely exceeds that of the denominator; i.e., M � N.
One reason why is that M>N implies differentiation

of an input; e.g., if M ¼ N þ 1, the right side of

(15.28) can be expressed after long division as

10
–80
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–40

–20

0

20

102 103 104 105 106

f (Hz)

A
(d

B
)

Fig. 15.10 See Example 15.8
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H¼ cMjo

þCM�1 joð ÞM�1þcM�2 joð ÞM�2þ		 	þ c1joþ c0

aN joð ÞNþaN�1 joð ÞN�1þ		 	þa1joþa0
:

The term cMjo gives rise to a term of the form

cMdv=dt or cMdi=dt in the output, which means that a

rapidly changing input can give rise to very large

output amplitudes. This is generally undesirable for

at least two reasons: First, a desirable current or volt-

age is always accompanied by electrical noise. The

noise usually fluctuates rapidly, so differentiation

enhances noise. Second, all circuits and circuit com-

ponents perform as intended over only a limited range

of amplitudes, and differentiation can produce ampli-

tudes that exceed the normal operating ranges of the

circuit components.

Example 15.9. Obtain the voltage transfer

function for the circuit shown in Fig. 15.11.

Express the transfer function in the form

(15.28) and give the values of M, N, and the

coefficients of the polynomials.

Solution: Kirchhoff’s current law gives

~VL � ~VS

RS þ R
þ joC ~VL þ

~VL

RL
¼ 0;

which yields

Hv ¼
~VL

~VS

¼ RL

RS þ Rþ RL þ RLC Rþ RSð Þjo :

The transfer function has the form given in

(15.28), with M ¼ 0, N ¼ 1, b0 ¼ RL,

a0 ¼ RS þ Rþ RL, and a1 ¼ RLC Rþ RSð Þ

Example 15.10. Obtain the voltage transfer

function for the circuit shown in Fig. 15.12.

Express the transfer function in the form (15.28)

and give the values ofM, N, and the coefficients

of the polynomials. Find the SI unit of each

coefficient and show that the transfer function is

dimensionless.

Solution: Kirchhoff’s current law gives

~Va � ~VS

RS
þ joC ~Va þ

~Va � ~VL

joL
¼ 0;

~VL � ~Va

joL
þ

~VL

RL
¼ 0:

Eliminating ~Va yields

~VL

~VS

¼Hv

¼ RL

joð Þ2RSLCþ jo LþRSRLCð ÞþRSþRL

;

which has the form (15.28), with

M ¼ 0; b0 ¼ RL;N ¼ 2; a0 ¼ RS þ RL;

a1 ¼ Lþ RSRLC; a2 ¼ RSLC:

The SI unit of b0 is

SI b0ð Þ ¼ SI RLð Þ ¼ O:

The units of the denominator coefficients are

SI a0ð Þ ¼SI RSþRLð Þ ¼O;

SI a1ð Þ ¼SI LþRSRLCð Þ ¼ VsA�1 ¼O s

SI a2ð Þ ¼SI RSLCð Þ ¼OVsA�1 AsV�1 ¼ O s2

Because SI joð Þ ¼ s�1, the unit of the

denominator is O. Thus the transfer function

is dimensionless.

VS
~

RS R
C RL VL

~
+

–

+
–

Fig. 15.11 See Example 15.9
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~
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RL VL

~
+

–
C

L

a

+
–

Fig. 15.12 See Example 15.10
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It is useful to express transfer functions in a par-

ticular factored form that facilitates interpretation.

Because the coefficients of the numerator and denom-

inator polynomials in (15.28) are real, the zeros of

each polynomial either are real or occur in complex-

conjugate pairs. Therefore the numerator and the

denominator of (15.28) can each be expressed as the

product of a constant and factors of the forms

j
f

f0

� �
;1þ j

f

f1

� �
;1þ2aj

f

f2

� �
� f

f2

� �2

; (15.29)

where we have used o ¼ 2pf and where f0; f1; f2 and a
are real and positive. The first two factors in (15.29)

are called linear factors and arise from the real zeros

of the associated polynomial. The third is called a

quadratic factor and arises from a pair of complex-

conjugate zeros of the associated polynomial. Each
factor in (15.29) is dimensionless.

The frequencies f1 and f2 (but not f0) in (15.29) are

called corner frequencies or break frequencies. The
parameter a in a quadratic factor is called a peaking

factor. The motivation for this terminology is

explained in Sections 15.6 and 15.7, as is the reason

why the frequency f0 in (15.29) is not called a corner

frequency.

A transfer function is in standard form if the

numerator and denominator are both expressed

as products of dimensionless linear and quadratic fac-

tors having the forms given in (15.29). A frequency-

independent constant multiplier also usually appears

in the standard form of a transfer function. The multi-

plier is dimensionless in current and voltage transfer

functions, but is dimensioned in transimpedance and

transadmittance transfer functions.

The magnitude of a transfer function for f ¼ 0 is

the dc gain of the associated circuit. For example, if

the voltage transfer function for a certain circuit is

Hv ¼ � 100

1þ j f=f1
;

the dc voltage gain is Hv 0ð Þj j ¼ 100. As another

example, if the current transfer function for a certain

circuit is

Hi ¼ 10 1þ j f=f3ð Þ
1þ j f=f1ð Þ 1þ j f=f2ð Þ ;

the dc current gain is Hi 0ð Þj j ¼ 10. The dc gain is

undefined if a factor of the form j f=f0 appears in the

denominator of a transfer function and equals zero if a

factor of the form j f=f0 appears in the numerator.

Example 15.11. Express the transfer function

obtained in Example 15.9 in standard form.

Solution: From Example 15.9,

Hv ¼ RL

RS þ Rþ RL þ j2pf RLC Rþ RSð Þ

¼ RL= RS þ Rþ RLð Þ
1þ j2pf RLC Rþ RSð Þ= RS þ Rþ RLð Þ

¼ RL= RS þ Rþ RLð Þ
1þ j2pf RL Rþ RSð Þk½ �C ;

which is written in standard form as

Hv ¼ K

1þ j f=f0ð Þ ; K ¼ RL

RS þ Rþ RL
;

f0 ¼ 1

2p RL Rþ RSð Þk½ �C :

As an exercise, show that the transfer func-

tion is dimensionless.

Usually, it is best to express the frequencies

f0; f1; f2; 	 	 	 that appear in the linear and quadratic

factors comprising a standard-form transfer functions

symbolically, in terms of circuit parameters, so the

effect of any particular circuit parameter on the trans-

fer function can be determined. But if we do not assign

numerical values to circuit parameters, we cannot

determine whether a quadratic factor can be expressed

as the product of two linear factors, because we cannot

tell (in general) from a symbolic expression whether

the zeros of the quadratic factor are real or complex.

For this reason, it is best to leave quadratic factors in

that form (not factored) until the associated circuit

parameters are specified. Once those parameters are

known, we can determine whether any quadratic forms

that are present can be expressed as products of linear

factors. In what follows, we show that if a 
 1, a

quadratic factor

1þ 2aj
f

f2

� �
� f

f2

� �2
(15.30)

552 15 Transfer Functions and Frequency-Domain Analysis



can be expressed as the product of two linear factors.

A term of the form (15.30) can be factored such that

j fð Þ2þ2a f2 j fð Þ þ f 22 ¼ j f þ fað Þ
� j f þ fbð Þ; (15.31)

where fa; fb must be real if the quadratic factor on the

left can be expressed as the product of two linear

factors. Equating like powers of j fð Þ on the two

sides of (15.31) gives

f 22 ¼ fafb; 2af2 ¼ fa þ fb: (15.32)

From the first relation in (15.32), we find

fb ¼ f 22
�
fa, whence the second becomes

2af2 ¼ f 22
fa
þ fa:

Solving this expression for fa gives

fa ¼ a�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 1

p	 

f2: (15.33)

Both values are real and positive if a 
 1. By

symmetry, we would have obtained the same result if

we had solved (15.32) for fb. Thus

fb ¼ a�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 1

p	 

f2: (15.34)

From (15.33) and (15.34),

fa; fb ¼ a�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 1

p	 

f2: (15.35)

Both fa and fb are real if a 
 1, as was to be shown.

If we now divide both sides of (15.31) by f 22 ¼ fafb,

we find

j fð Þ2þ2af2 j fð Þ þ f 22
f 22

¼ j f þ fað Þ j f þ fbð Þ
fa fb

;

which can be written

1þ 2aj
f

f2

� �
� f

f2

� �2
¼ 1þ j

f

fa

� �
1þ j

f

fb

� �
:

(15.36)

If a ¼ 1, then from (15.35)

fa ¼ fb ¼ f2 (15.37)

and (15.36) becomes

1þ 2aj
f

f2

� �
� f

f2

� �2
¼ 1þ j f

f2

� �2
: (15.38)

Because o=o0 ¼ ð2pf Þ=ð2pf0Þ ¼ f=f0, we can

often simplify the algebra involved in obtaining

the standard form for a transfer function by using

angular frequency o, replacing o=o0 by f=f0 as the

last step.

Example 15.12. Obtain the transfer function

for the circuit shown in Fig. 15.13. Express the

transfer function in standard form and give

expressions for all corner frequencies and other

parameters that appear in the standard-form

expression.

Solution: The circuit is a voltage divider. The

load voltage (phasor) is given by

~VL ¼ RL
~VS

RS þ RL þ ZLC
; ZLC ¼ ZL ZCk

¼ joL=joC
joLþ 1=joC

¼ joL
1� o2LC

:

Thus the transfer function is

Hv ¼
~VL

~VS

¼ RL

RS þ RL þ joL= 1� o2LCð Þ

¼ RL 1� o2LCð Þ
RS þ RLð Þ 1� o2LCð Þ þ joL

¼ RL

RS þ RL

� �
1� o2LC

1þ joL= RS þ RLð Þ � o2LC

¼ RL

RS þ RL

� �
1� o=o0ð Þ2

1þ 2aj o=o0ð Þ � o=o0ð Þ2 ;

L

CVS
~

RS
RL

~
VL

+

–

+
–

Fig. 15.13 See Example 15.12

15.5 Standard Form of a Transfer Function 553



where

o2LC ¼ o
o0

� �2
) o0 ¼ 1ffiffiffiffiffiffi

LC
p

and

oL

RS þ RL
¼ 2a

o
o0

� �
) a ¼ o0L

2 RS þ RLð Þ

¼ 1ffiffiffiffiffiffi
LC

p L

2 RS þ RLð Þ
� �

¼
ffiffiffiffiffiffiffiffiffi
L=C

p
2 RS þ RLð Þ :

Because o=o0 ¼ f=f0, the transfer function

is expressed in standard form as

Hv ¼ K
1� f=f0ð Þ2

1þ 2aj f=f0ð Þ � f=f0ð Þ2 ; (15.39)

where

K ¼ RL

RS þ RL
; f0 ¼ o0

2p
¼ 1

2p
ffiffiffiffiffiffi
LC

p ;

a ¼
ffiffiffiffiffiffiffiffiffi
L=C

p
2 RS þ RLð Þ : (15.40)

The numerator is a quadratic factor having

corner frequency f0 and peaking factor a ¼ 0.

The numerator cannot be expressed as a product

of two linear factors because the associated

peaking factor has magnitude less than one.

The denominator also is a quadratic factor hav-

ing corner frequency f0 and peaking factor given

by (15.40). The denominator can be expressed

as a product of linear factors if the associated

peaking factor exceeds unity; i.e., if

a 
 1 )
ffiffiffiffi
L

C

r

 2 RS þ RLð Þ:

We are given no values for the parameters

RS; L;C;RL, so we cannot compute a value for

the associated peaking factor and thus cannot

tell whether the quadratic factor in the denomi-

nator can be expressed as the product of two

linear factors. Thus we leave the transfer

function in the form (15.39), with the denomi-

nator expressed as a quadratic factor.

Exercise 15.8. In Example 15.12, we say

the quadratic factor 1� ðf=f0Þ2 cannot be

expressed as a product of linear factors. Why

should it not be written

1� f

f0

� �2

¼ 1þ f

f0

� �
1� f

f0

� �
?

Example 15.13. (a) Express the transfer

function obtained in Example 15.10 in stan-

dard form. (b) Let RL ¼ 500 O, RS ¼ 100 O;
L ¼ 100 mH, C ¼ 50 nF and calculate the

values of all corner frequencies.

Solution: (a) From Example 15.10,

Hv¼ RL

joð Þ2RSLCþ jo LþRSRLCð ÞþRSþRL

;

(15.41)

The transfer function is dimensionless

(because it is a voltage transfer function). We

first make all terms in the numerator and

denominator dimensionless. We extract the

factor that makes the frequency-independent

term of the denominator equal to unity. Factor-

ing RS þ RL from both the numerator and the

denominator of the transfer function above

gives

Hv ¼ RL=ðRSþRLÞ
joð Þ2 RS LC

RS RL
þ jo

ðLþRSRLCÞ
RsþRL

þ1
:

All terms in the numerator and denominator

are now dimensionless. The denominator can

be written
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1þ jo
L=RS þ RLCð Þ
Rs þ RL

þ ðjoÞ2 RSLC

RS þ RL

¼ 1þ 2aj
o
o2

� �
� o

o2

� �2
:

It follows that

o2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RS þ RL

RS þ LC

r
) f2 ¼ 1

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RS þ RL

RSLC

r
2a
o2

¼ ðLþ RSRLCÞ
RS þ RL

) a ¼ o2

2

ðLþ RSRLCÞ
RS þ RL

¼ ðLþ RSRLCÞ
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RSLCðRS þ RLÞ

p
With these definitions, (15.41) can be

written

Hv ¼ Kv

1þ 2a j f=f2ð Þ � f=f2ð Þ2
h i ;

(b) For the values given,

Kv ¼ RL

RS þ RL
¼ 0:833;

f2 ¼ 1

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RS þ RL

RSLC

r
ffi 174:3 kHz;

a ¼ LþRSRLCð Þ
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RsLCðRS þ RLÞ

p ffi 2:37:

Because a> 1, the quadratic factor should

be expressed as the product of two linear

factors. Thus,

1þ2aj
f

f2

� �
� f

f2

� �2

¼ 1þ j
f

f3

� �
1þ j

f

f4

� �
;

where

f3 ¼ a�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 1

p	 

f2 ffi 38:6 kHz;

f4 ¼ aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 1

p	 

f2 ffi 787:8 kHz (15.42)

For the parameter values given

Hv ¼ Kv

1þ j f=f3ð Þ½ � 1þ j f=f4ð Þ½ � ;

where

Kv ¼ 0:833; f3 ffi 38:6 kHz; f4 ffi 787:8 kHz:

15.6 Asymptotic Gain Plots: Linear
Factors

Graphs of voltage gain in dB and phase shift in radians

versus frequency are called Bode plots.5 A Bode plot

can be sketched quickly and with reasonable accuracy

using asymptotic approximations. In the context of

electronic circuits, the primary justification for lear-

ning how to construct such asymptotic plots is that

such knowledge fosters insight and interpretation. An

asymptotic plot clarifies the influence of each numera-

tor and denominator factor on the form of a transfer

function. An asymptotic plot and associated expres-

sions for corner frequencies in terms of circuit para-

meters can tell us which parameters are critical and

even in what direction the critical parameters must be

changed to achieve a desired transfer function.

This section and the next two describe how asymp-

totic plots can be obtained easily from the standard

form of a transfer function. This section treats asymp-

totic gain plots for transfer functions containing only

linear factors. Section 15.7 treats asymptotic gain plots

for transfer functions containing linear and quadratic

factors. Section 15.8 treats asymptotic plots of phase

shift.

A transfer function containing only linear factors
can be expressed as

Hv ¼ K j
f

f0

� �k0
1þ j

f

f1

� �k1
1þ j

f

f2

� �k2
. . . ;

(15.43)

where k0; k1; k2; . . . are positive or negative integers,

depending upon whether the associated factors appear

in the numerator or denominator, respectively, of the

transfer function. The magnitudes of k0; k1; k2; . . . are
the multiplicities of the associated factors. Multipli-

cities greater than two are rare in electronic circuits.

We assume the transfer function is expressed in lowest

form; that is, all factors common to both numerator

and denominator have been cancelled. All critical

frequencies and peaking factors associated with

5After Hendrik Bode (bōdee) (1905–1982), an engineer who

showed how to use such plots to determine whether a system

is stable and if not, how to make it so. Bode contributed much to

our understanding of feedback systems.
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denominator factors in a transfer function are positive

if the associated circuit is stable.

The voltage gain for a transfer function of the form

(15.43) is expressed in dB as

Av ¼ 10 log Hvj j2
	 


¼ 10 log K2 f

f0

� �2
" #k0

1þ f

f1

� �2
" #k1

. . .

8<
:

9=
;

¼ 10 log K2
� �þ 10k0 log

f

f0

� �2
" #

þ 10k1 log 1þ f

f1

� �2
" #

þ . . .

¼ 20 log Kj j þ 20k0 log
f

f0

� �

þ 10k1 log 1þ f

f1

� �2
" #

þ . . . :

(15.44)

The first term 20 log Kj j is independent of fre-

quency, represented graphically by a horizontal line

at 20 log Kj j dB. On a logarithmic scale for frequency,

where logð f=f0Þ is the independent variable, the sec-
ond term, 20k0 log f=f0ð Þ, is a straight line having

slope20k0 dB=decade. Because logð f0=f0Þ ¼ 0, the

line passes through the point ð f0; 0Þ, as illustrated by

Fig. 15.14.

The frequency f0 in a factor of the form j f=f0ð Þ is
arbitrary. That is, we can write the first two factors on

the right side of (15.43) as

K j
f

f0

� �k0
¼ K

f 00
f0

� �k0
j
f

f 00

� �k0
¼ K0 j

f

f 00

� �k0
;

where f 00 is arbitrary and

K0 ¼ K
f 00
f0

� �k0
:

It follows that we can write the first and second

terms on the right side of (15.44) as

20 log Kj j þ 20k0 log
f

f0

� �

¼ 20 log K0j j þ 20k0 log
f

f 00

� �
; (15.45)

where f 00 is arbitrary and

K0 ¼ K
f 00
f0

� �k0
: (15.46)

The fact that

20 log Kj j þ 20k0 log
f

f0

� �
¼ 20 log K0j j

þ 20k0 log
f

f 00

� �

with K0 given by (15.46) means that we can assign any

value we wish to the frequency f0 by appropriately

scaling the frequency-independent factor K. The para-

meter f0 associated with a linear factor of the form

jð f=f0Þ has no special significance. A linear factor

of that kind is written that way primarily for sake

of dimensional consistency and convenience (e.g., in

drawing an asymptotic Bode plot).

Example 15.14. The transfer function for a cer-

tain circuit is

Hv ¼ K j f=f0ð Þ2
1þ j f=f1ð Þ2 1þ j f=f2ð Þ ;

where

K ¼ 105; f0 ¼ 1 kHz; f1 ¼ 100Hz; f2 ¼ 15 kHz:

Find K0 such that

k = –2

k = –1 k = 1

k = 2

0.01 0.1 1 10 100
–80

–60

–40

–20

0

20

40

60

80

20k log
f
f0

f

f0

Fig. 15.14 A graph of 20 k logð f=f0Þ versus frequency for four
values of k
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Hv ¼
K0 j f

�
f 00

� �2
1þ j f=f1ð Þ2 1þ j f=f2ð Þ ;

where f 00 ¼ 10 Hz.

Solution: From (15.46),

K0 ¼ K
f 00
f0

� �2
¼ 105

10Hz

1; 000Hz

� �2
¼ 10

The third and every subsequent term on the right

side of (15.45) has the form

10k log 1þ f=f0ð Þ2
h i

; (15.47)

where k is a positive or negative integer and f0 is a

corner frequency. A method for quickly sketching (or

visualizing) a graph of gain versus frequency is based

upon the asymptotic behavior of the term (15.47) for

frequencies well below and well above the corner

frequency f0. The low-frequency asymptote for the

term (15.47) is given by

f � f0 ) 10k log 1þ f=f0ð Þ2
h i

ffi 10k log 1½ � ¼ 0 dB (15.48)

and the high-frequency asymptote is given by

f � f0 ) 10k log 1þ f=f0ð Þ2
h i

ffi 10k log f=f0ð Þ2
h i

¼ 20k log f=f0ð Þ: (15.49)

The low-frequency asymptote is a horizontal line

through 0 dB. On a logarithmic scale, the high-fre-

quency asymptote is a straight line having slope

20 k dB=decade; that is, for each tenfold increase in

frequency f, the high-frequency asymptote rises (or

falls) by 20 k dB. The low-frequency asymptote and

the high-frequency asymptote intersect where they are

equal; i.e.,

20k log f=f0ð Þ ¼ 0 ) f ¼ f0: (15.50)

The asymptotic approximation to a factor of the

form 10 k log½1þ ð f=f0Þ2� is defined as

10k log 1þ f

f0

� �2
" #

ffi aðf Þ

¼
0 dB; f � f0;

20k log
f

f0

� �
dB; f > f0:

8><
>:

(15.51)

In words, the asymptotic approximation equals the

low-frequency asymptote for frequencies below the

corner frequency f0 and equals the high-frequency

asymptote for frequencies above the corner frequency.

Figure 15.15 shows graphs of the asymptotic

approximation given by (15.51) for k ¼ �1;�2.

Figure 15.16 shows graphs of the term 10 k

log½1þ ð f=f0Þ2� and the asymptotic approximation

to that term for k ¼ �1 and k ¼ �2. The graphs

would simply be inverted (reflected in the 0 dB axis)

for k ¼ þ1 and k ¼ þ2.

Figure 15.17 shows graphs of the error in the

asymptotic approximation, given by

e fð Þ ¼ a fð Þ � 10k log 1þ f=f0ð Þ2
h i��� ���: (15.52)

The maximum error is að f0Þ ¼ 10k logð2Þ ffi
3 k dB. In virtually all applications, the error is negli-

gible for f < f0=10 and f > 10 f0. To obtain a reason-

ably accurate graph we can simply draw a smooth

f

f0

0.1 1 10 100
–80

–60

–40

–20

0

20

40

60

80

a( f )(dB)

k = –2

k = –1 k = 1

k = 2

Fig. 15.15 Asymptotic approximations for a linear factor

ð1þ j f=f0Þk (see (15.51))
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curve tangent to the asymptotes at (approximately)

f ¼ f0=10 and f ¼ 10 f0 and passing through the actual
value for f ¼ f0, but that step is seldom necessary.

The asymptotic approximation is sufficient for most

purposes. Besides, if an accurate graph is needed, it is

easy to produce one with the aid of a computer (or

even a modern pocket calculator).

From (15.44), an asymptotic plot of gain versus

frequency is obtained by adding the asymptotic plots

for each term in the transfer function. The procedure is

best elaborated by examples.

Example 15.15. Draw an asymptotic gain plot

for a circuit having the voltage transfer function

Hv ¼ 10 1þ j f=f0ð Þ½ �
1þ j f=f1ð Þ½ �2 ;

where f0 ¼ 100Hz and f1 ¼ 1 kHz.

Solution: The voltage gain is

Av¼10 log Hvj j2
	 


¼10 log
100 1þ f=f0ð Þ2
h i
1þ f=f1ð Þ2
h i2

8><
>:

9>=
>;

¼10 log 100ð Þþ10 log 1þ f=f0ð Þ2
h i

�10 log 1þ f=f1ð Þ2
h i2� �

¼20þ10 log 1þ f=f0ð Þ2
h i

�20 log 1þ f=f1ð Þ2
h i

: (15.53)

The lowest corner frequency is f0 ¼ 100 Hz

and the highest is f1 ¼ 1 kHz. As a rule of thumb,

a gain plot should span a range extending from

1 decade below the lowest corner frequency to

1 decade above the highest corner frequency.

Thus, we want the frequency axis to span at

least the range from 10 Hz to 10 kHz (3 decades).

We choose the minimum frequency to be 10 Hz,

although if we were using five-cycle semi-log

paper, a lower value would do.

To construct the plot, we add the asymptotic

approximations for each term in (15.53). The

asymptotic approximations for the individual

terms are

f00.1f0 10 f0
–40

–30

–20

–10

0

asymptotic

actual

approximation

k = 1

10

Av (dB)

f00.1f0 10 f0

–40

–30

–20

–10

0

asymptotic

actual

approximation

k = 2

10

Av (dB)

a

b

Fig. 15.16 Bode gain plot for a linear factor Hvðf Þ ¼
ð1þ j f=f0Þ�k

f00.1f0 10 f0

7
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4

3
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0
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k = 1

k = 2

8

e(dB)

Fig. 15.17 Error in an asymptotic approximation to a plot of

gain versus frequency (see (15.52))
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a0 fð Þ¼ 10 log 100ð Þ¼ 20 dB;

a1 fð Þ¼
0; f � f0;

20 log
f

f0

� �
; f > f0;

8><
>:

a2 fð Þ¼
0; f � f1;

�40 log
f

f1

� �
; f > f1:

8><
>:

(15.54)

The (overall) asymptotic approximation is the

sum of the individual asymptotic approximations

above:

Av fð Þ ffi a0 fð Þþa1 fð Þþa2 fð Þ
a0 fð Þ ¼ 10 log 100ð Þ¼20 dB;

Av fð Þffi

20 dB; f � f0;

20þ20 log
f

f0

� �
; f0<f � f1;

20þ20 log
f

f0

� �
�40 log

f

f1

� �
; f >f1:

8>>>>>><
>>>>>>:

(15.55)

Figure 15.18 shows the individual asymptotic

approximations defined by (15.54). Figure 15.19

shows the overall approximation given by (15.55)

and (for comparison) the actual gain given by

(15.53).

Example 15.16. Draw an asymptotic plot of

gain versus frequency for

Hv ¼ �
ffiffiffiffiffi
10

p
j f=f0ð Þ

1þ j f=f1ð Þ½ �2 ;

where f0 ¼ 5 kHz and f1 ¼ 300 kHz.

Solution:

Av¼10 log Hvj j2
	 


¼10 log
10 f=f0ð Þ2

1þ f=f1ð Þ2
h i2

8><
>:

9>=
>;

¼10þ20 log f=f0ð Þ�20 log 1þ f=f1ð Þ2
h i

:

(15.56)

10 100 103 104

40

20

0 0

–20

–40

40

20

0

–20

–40

40

20

–20

–40

a0 (dB) a1 (dB)

a2 (dB)

f (Hz)

10 100 103 104

f (Hz)

10 100 103 104

f (Hz)

Fig. 15.18 See Example 15.15
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Because the first term is independent of fre-

quency and the second is a straight line (on a

graph using a logarithmic scale for frequency),

the interesting behavior of the gain is in the

neighborhood of the corner frequency f1. We

choose the frequency-axis limits fmin ¼ 1 kHz;

fmax ¼ 10 MHz because five-cycle semi-log

paper is commonly available. The asymptotic

approximation for the gain is

a fð Þ¼
10þ20 log

f

f0

� �
; f � f1;

10þ20 log
f

f0

� �
�40 log

f

f1

� �
; f>f1:

8>>><
>>>:

(15.57)

From (15.56)

Av f0ð Þ ffi 10 dB; Av f1ð Þ ¼ 39:5 dB (15.58)

The first line segment begins (on our scale)

at fmin ¼ 1 kHz passes through the point (5

kHz, 10.3 dB) with slope 20 dB/decade, and

ends at f1 ¼ 300 kHz. The second line segment

begins at the endpoint of the first (at f ¼ f1) and

has slope � 20 dB=decade (the sum of the

slopes of the terms in (15.57)). Figure 15.20

shows the resulting graph.

In the two examples above, we obtained expres-

sions for the gain in dB and for the asymptotic approx-

imation in dB before drawing the graphs. After a

little experience, those steps become unnecessary.

An asymptotic gain plot can be drawn by inspection

of a transfer function, as follows:

1. Express the transfer function in standard form, as

H¼K jf=f0ð Þk0 1þ jf=f1ð Þk1 1þ j f=f2ð Þk2 . . . 1þ jf=fNð ÞkN ;
where f1<f2< . . .<fN:

2. Set aside the magnitude Kj j of the frequency-inde-
pendent factor K. If there is no such explicit factor,

then by implication Kj j ¼ 1.

3. If the transfer function has a factor of the form

ð j f=f0Þk0 , adjust the frequency f0 to a frequency f 00
that is an integral power of ten and is at least 1

decade below the lowest corner frequency f1; e.g.,

if f1 ¼ 30 Hz, let f 00 ¼ 1 Hz.

Then j f=f0ð Þk0¼ f 00
�
f0

� �k0 j f
�
f 00

� �k0 :
4. Absorb the factor ðf 00=f0Þk0 into the constant K that

was set aside in 1 above; i.e., K0 ¼ f 00
�
f0

� �k0K.
Compute

K0j jdB ¼ 20 log K0j jð Þ
¼ 20 log Kj j þ 20k0 log f 00

�
f0

� �
and set this value aside.

5. Draw a line having slope 20 k0 dB=decade from the

point ðf 00; 0 dBÞ at the left edge of the graph to a point
whose abscissa is the lowest corner frequency f1.
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Fig. 15.19 See Example 15.15
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Fig. 15.20 See Example 15.16
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6. Draw a line having slope 20 k0 þ k1ð ÞdB=decade
from the endpoint of the previous line to a

point whose abscissa is the next lowest corner

frequency f2.

7. Draw a line having slope 20 k0 þ k1 þ k2ð Þ
dB=decade from the endpoint of that line to

a point whose abscissa is the next lowest corner

frequency f3. Continue this process until all factors

are accounted for.

8. Adjust the scale on the vertical axis to account for

the factor K0 by adding K0
dB to each label; e.g., 0 dB

becomes K0
dB.

Example 15.17. Draw an asymptotic gain

plot for the transfer function

Hv ¼ 105 j f=f0ð Þ2 1 þ j f=f2ð Þ
1 þ j f=f1ð Þ2 1 þ j f=f3ð Þ 1 þ j f=f4ð Þ ;

where

f0 ¼ 100 Hz; f1 ¼ 20Hz; f2 ¼ 100 Hz;

f3 ¼ 3kHz; f4 ¼ 50 kHz:

Solution: The steps below are numbered in

agreement with those in the procedure above.

Figure 15.21 shows the completed plot, where

the line segments and the gain adjustment are

numbered in agreement with the steps below.

Gain values given in steps 5–9 refer to the

“original scale” shown in Fig. 15.21. Begin-

ning with step 5, refer to Fig. 15.21 as you

follow the solution.

1. The transfer function is given in standard

from.

2. The constant K ¼ 105.

3. The lowest corner frequency is

f1 ¼ 20 Hz: An integral power of ten that

is at least 1 decade below f1 is f 00 ¼ 1 Hz

Thus j f=f0ð Þ2¼ f 00
�
f0

� �2
j f
�
f 00

� �2
, where

f0 ¼ 100Hz and f 00 ¼ 1Hz.

4. K0 ¼ K f 00
�
f0

� �2¼ 105 1=100ð Þ2¼ 10 )
K0j jdB¼ 20 log K0j jð Þ ¼ 20 dB.

5. The first line segment begins at

f 00; 0 dB
� � ¼ 1Hz; 0 dBð Þ, has slope 40

dB/decade, passes through the point

10Hz; 40 dBð Þ, and terminates at the

lowest corner frequency f ¼ f1 ¼ 20 Hz,

where Av ffi 52 dB.

6. The next line segment, associated with the

corner frequency f1, begins at the end of

the previous one, has slope 40 – 40 ¼
0 dB/decade (is horizontal), and termi-

nates at the next corner frequency

f ¼ f2 ¼ 100 Hz.

7(a) The next line segment, associated with

the corner frequency f2, begins at the end
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Fig. 15.21 Asymptotic gain

plot (piecewise linear)

obtained in Example 15.17.

The true gain (the smooth

curve) is shown for

comparison
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of the previous one, has slope 0 þ 20 ¼
20 dB/decade, passes through the point

(1 kHz; 72 dB), and terminates at

f ¼ f3 ¼ 3 kHz, where Av ffi 80 dB.

7(b) The next line segment, associated with the

corner frequency f3, begins at the end of the

previous one and has slope 20 – 20 ¼ 0 dB/

decade, and terminates at f ¼ f4 ¼ 50 kHz,

where Av ffi 80 dB.

7(c) The last line segment, associated with the

corner frequency f4, begins at the end of the

previous one and has slope 0 – 20 ¼ –20

dB/decade, which means the line passes

through the point (300 kHz; 61 dB) and

continues indefinitely.

8. Finally, we account for the factor K0
dB set

aside in step 4 above by shifting the entire

graph up by K0
dB ¼ 20 dB. Actually, rather

than translate the graph, we simply re-label

the vertical axis by adding 20 dB to each

value, as shown in Fig. 15.21.

With some practice, you will be able to sketch a

graph of gain in decibels versus frequency (logarithmic

scale) for a transfer function (expressed in standard

form) with little effort. From symbolic expressions

for corner frequencies, you will often be able to discern

how various circuit parameters affect a gain of interest

and even the performance of the associated circuit.

15.7 Asymptotic Gain Plots: Quadratic
Factors

As noted above (review the discussion in Section

15.5), a transfer function can contain one or more

quadratic factors that cannot be expressed as products

of linear factors. The standard form for a quadratic

factor having multiplicity k is

1þ 2aj
f

f0

� �
� f

f0

� �2
" #k

; aj j< 1: (15.59)

We limit our discussion to quadratic factors having
multiplicity one (k ¼ �1 in (15.59)), because quadratic

factors having multiplicities greater than one rarely

arise in transfer functions for electronic circuits. For

a quadratic factor in the numerator of a transfer func-

tion, k ¼ 1. For a quadratic factor in the denominator,

k ¼ �1. We show in Chapter 18 that for a stable

circuit, the peaking factor a associated with a qua-

dratic factor in the denominator must be positive. In

this chapter, we limit our attention to stable circuits, so

we assume a> 0 for any quadratic factor appearing in

the denominator of a transfer function. As we show in

Section 15.5 (see (15.38)), the quadratic factor can be

expressed as the product of two linear factors if a 
 1.

The quadratic factor (15.59) is expressed in dB as

a fð Þ ¼ 20k log 1þ 2aj
f

f0

� �
� f

f0

� �2
�����

����� dB: (15.60)

The low- and high-frequency asymptotes for a fð Þ
are

alo fð Þ ¼ a f � f0ð Þ ¼ 20k log 1ð Þ ¼ 0 dB;

ahi fð Þ ¼ a f � f0ð Þ ¼ 20k log
f

f0

� �2
" #

¼ 40k log
f

f0

� �
:

The low- and high-frequency asymptotes intersect

at f ¼ f0. Thus the asymptotic approximation to

(15.60) is given by

a fð Þ ffi
20k log 1ð Þ ¼ 0 dB; f � f0;

40k log
f

f0

� �
dB; f > f0;

8><
>: (15.61)

and is identical to the asymptotic approximation for a

linear factor having multiplicity k; i.e., for

a fð Þ ¼ 20k log 1þ j
f

f0

� � �2�����
�����

¼ 20k log 1þ f

f0

� �2
" #

:
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Figure 15.22 shows graphs of the quadratic factor

given by (15.60) versus frequency for k ¼ �1 and for

selected values of a. Also shown is the asymptotic

approximation (15.61), which for a quadratic factor

is identical to that for a linear factor having multiplic-

ity two. For a ¼ 1,

1þ 2aj
f

f0

� �
� f

f0

� �2

¼ 1þ 2j
f

f0

� �
� f

f0

� �2

¼ 1þ j
f

f0

� � �2
;

(15.62)

so a ¼ 1 (corresponding to a linear factor having

multiplicity two) is the boundary between a (non-

factorable) quadratic factor and two linear factors.

For 0:25 � a � 1, the maximum error (magnitude) in

the asymptotic approximation is about 6 dB, which

equals the maximum error in the asymptotic approxi-

mation for a linear factor having multiplicity two.

Consequently, for an electronic circuit, if a 
 0.25, it

is common practice to approximate a quadratic factor

by a linear factor having multiplicity two, as in

(15.62). If it turns out that a< 0:25 for one or more

quadratic factors and a more accurate graph is needed,

we can resort to a computer-generated graph.

From Fig. 15.22, you can see that the asymptotic

approximation (15.61) is quite good for f � f0 and for

f � f0 and is within about 6 dB of the true value if

a> 0:25. But as we show at the end of this section, the

magnitude of the peak and thus the error in the asymp-

totic approximation increases by about 20 dB/decade

for a< 0:2, from about 8 dB for a ¼ 0:2 to about 28

dB for a ¼ 0:02.

Example 15.18. Draw an asymptotic plot of

voltage gain in dB versus frequency for a cir-

cuit having the transfer function

Hv ¼ 10j f=f0ð Þ
1þ j f=f1ð Þ½ � 1þ 2aj f=f2ð Þ � f=f2ð Þ2

h i ;
(15.63)

where

f0¼ 10kHz; f1¼ 200kHz; f2¼ 3MHz; a¼ 0:3:

Solution: Because a ¼ 0:3> 0:25, we approxi-

mate the quadratic factor as the square of a

linear factor:

1þ 2aj f=f2ð Þ � f=f2ð Þ2ffi 1þ j f=f2ð Þ½ �2:

Thus

Hv ¼ 10j f=f0ð Þ
1þ j f=f1ð Þ½ � 1þ j f=f2ð Þ½ �2 :

We then construct the asymptotic gain plot

in the usual way. Figure 15.23 shows both the

asymptotic plot (dashed line) and the actual

gain (solid line) computed from the transfer

function (15.63). The peak in the gain at the

corner frequency f2 ¼ 3MHz is only about

6 dB above the asymptotic value.

0.1 1 10
–50

–40

–30

–20

–10

0

10

20

f / f0

asymptotic
approximation

a( f ) (dB)

α = 1

α = 0.1 α = 0.25

Fig. 15.22 Graphs of the quantities defined in (15.60) and

(15.61) for k ¼ �1
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To conclude this section, we examine the differ-

ence between the maximum magnitude of a non-

repeated quadratic factor and that of the associated

asymptotic approximation.

From (15.60), the magnitude (gain) of a quadratic

factor having multiplicity one and appearing in the

denominator of a transfer function is given by

a fð Þ ¼ �20 log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f

f0

� �2
" #2

þ 4a2
f

f0

� �2

vuut

¼ �10 log 1� f

f0

� �2
" #2

þ 4a2
f

f0

� �2

8<
:

9=
;:

(15.64)

The frequency at which the maximum value of a fð Þ
occurs is the solution to

da fð Þ
df

¼ 0: (15.65)

Instead of using (15.65) directly, it is easier to find

the maximum of the argument of the logarithm, which

is permissible because the logarithm is a monotonic

function. We can simplify the problem further by

letting

x ¼ f

f0

� �2

:

Thus we find

d

dx
1� xð Þ2þ4a2x

h i
¼ 2 1� xð Þ �1ð Þ þ 4a2 ¼ 0;

which gives

x ¼ f

f0

� �2

¼ 1� 2a2 ) f ¼ f0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2a2

p
: (15.66)

If a< 1
� ffiffiffi

2
p

, the frequency f given by (15.66) is

real and positive and the gain has a relative maximum

(peak) at that frequency. If a 
 1
� ffiffiffi

2
p

, the relative

maximum occurs at f ¼ 0 and there is no peak at a

higher frequency.

For 0< a< 1
� ffiffiffi

2
p

, the magnitude of the peak at

f ¼ f0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2a2

p
is given by

a f0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2a2

p	 

¼ �10 log 1� f0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2a2

p

f0

 !2
2
4

3
5
28<

:
þ 4a2

f0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2a2

p

f0

 !2)
;

which simplifies to

a f0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2a2

p	 

¼ �10 log 4a2 � 4a4

� �
: (15.67)

Figure 15.24 shows a normalized graph of the fre-

quency given by (15.66) versus the peaking factor a.
Figure 15.25 shows a graph of the maximum magni-

tude given by (15.67). These graphs illustrate that as a
decreases from 1

� ffiffiffi
2

p
toward zero, the maximum gain

increases and the frequency of maximum gain

approaches f0.

Example 15.19. Repeat Example 15.18, but

with a ¼ 0:05.

Solution: The asymptotic approximation is

unchanged. The frequency at which the peak

occurs is virtually unchanged, because

f2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2a2

p
ffi 0:997 f2

Figure 15.26 shows both the asymptotic

plot (dashed line) and the actual gain (solid

line) computed from the transfer function

given by (15.63) for a ¼ 0:05 and the corner

frequencies given in Example 15.18. From
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Fig. 15.24 Frequency at which the gain is maximum versus the

peaking factor a
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Fig. 15.25, the maximum gain is approximately

20 dB above the asymptotic approximation, in

agreement with (15.67) and Fig. 15.25.

In this example, once we have drawn the

asymptotic graph, we could obtain an approxi-

mation to the actual gain by drawing a smooth

curve tangent to the asymptotic graph for

f � f1, passing through a point 3 dB

below the asymptotic graph at f ¼ f1, rising

above the asymptotic graph at about 5f1, pass-

ing through a point 20 dB above the asymptotic

approximation at f2 ¼ 3MHz, and becoming

tangent to the asymptotic graph at about 5f2

Again, the main reason for learning to draw asymp-

totic plots is to strengthen ability to see how the

various parameters of a circuit influence the transfer

function of the circuit.

Accurate graphs, if needed for other reasons, are

easily obtained with the aid of a computer or powerful

pocket calculator.

15.8 Asymptotic Plots of Phase Shift
Versus Frequency

As a reminder, a transfer function can be expressed as

Hv ¼ K j
f

f0

� �k0
1þ j

f

f1

� �k1
1þ j

f

f2

� �k2
. . .

1þ 2aa j
f

fa

� �
� f

fa

� �2" #ka

1þ 2ab j
f

fb

� �
� f

fb

� �2" #kb
	 	 	 ;

(15.68)

where each of the integers k0; k1; k2; . . . ; ka; kb; . . . is

either positive or negative, depending upon whether

the associated factor appears in the numerator or

denominator, respectively, of the transfer function.

For example, we may write

Hv ¼
K 1þ j f=f1ð Þ2 1þ 2aaj f=fa � f=fað Þ2

h i
j f=f0ð Þ 1þ j f=f2ð Þ 1þ 2abj f=fb � f=fbð Þ2

h i2

as

Hv ¼ K j
f

f0

� ��1

1þ j
f

f1

� �2

1þ j
f

f2

� ��1

� 1þ 2aaj
f

fa
� f

fa

� �2
" #

� 1þ 2abj
f

fb
� f

fb

� �2
" #�2

:

The phase shift of a circuit is the angle (as a func-

tion of frequency) of the transfer function:

fv ¼ ∡Hv: (15.69)

The angle of a product is the sum of the angles of

the individual factors. From (15.68)
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∡Hv ¼ ∡K þ∡ j
f

f0

� � �k0
þ∡ 1þ f

f1

� � �k1( )

þ∡ 1þ f

f2

� � �k2( )
þ . . .

þ∡ 1þ 2aa j
f

fa

� �
� f

fa

� �2
" #ka8<

:
9=
;

þ∡ 1þ 2ab j
f

fb

� �
� f

fb

� �2
" #kb8<

:
9=
;þ . . . :

Because ∡zk ¼ k∡z and f=f0ð Þ is real, the last

expression can be written

∡Hv ¼ ∡K þ k0p
2

þ k1∡ 1þ f

f1

� � �

þ k2∡ 1þ f

f2

� � �
þ . . .

þ ka∡ 1þ 2aa j
f

fa

� �
� f

fa

� �2
" #

þ kb∡ 1þ 2ab j
f

fb

� �
� f

fb

� �2
" #( )

þ . . . :

(15.70)

In words, the angle of a transfer function given by

(15.68) is the algebraic sum of the angles of the indi-

vidual factors. Again, linear factors having multipli-

cities greater than two and quadratic factors having

multiplicities greater than one rarely arise in transfer

functions for electronic circuits.

The real part of a quadratic factor can be negative

for some frequencies, so we must be careful to put the

angles of the quadratic factors in the correct quadrant

(by keeping track of the signs of the real and imagi-

nary parts).

The first and second terms on the right side of

(15.70) are independent of frequency. The first term

is either zero (if k 
 0) or p (if K< 0) and the second

term is an positive or negative integer multiple of p=2.
Thus the only effect of the first and second terms is a

translation (up or down) by a multiple of p=2 radians.

Frequency dependence of phase shift comes from only

other linear and quadratic factors. All of the other

linear factors have the same form:

f1 ¼ ∡ 1þ j f=f1ð Þk1¼ k1∡ 1þ j f =f1ð Þ

¼ k1 tan
�1 f

f1

� �
: (15.71)

Figure 15.27 shows a graph of the right side of

(15.71) for k1 ¼ �1;þ� 2.

Figure 15.28 shows piecewise straight-line approx-

imations to the curves in Fig. 15.27. The actual curves

also are shown (dotted) for comparison. For k1 ¼ �1,

the approximation consists of a horizontal line at

f1 ¼ 0 for f < 0:1 f1, a line from the point ð0:1 f1; 0Þ

0.1
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Fig. 15.27 Phase shift versus frequency for a linear factor

(see (15.71))
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Fig. 15.28 Piecewise straight-line approximations to the phase

shift introduced by a linear factor
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to the point ð10 f1;� p=2Þ, and a horizontal line at

f1 ¼ �p=2 for f > 10f1. For k1 ¼ �2, the approxima-

tion consists of a horizontal line at f1 ¼ 0 for

f < 0:1f1, a line from the point ð0:1f1; 0Þ to the point

ð10f1;�pÞ, and a horizontal line at f1 ¼ �p for

f > 10f1. Thus two slope changes are associated with

each corner frequency, the slope changes occurring 1

decade below and 1 decade above the corner fre-

quency. The frequencies 0:1f0 and 10f0 associated

with a corner frequency f0 are called phase break
frequencies.

Example 15.20. Draw a piecewise straight-

line graph approximating the phase shift for a

circuit having the transfer function

Hv ¼ �103 j f=f0ð Þ 1þ j f=f2ð Þ
1þ j f=f1ð Þ 1þ j f=f3ð Þ2 ;

where f0 ¼ 10Hz; f1 ¼ 300Hz; f2 ¼ 2 kHz,

and f3 ¼ 50 kHz.

Solution: The procedure is similar that illu-

strated by Example 15.17 for asymptotic gain

plots. The principal differences lie in (1) treat-

ing factors of the form K j f=f0ð Þk and (2) the

piecewise straight-line approximation for the

phase shift of a linear factor 1þ j f=f1ð Þk1 has
two breaks: the first at f1=10 and the second at

10f1. The solution follows.

1. The factor � 103 j f=f0ð Þ contributes a fre-

quency-independent phase shift pþ p=2
¼ 3p=2. We set this aside and treat the

remaining factors.

2. List the phase break frequencies, the

increase in slope associated with each

phase break frequency, and the net slope

after each phase break frequency, being

careful to account for the multiplicities of

the associated factors. The slope increases

associated with a factor at the first and sec-

ond phase break frequencies must have

equal magnitudes and opposite signs; e.g.,

a factor 1þ j f=f1ð Þ in the denominator

decreases the slope by p=4 rad/decade at

f ¼ f1=10 and increases the slope by

� p=4 rad/decade at f ¼ 10f1.

3. Begin the graph at 10 Hz, which is the

largest integral power of ten at least 1

decade below f1. The initial slope is zero

if you begin the graph at least 1 decade

below the lowest corner frequency.

4(a) Draw a horizontal line from 10 Hz to the

first break at f1=10 ¼ 30 Hz.

4(b) Draw a line having slope �p=4 rad=decade
from 20 to 200Hz.

4(c) Draw a line having slope zero (a horizontal

line) from 200 Hz to 3 kHz.

4(d) Draw a line having slope �p=4 rad=decade
from 3 to 5 kHz.

4(e) Draw a line having slope �p=4 rad=decade
from 5 to 20 kHz.

4(f) Draw a line having slope �p=2 rad=decade
from 20 to 500 kHz.

4(g) Draw a horizontal line from 500 kHz to the

end of the graph.

5. Adjust the vertical scale to account for the

factor set aside in step 1 above. In this case,

add 3p=2 to each label (e.g., 0 becomes

3p=2).

Figure 15.29 shows the resulting approxi-

mate graph. The actual (computed) phase shift

also is shown (dotted curve) for comparison.

The phase shift contributed by a quadratic factor

(multiplicity one) is given by

f ¼ �∡ 1þ 2ja
f

f0

� �
� f

f0

� �2
" #

: (15.72)

where 0< a � 1. We do not treat quadratic factors

having multiplicity greater than one because they rarely

arise in analysis of electronic circuits. In (15.72),

Phase break frequency Slope increase

(rad/decade)

Net slope after

(rad/decade)

f1=10 ¼ 30 Hz � p=4 � p=4
f2=10 ¼ 200Hz þ p=4 0

10f1 ¼ 3 kHz þ p=4 þ p=4
f3=10 ¼ 5 kHz � p=2 � p=4
10f2 ¼ 20 kHz � p=4 � p=2
10f3 ¼ 50� 104 Hz

10f3 ¼ 500 kHz

þ p=2 0
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the positive sign applies if the factor is in the numerator

and the negative sign applies if the factor is in the

denominator. If a ¼ 1, (15.72) may be written as the

square of a linear factor:

f ¼�∡ 1þ 2j
f

f0

� �
� f

f0

� �2
" #

¼ �∡ 1þ j
f

f0

� � �2
:

(15.73)

If a< 1, the quadratic factor cannot be expressed as

a product of two linear factors.

Figure 15.30 shows graphs of the angle given by

(15.72) using the positive sign (for a numerator fac-

tor), for a ¼ 0:1; 0:7; 1:0. The graph indicates that a

squared linear factor a ¼ 1:0ð Þ is a fair approximation

to a quadratic factor if a is very close to one, say

a> 0:9, and a step is a fair approximation if a is

small, say a< 0:1. For 0< a< 0:7 About all we can

do (other than resort to a computer) is to either sketch

the graph based upon familiarity with Fig. 15.30 or

compute a few points and draw a smooth curve

through the computed points. In general, if phase

shift is critical in analysis and design, it is best to use

a computer or calculator to generate an accurate graph.

Example 15.21. The voltage transfer function

for a certain circuit is

Hv ¼ j f=f0ð Þ 1þ j f=f2ð Þ
1þ 2aj f=f1ð Þ � f=f1ð Þ2
h i

1þ j f=f3ð Þ
;

where f0 ¼ 10Hz; f1 ¼ 200Hz; f2 ¼ 2 kHz;

and f3 ¼ 50 kHz. Construct graphs of phase

shift versus frequency for a ¼ 0:1; 0:7; 1:0

and comment on the implications for approx-

imating a quadratic factor as the square of

linear factor.

Solution: The phase shift is given by

f ¼ ∡
j f=f0ð Þ 1þ j f=f2ð Þ

1þ 2aj f=f1ð Þ � f=f1ð Þ2
h i

1þ j f=f3ð Þ

Figure 15.31 shows graphs of the phase

shift for three values of the peaking factora.
For a ¼ 1, the quadratic factor is the square of

a linear factor, as in (15.73). The graph sug-

gests that approximating the quadratic factor as

the square of a linear factor having the same

corner frequency is not too bad if a 
 0:7.

In some electronics textbooks, a quadratic factor is

approximated by the square of a linear factor having

the same corner frequency, regardless of the value of

the peaking factor a. As shown in Section 15.7, such

an approximation gives reasonably good results for

gain, provided the magnitude of the parameter a is

larger than about 0.25. But for phase shift, such an

approximation is poor if a is smaller than about 0.7.

fv
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Fig. 15.29 See Example 15.20
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Fig. 15.30 Phase shift introduced by a quadratic factor (see

(15.72))
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Because phase shift is at least as important as gain in

many applications, it might be necessary to use a

computer or calculator to obtain a sufficiently accurate

representation of phase shift versus frequency if

a< 0:7

15.9 Filters and Bandwidth

All physical circuits are frequency selective, meaning

that any circuit attenuates or amplifies some sinusoidal

inputs more than others. Some linear circuits, called

filters, are designed to allow certain sinusoidal inputs

to reach a load with minimal differences in attenuation

or gain and to prevent others from reaching the load.

Such filters are said to pass some sinusoidal inputs and

reject (or stop) others, and are characterized by pass-
bands and stopbands. The passband gain of a filter is

approximately uniform. The stopband gain is much

smaller than that in the passband. Sinusoids having

frequencies in the passband all reach the load having

undergone approximately the same attenuation or

amplification. Sinusoids having frequencies in the

stopband also reach the load, but after having under-

gone much more attenuation (or much less amplifica-

tion) than those in the passband.

Figure 15.32 shows qualitative graphs of gain

versus frequency for four important kinds of filters,

named as follows:

• A lowpass filter has a passband that extends from

f ¼ 0 to some finite frequency and a stopband that

extends from that frequency to infinity (ideally).

• A highpass filter has a stopband that extends from

zero to some finite, non-zero frequency and a pass-

band that extends from that frequency to infinity

(ideally).

• A bandpass filter has a passband that lies between

two finite, non-zero frequencies and stopbands on

each side of the passband.

• A bandstop filter has a stopband that lies between

two finite, non-zero frequencies and passbands on

each side of the stopband.

The bandwidth of a lowpass or bandpass filter is

the width (Hz) of the passband. Highpass and bandstop

filters are described in terms of their stopbands,

because their passbands are (ideally) infinite.

Filters are used to select a signal of interest from

among many others. For example, a radio receiver uses

filtering to select one of the many AM and FM broad-

cast stations available in any geographical area. Such

selection is possible because the significant sinusoidal
components of a signal are confined to a finite band on

the frequency axis. For example, the significant com-

ponents of a current or voltage representing telephone-
quality speech lie between 300 Hz and 4 kHz. In other

words, if we eliminate all of the sinusoidal components

outside that band from a speech signal and listen to

the signal so obtained, we will be able to understand

what is said and (if the speaker is someone we know)

recognize the speaker, which are the two main require-

ments for telephone-quality speech.

The bandwidth of a signal is the width of the band

(Hz) occupied by the significant components of the

signal. The meaning of significant depends upon both

the signal and the application. For example, so far as

f

f0

f
p
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Fig. 15.31 See Example 15.21
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Fig. 15.32 Qualitative graphs of gains of (a) lowpass and

bandpass circuits and (b) bandpass and bandstop circuits
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AM radio is concerned, the significant components of

a music or speech signal lie in a band extending from

zero to about 5 kHz, whereas for FM, that band

extends from zero to about 15 kHz. Thus the band-

width of a signal heard on an AM radio is about 5 kHz,

whereas the bandwidth of a signal heard on an FM

radio is about 15 kHz.

All filters introduce distortion, even for signals in

their passbands. The quality of a filter is measured in

part by the amount of distortion introduced. To define

or quantify distortion, we must first describe what is

meant by absence of distortion. By definition, a circuit

having input vS and output vL provides distortionless
transmission if the circuit time-domain transfer char-

acteristic has the form

y tð Þ ¼ Kx t� t0ð Þ; (15.74)

where x tð Þ is an input (current or voltage) and y tð Þ is
the corresponding output (current or voltage). The

parameters K and t0 are independent of both time

and frequency. In words, a circuit provides distortion-

less transmission for an input if the output is simply an

amplitude scaled (by K) and time delayed (by t0)

version of the input. This condition can be explained

in familiar terms. When you listen to recorded music

using a high-quality audio system, there are two

acceptable differences between what you hear and

what you would have heard at the original perfor-

mance. One is loudness, which you can control using

the loudness control on the amplifier. The other is the

time difference between recording and playback. Nei-

ther of these differences is perceived as distortion

because neither alters the basic structure of the acous-

tic wave incident on your eardrum. In (15.74), the

difference in loudness is represented by the scale fac-

tor K and the time difference by the delay t0.

To obtain frequency-domain conditions for distor-

tionless transmission, we must first obtain the transfer

function of a distortionless circuit. To that end, we

assume a transfer characteristic of the form (15.74)

and a sinusoidal input represented in complex form as

~x ¼ ~X exp jotð Þ:

where ~X is the phasor for the input. From (15.74), the

complex representation of the output is

~y ¼ K ~X exp jo t� t0ð Þ½ � ¼ ~Y exp jotð Þ:

Thus the phasor for the output is

Y ¼ K ~X exp �jot0ð Þ:

It follows that the transfer function is

H ¼
~Y
~X
¼ K exp �jotð Þ: (15.75)

The transfer function given by (15.75) might be any

of the four possible kinds, depending upon the dimen-

sions of the input ~x tð Þ and output ~y tð Þ; e.g., if both are

voltages, the transfer function is a voltage transfer

function. So the condition for distortionless transmis-

sion is that the transfer function of interest must have

the form (15.75).

In (15.75), we may assume K> 0, because inver-

sion (sign change) does not introduce distortion. Thus

the gain and phase shift of a distortionless circuit are

given by

A ¼ Hj j ¼ K; f ¼ ∡H ¼ �2pft0; K> 0: (15.76)

In view of (15.76), the condition for distortionless

transmission is usually stated as follows: A circuit
provides distortionless transmission if the gain is inde-

pendent of frequency and the phase shift is a linear

(straight-line) function of frequency.
No physical circuit can provide distortionless trans-

mission for all frequencies. At best, a physical circuit

can provide approximately distortionless (high-fidel-

ity) transmission for a limited class of signals, such as

signals representing music, speech, or video. Ideally,

any one of the four filters described above should

introduce no distortion in its passband. Distortion in a

stopband is irrelevant, because signals in the stopband

are greatly attenuated relative to those in the passband.

A linear filter can introduce two kinds of distortion:

amplitude distortion, caused by frequency-depen-

dent gain in the passband, and phase distortion,
caused by nonlinear phase shift in the passband. The

relative importance of these two kinds of distortion

depends upon the signals involved. The human ear is

relatively insensitive to phase distortion in speech, so

phase distortion is relatively less important than

amplitude distortion in some speech transmission sys-

tems. That difference is significant because it is easier

(cheaper) to limit amplitude distortion than it is to

limit both amplitude and phase distortion.
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Even so, and fortunately, gain and phase shift of

many filter circuits are related such that if gain is

approximately independent of frequency over a certain

band, then phase shift is approximately linear over the

same or a slightly smaller band. Consequently, in

many applications, gain alone is used to define circuit

bandwidth, especially in cases where phase distortion

is less disruptive than amplitude distortion. Below, we

define circuit bandwidth in terms of gain alone. How-

ever, there are many important applications where phase

distortion is at least as disruptive as amplitude distor-

tion, so when high-fidelity transmission is required, both

gain and phase shift should be considered.

A widely used quantitative definition of bandwidth

is the half-power or 3 dB bandwidth. For lowpass

and bandpass circuits, the half-power bandwidth is the
width (in Hz) of the band over which the squared gain

is no less than half the square of a reference gain,

usually the maximum or average gain in the passband.
Equivalently, the half-power bandwidth is the width

(in Hz) of the band over which the gain is no more than

3 dB below the reference gain. Thus the half-power
(3 dB) bandwidth of a lowpass or bandpass circuit

is the range of frequencies for which

A2

A0
2

 1

2
) AdB 
 A0dB � 3; (15.77)

where A0 is the reference gain and A0 dB ¼ 20 log A0ð Þ.
The 3 dB bandwidth is convenient partly because it

often corresponds to a corner frequency in an asymp-

totic plot of gain versus frequency.

Example 15.22. The voltage transfer function

for a certain lowpass circuit is

Hv ¼ 1

1þ j f=f0

Use the dc gain as the reference gain and find

the half-power bandwidth of the circuit.

Solution: The squared voltage gain is given by

Av
2 ¼ 1

1þ f=f0ð Þ2

The squared reference (dc) gain is A0
2 ¼

Av
2 0ð Þ ¼ 1. The half-power bandwidth consists

of the frequencies for which

A2

A0
2

 1

2
) 1

1þ f=f0ð Þ2 

1

2
) f

f0
� 1 ) f � f0

The half-power bandwidth is f0

Bandwidth is seldom used to describe highpass and

bandstop filters. The width of the passband for such

circuits is (theoretically) infinite. Instead, such a cir-

cuit usually is described (in part) by the width of its

stopband, which is often defined as the width (in Hz)

of the band over which the squared gain is no more

than half the square of a reference gain, usually either

the maximum or average gain in the passband. Equiv-

alently, the width of the stopband is the width (in Hz)

of the band over which the gain is at least 3 dB below
the reference gain. Thus the width of the stopband

of a highpass or bandstop circuit is the range of

frequencies for which

A2

A0
2
� 1

2
) AdB � A0dB � 3; (15.78)

where A0 is the reference gain and A0 dB ¼ 20 log A0ð Þ.

Example 15.23. The voltage transfer function

for a certain highpass circuit is

Hv ¼ j f=f0
1þ j f=f0

Use the maximum passband gain as the

reference gain and find the half-power width

of the stopband.

Solution: The squared voltage gain is given by

Av
2 ¼ f=f0ð Þ2

1þ f=f0ð Þ2

The maximum gain occurs for f ! 1,

where Av fð Þ ! 1, so the squared reference
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gain is A0
2 ¼ Av

2 1ð Þ ¼ 1. The half-power

width of the stopband consists of the frequen-

cies for which

A2

A0
2
� 1

2
) f=f0ð Þ2

1þ f=f0ð Þ2 �
1

2
) f

f0
� 1

) 0 � f � f0

The half-power width of the stopband is f0

Although half-power bandwidth is a widely used

definition of bandwidth, it is not the only definition in

use. For example, the bandwidth of a high-quality

audio amplifier might be defined as the width of the

band for which the gain is within 0.5 dB of the average

passband gain.

Moreover, many useful circuits are not simply low-

pass, highpass, bandpass, or bandstop. For some such

circuits, bandwidth is more generally defined as the

width of the band over which the circuit performs its

intended function. For example, the bandwidth of an

integrating circuit refers to the band of frequencies for

which the circuit performs as an integrator.

15.10 Frequency Response

Quantities (such as transfer functions) used to specify

or describe circuit performance should be measurable

so one can verify performance experimentally. As

commonly used in textbooks, the frequency response

of a circuit is essentially the measured or calculated

voltage transfer function of the circuit. In practice,

frequency response almost always refers to a measured

voltage gain in dB versus frequency.

Various specialized and sophisticated instruments

are available for measuring frequency response,

but the relatively primitive scheme illustrated by

Fig. 15.33 is instructive. The VF O (variable-

frequency oscillator) generates a variable-frequency

sinusoidal voltage at the circuit input and serves as

the phase reference. The oscilloscope displays both

the input and output voltages on the same time axis.

The measurement is made by recording the peak

ch A com ch B

T

+
-

ZS

Zin

Zout
ZLV~in

V~L

+

-

+

-

VFO circuit under test

load

oscilloscope

V~inμ ( f )

vinp-p =2VS vLp-p = 2VL

tθ

V~S

Fig. 15.33 Measurement of

frequency response

572 15 Transfer Functions and Frequency-Domain Analysis



amplitudes of the input and output and the phase delay

of the output from the oscilloscope screen at each of

several frequencies in the band of interest. The voltage

gain at each measurement frequency f is then recorded

as

FR fð Þj j ¼ VLp�p fð Þ
Vinp�p fð Þ ; (15.79)

where Vinp�p and VLp�p are the peak-to-peak ampli-

tudes of the input and output, respectively.6 The phase
shift at each measurement frequency f is the initial

phase of the output (relative to that of the input) and

is recorded as

∡FR fð Þ ¼ �2p f ty fð Þ; (15.80)

where tyðf Þ is the measured phase delay at the fre-

quency f. Recall that phase delay is measured from a

positive peak of the input (the reference peak) to the

nearest-neighbor positive peak of the output. (An

equivalent and perhaps more accurate method is to

measure the time from a positive-going or negative

going zero crossing for the input to the nearest-neigh-

bor crossing of the same kind for the output.) The

phase delay is positive if the nearest peak of the output

is to the right of the reference peak and negative if the

nearest peak of the output is to the left of the reference

peak, as it is in Fig. 15.33. The frequency can be

verified by measuring the period T and using the

relation f ¼ T�1.

A measured frequency response and the

corresponding (mathematically defined) voltage trans-

fer function are (in general) not quite the same things.

The measured frequency response takes the voltage ~Vin

at the input terminals of the circuit as the input, whereas

the mathematically defined frequency response takes

the available (Thévenin-equivalent) voltage ~VS as the

input. With reference to Fig. 15.33, the voltage ~Vin used

in the measurement is given by

~Vin ¼ Zin
Zin þ ZS

~VS; (15.81)

where Zin is the input impedance of the circuit, ZS is the

output impedance of the source, and ~VS is the available

voltage. If the impedances Zin; ZS are known, the

measured frequency response can be corrected to

account for source impedance. In many cases such

correction is unnecessary because Zinj j � ZSj j and

thus (from (15.81)), ~Vin ffi ~VS.

Generally, the load impedance used in measuring

a frequency response is known, so if the circuit

output impedance is known, the measured frequency

response can be corrected to account for another,

different load impedance.

Moreover, it is usually the shape of a frequency

response (selectivity) that is of interest, and not the

actual magnitudes. That is, we are primarily interested

in the gains at some frequencies relative to the gains at

others, and not necessarily the actual gain at either. If the

actual source and load impedances and the source and

load impedances used for a measurement are all resis-

tive, then the actual (in-use) voltage transfer function

and themeasured transfer function (frequency response)

differ only by a frequency-independent scale factor.

We can in principle measure any of the four transfer

functions for a circuit, but the one measured is almost

invariably the voltage transfer function, primarily

because it is easier to obtain a voltage source than a

current source and it is easier to measure voltage than

it is to measure current. Here again, if we know the

impedances of our instruments and the actual source

and load impedances when the circuit is in use, we

often can deduce other transfer functions from the

measured voltage transfer function.

15.11 Problems

Section 15.1 is prerequisite to the following
problems.

P 15.1 Refer to Fig. P 15.1. Obtain expressions for

the voltage transfer function, the current transfer func-

tion, the transimpedance, and the transadmittance for

each circuit.

P 15.2 Refer to Fig. P 15.2. Obtain expressions for

the voltage transfer function, the current transfer

6Gain also could be expressed in terms of peak amplitudes;

however, it usually is easier to obtain accurate values for peak-

to-peak amplitudes from an oscilloscope display than it is to

obtain accurate readings of peak amplitudes – especially if a dc

component also is present.
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function, the transimpedance, and the transadmittance

for each circuit.

P 15.3 Refer to Fig. P 15.3. For each circuit,

RS ¼ 50 O;Ri ¼ 20 kO;C ¼ 20 nF;RF ¼ 50 kO;

Ro ¼ 100 O;RL ¼ 10 kO:

Obtain expressions for the voltage transfer func-

tion, the current transfer function, the transimpedance,

and the transadmittance. Use all reasonable approxi-

mations (10% error is tolerable). Then find the load

voltage vL tð Þ for
vSðtÞ ¼ V0½1þ cosðo0tÞ þ 0:5 cosð2o0tÞ

þ 0:2 cosð3o0tÞ�;V0 ¼ 10 V; f0 ¼ 100 kHz

or

iSðtÞ ¼ I0½1þ cosðo0tÞ þ 0:5 cosð2o0tÞ
þ 0:2 cosð3o0tÞ�; I0 ¼ 200 mA; f0 ¼ 100 kHz

as appropriate.

Section 15.2 is prerequisite to the following

problems.

P 15.4 You have asked your design team to propose

various alternatives for achieving a voltage transfer

function having the form
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Hv ¼ K

1þ j f=f0ð Þ

independent of the source and load impedances. The

value of K is unimportant, but the parameter f0 is

specified. Your team returns with the circuits shown

in Fig. P 15.4.

(a) Show that under certain conditions the transfer

function of each has the form above. Express K
and f0 in terms of the circuit parameters and state

conditions necessary to making the transfer func-

tion independent of the source and load.

(b) Choose the one you think is best, and explain why

you made that choice.

P 15.5 The input impedance of a certain amplifier is

known to be resistive and fixed for frequencies up to

10 MHz. In the laboratory, the amplifier is driven by

a fixed-amplitude, variable-frequency sinusoidal volt-

age source having negligible output impedance. It is

observed that the rms amplitude of the load voltage is

almost independent of frequency for frequencies up to

about 100 kHz, at which point the load voltage begins

decreasingwith increasing frequency.What, if anything,

does this tell you about the amplifier, the load, or both?

P 15.6 The output impedance of a certain circuit is

known to be resistive and fixed for frequencies up to

10 MHz. In the laboratory, the amplifier is driven by

a fixed-amplitude, variable-frequency sinusoidal volt-

age source. It is observed that the rms amplitude of

the load voltage is almost independent of frequency

for frequencies up to about 100 kHz, at which point

the load voltage begins decreasing with increasing

frequency. What, if anything, does this tell you about

the circuit, the load, or both?

P 15.7 For each circuit in Fig. P 15.3 (Problem P

15.3), describe how you would specify the input imped-

ance Zi ¼ Ri= 1þ joRiCÞð and the output resistance Ro

relative to the source and load impedances if the circuit

is to function for frequencies below 10 kHz as (a) a

voltage amplifier, (b) a current amplifier, (c) a transad-

mittance amplifier, and (d) a transimpedance amplifier.

P 15.8 An amplifier is to drive an inductive load,

where the load current is to be proportional to the
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available voltage from a source. (a) Which of the

four transfer functions should be independent of the

source and load impedances? (b) The load impedance

is given by

ZL ¼ RL þ joL;

with RL ¼ 100 O and L ¼ 500 mH. The output

impedance of the amplifier is resistive for frequencies

up to 100 kHz. If the appropriate transfer function is

to be independent of the load for frequencies up to

500 Hz, what is the minimum allowable value for the

amplifier output resistance? Express your answer in

the form Rout � .

P 15.9 Refer to Fig. P 15.5, where

RS ¼ 100O;C ¼ 25 pF;R0 ¼ 25 kO; m ¼ 10;

Rout ¼ 75O;RL ¼ 200O; L ¼ 10H; vS ¼ VS cos otð Þ:

For what frequencies is the voltage transfer func-

tion approximately independent of frequency?

Express your answer in the form � f � .

P 15.10 Refer to Fig. P 15.6, where

RS ¼ 100 O;C ¼ 25 pF;R0 ¼ 25 kO; m ¼ 10;

Rout ¼ 75 O; vS ¼ VS cos otð Þ
and

ZL ¼ K

1þ j f=f1ð Þ ; f1 ¼ 10 MHz; K ¼ 1 kO:

For what frequencies (if any) is the voltage transfer

function approximately independent of frequency?

Express your answer in the form � f � .

P 15.11 See Fig. P 15.7. (a) Obtain an expression

for the voltage transfer function of the circuit. (b) Let

RS ¼ 25 O;R1 ¼ 10 kO;R2 ¼ 1MO;C1 ¼ 12 pF;

C2 ¼ 30 pF;RL ¼ 5 kO:

For what frequencies (if any) is the voltage

transfer function approximately independent of

frequency? Express your answer in the form

� f � .

(c) Find the frequencies for which each of the

current transfer function, the transadmittance, and

the transimpedance are approximately independent

of frequency. Express each answer in the form

� f � .
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Section 15.3 is prerequisite to the following
problems.

P 15.12 Find the voltage gain and phase shift, the

current gain and phase shift, the transadmittance and

associated phase shift, and the transimpedance and

associated phase shift for each circuit in Problem

P 15.3 and for f ¼ 100; 200; 300 Hz.

P 15.13 Refer to Fig. P 15.8, where the op

amp is ideal. The specified dc input resistance is

Rin ¼ 10 kO. The rms amplitude of the output is to

be no larger than 70.7% of the rms amplitude of the

input for any sinusoidal input having frequency

greater than f1 ¼ 25 kHz. Specify R, RF, and C.

Assume the source impedance is negligible, relative

to the specified input resistance.

P 15.14 One of your associates presents you with

the graph of voltage versus time shown in Fig. P 15.9,

which he claims is the response of a certain low-pass

filter to a 10-V step input. How do you know that he

has made an error?

P 15.15 A certain amplifier is driven by a sinu-

soidal source at a frequency for which the output

impedance of the amplifier is known to be resis-

tive. Figure P 15.10 shows a graph of the voltage

transferred by the amplifier to a resistive load versus

the resistance of the load. (a) What is the output

resistance of the amplifier? (b) If the output resis-

tance were not resistive, could you deduce the mag-

nitude of the output impedance from the graph in

Fig. P 15.10?

Section 15.4 is prerequisite to the following
problems. Express all gains in dB.

P 15.16 The voltage gain of a certain amplifier

equals 104 at 10 kHz, and is down by 40 dB from

that value at 100 kHz. What is the voltage gain at 100

kHz?

P 15.17 The current gain of a certain amplifier

equals 103 at 10 kHz, which is 25 dB below the dc

current gain. What is the dc current gain?

P 15.18 The transadmittance of a certain circuit is

normalized to its dc value and expressed in dB (the

normalized dc transadmittance equals 0 dB). The nor-

malized transadmittance at 15 kHz is� 6 dB. What is

the ratio of the transadmittance (not dB) at 15 kHz to

the dc transadmittance (not dB)?

P 15.19 The transimpedance of a certain circuit

is normalized to its value at 10 kHz and expressed

in dB. It is found that the normalized transimpe-

dance is 10 dB at 1 kHz and � 20 dB at 100 kHz. If

the actual transimpedance at 100 kHz is 2 kO, what
are the transimpedances (not dB) at 1 and 10 kHz?
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P 15.20 Figure P 15.11 shows an audio bass boost

circuit. Obtain the voltage transfer function and plot

voltage gain and phase shift versus frequency. Assume

the op amp is ideal and that the source impedance is

negligible.

P 15.21 Figure P 15.12 shows an audio bass boost

circuit. Obtain the voltage transfer function and plot

voltage gain and phase shift versus frequency. Assume

the op amp is ideal and that the source impedance is

negligible.

P 15.22 Figure P 15.13 shows an audio crossover

circuit, where the output vhi is to drive a small tweeter

speaker and vlow is to drive a larger midrange + woofer

speaker. You may assume the op amps are ideal.

Obtain and plot the frequency response (voltage

gain) for each of the two sections.

P 15.23 Three voltage amplifiers are connected in

cascade and driven by a sinusoidal source having

frequency f0 and output impedance Rout ¼ 100O.
The voltage transfer functions of the three amplifiers

at the frequency of the source are

H1v ¼ 50ff 0;H2v ¼ 40ff 0:25;H3v ¼ 5ff 0:14:

Each amplifier has input impedance Rin ¼ 80 kO
and output impedance Rout ¼ 50O. The load on the

cascade amplifier is RL ¼ 2 kO. Find the overall volt-

age gain (dB) and phase shift at the frequency f0 (a)

ignoring loading and (b) including loading.

P 15.24 A sinusoidal voltage vðtÞ ¼ V0 cosðotÞ
having amplitude V0 ¼ 1 V is applied to the term-

inals of a loudspeaker. The resulting sound intensity

is 70 dB at a point 1 m from the loudspeaker. The

amplitude of the sinusoid is increased until the

sound intensity at the same point reaches 100 dB.

What is peak amplitude of the resulting voltage

across the terminals of the loudspeaker?

P 15.25 The voltage across a resistor is tripled.

What is the increase in dB of power dissipated?

P 15.26 A sinusoidal voltage is applied to the term-

inals of a resistor and the power dissipated by the

resistor is calculated. By what factor must the voltage

be increased to double the power dissipated? By how

many dB?

Section 15.5 is prerequisite to the following

problems.

P 15.27 Refer to Problem P 15.20, where R2 � R1.

(a) Express the voltage transfer function in standard

form as

Hv ¼ K
1þ j f=f0ð Þ
1þ j f=f1ð Þ
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–
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and express the parameters K; f0; f1 in terms of the

circuit parameters. (b) Which circuit parameter(s)

would you change (and in what direction) if you

wished to increase f1 without changing f0? (c) Which

circuit parameter(s) would you change (and in what

direction) if you wished to increase f0 without chang-

ing f1? (d) Which circuit parameters (if any) affect

both corner frequencies?

P 15.28 Express each transfer function below in

standard form. Define all corner frequencies and

other constants in terms of circuit parameters appear-

ing in the original expression. Describe how increas-

ing each circuit parameter affects each corner

frequency.

ðaÞ Hi ¼ 50

joR0C0 1þ joR1C1ð Þ ;

ðbÞ Hv ¼ 1

1þ 1:8 joRCþ joRCð Þ2 ;

ðcÞ Hz ¼ Rþ joL
1þ joRC

;

ðdÞ Hy ¼ 1

R
þ joCþ 1

joL
;

ðeÞ Hv ¼ 1þ joRCð Þ joRCð Þ2

1þ joRCð Þ joRCð Þ2þ2þ joRC
h i ;

ðfÞ Hv¼ RinRLm0
RLþRoutþ joRLRoutCLð Þ RinþRSþ joLSð Þ ;

ðgÞ Hv ¼ 20

1� o2LCþ 2jaoRC
:

Section 15.6 is prerequisite to the following

problems.

P 15.29 Draw asymptotic plots of gain versus fre-

quency for each of the following transfer functions:

ðaÞ Hv ¼ K
1þ j f=f0
1þ j f=f1

; K ¼ 10;

f0 ¼ 200 Hz; f1 ¼ 5 kHz

;

ðbÞ Hv¼K
1þ j f=f0
1þ j f=f1

� �2
; K¼10;

f0¼200Hz; f1¼5 kHz

;

ðcÞ Hv ¼ K

j f=f0ð Þ 1þ j f=f1ð Þ ; K¼ 20;

f0 ¼ 1 Hz; f1 ¼ 1 kHz

;

ðdÞ
Hv ¼ K

j f=f0ð Þ 1þ j f=f1ð Þ3 ; K¼ 20;

f0 ¼ 1 Hz; f1 ¼ 1 kHz

;

ðeÞ Hv ¼ 120

1þ j f=f0ð Þ 1þ j f=f1ð Þ 1þ j f=f2ð Þ ;

f0 ¼ 1 kHz; f1 ¼ 10 kHz; f2 ¼ 50 kHz;

ðfÞ
Hv ¼ K 1þ j f=f2ð Þ

j f=f0ð Þ 1þ j f=f1ð Þ2 ; K ¼ 20;

f0 ¼ 1 Hz; f1 ¼ 1 kHz; f2 ¼ 10 Hz:

Section 15.7 is prerequisite to the following

problems.

P 15.30 Draw asymptotic plots of gain versus

frequency for each of the following transfer functions:

ðaÞ
Hv ¼ K

1þ 2 ja f=f0 þ j f=f0ð Þ2 ;

a ¼ 0:9; K ¼ 1; f0 ¼ 5 kHz

;

ðbÞ Hv ¼ K
1þ 2 ja f=f0ð Þ � f=f0ð Þ2

j f=f0ð Þ ;

a ¼ 0:8; K ¼ 100; f0 ¼ 20 kHz

;

ðcÞ
Hv ¼ �50 1þ j f=f2ð Þ

1þ j f=f3ð Þ 1þ 2 ja f=f1ð Þ � f=f1ð Þ2
h i ;

f1 ¼ 20 kHz; f2 ¼ 10 Hz; f3 ¼ 100 Hz;

a ¼ 0:75;

ðdÞ Hv ¼ � 20 f=f0ð Þ2
1þ 2 ja f=f0ð Þ � f=f0ð Þ2 ;

f0 ¼ 2 kHz; a ¼ 0:7;

ðeÞ Hv ¼ K
120 1þ 2 ja0 f=f0ð Þ � f=f0ð Þ2
h i

j f=f0ð Þ 1þ 2 ja1 f=f1ð Þ � f=f1ð Þ2
h i ;

f0 ¼ 1 kHz; f1 ¼ 20 kHz; a0 ¼ 0:8; a1 ¼ 0:9;
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ðfÞ
Hv ¼ �150 1þ j f=f2ð Þ j f=f0ð Þ2

1þ j f=f3ð Þ 1þ 2 ja f=f1ð Þ � f=f1ð Þ2
h i ;

f0 ¼ 10 kHz; f1 ¼ 20 kHz; f2 ¼ 10 Hz;

f3 ¼ 100 Hz; a ¼ 0:7:

Section 15.8 is prerequisite to the following
problems.

P 15.31 Draw asymptotic plots of phase shift versus

frequency for each of the transfer functions defined in

Problem P 15.29.

P 15.32 Draw asymptotic plots of phase shift versus

frequency for each of the transfer functions defined in

parts (a–f) of Problem P 15.30.

Section 15.9 is prerequisite to the following

problems.

P 15.33 The voltage transfer function for a certain

circuit has the form

Hv ¼ Kj f=f0ð Þ
1þ j f=f0ð Þ :

The circuit is to provide high-fidelity transmission for

any group of sinusoids whose minimum frequency is

greater than some specified frequency fmin. Obtain a

constraint on the parameter f0.
P 15.34 : The circuit in Fig. P 15.14 is an audio

bass boost circuit. Assume the op amps are ideal and

the source impedance is negligible.

(a) Obtain a standard-form expression for the voltage

transfer function.

(b) Plot the voltage gain and phase shift versus fre-

quency, using a logarithmic scale for frequency.

Explain why the circuit is called a bass boost

circuit. How much boost (in dB) is provided?

For what frequencies? For what frequencies does

the circuit provide high-fidelity transmission?

(c) Determine which circuit parameters have the

greatest influence on the boost (dB) and the fre-

quencies boosted.

P 15.35 : The circuit in Fig. P 15.15 is an audio

bass boost circuit. Assume the op amp is ideal and the

source impedance is negligible.

(a) Obtain a standard-form expression for the voltage

transfer function.

(b) Plot the voltage gain and phase shift versus fre-

quency, using a logarithmic scale for frequency.

Explain why the circuit is called a bass boost

circuit. How much boost (in dB) is provided?

For what frequencies? For what frequencies does

the circuit provide high-fidelity transmission?

(c) Determine which circuit parameters have the

greatest influence on the boost (dB) and the fre-

quencies boosted.

P 15.36 : The circuit shown in Fig. P 15.16 is a

delay equalizer for an audio application. Obtain the

voltage transfer function and plot voltage gain and

phase shift versus frequency. Assume that the op+
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amp is ideal and that the source impedance (magni-

tude) is negligible.

P 15.37 The voltage transfer function for a certain

filter is

Hv ¼ K

1þ j f=f1ð Þ 1þ j f=f2ð Þ 1þ j f=f3ð Þ ;

with f1 ¼ 20 kHz, f2 ¼ 500 kHz, f3 ¼ 1 MHz, and

K ¼ 100. (a) Construct an asymptotic plot of the volt-

age gain versus frequency for the filter. What kind of

filter is this? (b) Find the 3 dB bandwidth of the filter.

(c) Suppose the values of the corner frequencies were

unknown, but it is known that 0< f1 � f2 � f3. In that
case, what is the 3 dB bandwidth of the filter?

P 15.38 The voltage transfer function for a certain

filter is

Hv ¼ K j f=f1ð Þ
1þ j f=f1ð Þ 1þ j f=f2ð Þ ;

with f1 ¼ 20 kHz, f2 ¼ 500 kHz, and K ¼ 1. (a) Con-

struct an asymptotic plot of the voltage gain versus

frequency for the filter. What kind of filter is this? (b)

Find the 3 dB bandwidth of the filter. (c) Suppose the

values of the corner frequencies were unknown, but it

is known that 0< f1 � f2. In that case, what is the 3 dB

bandwidth of the filter?

P 15.39 The squared voltage gain for a certain filter

has the form

Av
2 ¼ 1

1þ f=f0ð Þ8 ;

where f0 ¼ 10 kHz. Construct an asymptotic plot of

the voltage gain in decibels versus frequency for the

filter. What kind of filter is this? Obtain an expression

for the 3 dB bandwidth of the filter.

P 15.40 The voltage transfer function for a certain

circuit has the form

Hv ¼ j f=f0ð Þ
1þ 2 jað f=f0Þ � f=f0ð Þ2

Show that if a � 1, the half-power bandwidth of

the circuit is given by 2a f0.
P 15.41 Figure P 15.17 shows a buffered twin-T

notched filter. (a) Obtain an expression for the voltage

transfer function (in standard form) and show that

Hv f0ð Þ ¼ 0, where f0 ¼ 4pRCð Þ�1
. (b) Show that

the 3 dB notch width equals 4f0. (c) Construct a

graph of the voltage gain in dB versus f=f0, for

0:1 � f=f0 � 10 and for Av > � 100 dB.

P 15.42 Refer to Fig. P 15.18, where the frequency

of the source is known and denoted by f0. The circuit
input resistance and the source output resistance are

known and denoted by Rin and RS, respectively. The

output resistance of the circuit is negligible. It is found

by measurement that ~V1

�� �� ¼ V10 and ~VL

�� �� ¼ VL0.

Express the voltage gain at the frequency f0 in terms

of the measured voltages.

P 15.43 Measurements made on a certain linear

circuit as shown Fig. P 15.19 yield the values given

R = 2.37kΩ, C1 = 27nF, C2 = 220pF
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in the table below. The load resistance equals 500 O,
the source resistance equals 50 kO, the circuit input

resistance equals 20 kO, and the circuit output resis-

tance equals 50 O. From these data, estimate the volt-

age gain, the current gain, and the magnitudes of the

transimpedance and transadmittance at each of the

frequencies in the table.

P 15.44 Refer to Fig. P 15.20. The switch is moved

from a to b at t ¼ 0, having been at a for t< 0. Figure

P 15.21 shows a graph of the ratio vL=V0 versus time.

The circuit is known to consist of only resistors and

a single capacitor. (a) What is the dc voltage gain of

the circuit? (b) The switch is returned to position a
and the dc source V0 is replaced by a sinusoidal source
~VS having the same source impedance. After a long

time, the switch is moved to position b. How long does

it take for the load voltage vL to reach steady state? (c)

If the load resistance were increased between the two

measurements, would the time required to reach

steady state increase or decrease?
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Chapter 16

Fourier Series

In this chapter we show how any finite segment of a

physical signal (e.g., a current or voltage) can be

expressed as a sum of sinusoids called a Fourier
series. Such representations, in concert with superpo-

sition, allow us to apply frequency-domain analytical

methods to virtually any physical signal.

16.1 Amplitude–Phase Series

A Fourier series is a harmonic series1 expressed in

amplitude–phase form as

xðtÞ ¼ xdc þ
X1
k¼1

Ak cos 2 p k f0 tþ ykð Þ; (16.1)

A Fourier series can in general be complex. We are

interested only in Fourier series representations of real

currents and voltages, in which case all quantities in
(16.1) are real.

The frequency f0 is the fundamental frequency

and the frequency of every term is an integer multiple

of f0. The implied phase reference is

A1 cos 2 p f0 tð Þ

but is not necessarily a term in the series (if A1 ¼ 0).

The sum on the right in (16.1) comprises the ac

component of x tð Þ and xdc is the dc component (the

time average) of x tð Þ.

From (16.1),

x tþ 1

f0

� �
¼ xdc þ

X1
k¼1

Ak cos 2 p k f0 tþ 2 p k þ ykð Þ

¼ xdc þ
X1
k¼1

Ak cos 2 p k f0 tþ ykð Þ ¼ x tð Þ:

It follows that a Fourier series is periodic and the

period T equals the reciprocal of the fundamental

frequency:

T ¼ 1

f0
: (16.2)

For any particular value of k, the term

Ak cos 2 p k f0 tþ ykð Þ is called the kth harmonic.2

The first harmonic A1 cos 2 p f0 tþ y1ð Þ also is called

the fundamental component or, for brevity, the fun-

damental.

We require each term of the sum to be in standard

form, such that

Ak � 0; f0 > 0; �p � yk < p:

The parameters Ak and yk are the peak amplitude

and relative phase, respectively, of the kth harmonic.

The dimension and SI unit of the peak amplitudes and

of the dc term are those of the current or voltage x tð Þ
represented by the series.

It is often convenient to express the dc term of

a Fourier series as a sinusoid having frequency

zero, peak amplitude A0 ¼ xdcj j, and relative phase

1A harmonic series is a sum of sinusoids where the frequency

of every component is an integer multiple of a fundamental

frequency.

2A tone whose frequency is an integer multiple of the frequency

of another tone is called a harmonic of the latter. In music,

multiples of a basic note (the fundamental frequency) are some-

times called overtones, where the first overtone is the second

harmonic.

T.H. Glisson, Introduction to Circuit Analysis and Design,
DOI 10.1007/978-90-481-9443-8_16, # Springer ScienceþBusiness Media B.V. 2011
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y0 ¼ ∡xdc. Thus the dc term of a Fourier series

becomes the zeroth harmonic, expressed as

xdc ¼ A0 cos y0ð Þ; (16.3)

where

A0 ¼ xdcj j; y0 ¼ ∡ xdc ¼
0; xdc � 0;

�p; xdc< 0:

(
(16.4)

The definition (16.3) allows us to write (16.1) more

compactly as

xðtÞ ¼
X1
k¼0

Ak cos 2 p k f0 tþ ykð Þ: (16.5)

Exercise 16.1. The fundamental frequency of

a certain Fourier series is f0 ¼ 2 kHz. The peak

amplitudes and relative phases of the ac terms

in the series are given by

Ak ¼ 500ffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2

p mV, yk ¼ kp
6
; k¼ 0;1;2; � � � :

What is the average value of the series?

What are the frequency, period, peak ampli-

tude, and relative phase of the third harmonic?

What is the rms amplitude of the fifth har-

monic? What are the frequency, relative

phase, and rms amplitude of the fundamental?

Exercise 16.2. The frequency of the fifth har-

monic in a certain Fourier series is 1:5 kHz.

What is the period of the series?

Example 16.1. The two-term series

xðtÞ ¼ A1 cos 2p f0 tð Þ þ A2 cos 2 p
ffiffiffi
2

p
f0 t

� �

is not a Fourier series because the frequencies f0
and

ffiffiffi
2

p
f0 cannot both be expressed as integer

multiples of a single fundamental frequency

(because
ffiffiffi
2

p
is an irrational number).

Example 16.2. The two-term series

xðtÞ ¼ B1 cos p f1 tð Þ þ B2 cos 3 p f1 tð Þ;

where B1 > 0 and B2 > 0 is a Fourier series

because the series can be expressed as

xðtÞ ¼ A1 cos 2 p f0 tð Þ þ A3 cos 2 p 3 f0 tð Þ;

where f0 ¼ f1=2 is the fundamental frequency,

A1 ¼ B1 is the peak amplitude of the funda-

mental (first harmonic), A3 ¼ B2 is the peak

amplitude of the third harmonic. All other har-

monics and the dc component are zero.

Exercise 16.3. Which of the following series

are Fourier series? Justify your answers.

x tð Þ ¼ 5þ 4 cos 2 p f0 tð Þ þ 2 cos 2p
ffiffiffi
3

p
f0 t

� �
V;

xðtÞ ¼ 10 cos 2 p f0 tð Þ þ 20 cos 2p2f0 t
� �

mA;

xðtÞ ¼ 3 cos 2 p f0 tð Þ þ 4 cos 2 p 5 f0 tð Þ
þ 5 cos 2 p 7f0 tð Þ mA:

Exercise 16.4. The amplitudes and relative

phases of the Fourier series for a certain peri-

odic voltage are given by

Ak ¼
0; k ¼ 0

V0

1þ k2
; k> 0

8><
>:

9>=
>;;

yk ¼ kp
12

; k ¼ 1; 2; 3; � � � :
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with V0 ¼ 5V. The voltage is applied to the

terminals of a 1 kO resistor. (a) What is the

average power dissipated in the resistor by

each of the first five harmonics? (b) The total

average power dissipated in the resistor is

3:835mW. What fraction of the total average

power is dissipated in the resistor by the first

five harmonics?

16.2 Exponential Series and Fourier
Coefficients

Using Euler’s identity 2 cos að Þ � ej a þ e�j a, we can

write the amplitude–phase form of a Fourier series as

xdcþ
X1
k¼1

Ak cos 2pkf0 tþykð Þ

¼ xdcþ
X1
k¼1

Ak

2
ej 2pkf0 tþyk½ � þAk

2
e�j 2pkf0 tþyk½ �

� �

¼ xdcþ
X1
k¼1

Ak

2
ejyk ej2pkf0 tþAk

2
e�jyk e�j2pkf0 t

� �

¼ xdcþ
X1
k¼1

Ak

2
ejyk ej2pkf0 tþ

X�1

k¼�1

A�k

2
e�jy�k ej2pkf0 t:

(16.6)

If k< 0, then � k> 0. Thus, for example, for

k ¼ �1,

A� �1ð Þ
2

e�jy� �1ð Þ ¼ A1

2
e�jy1 ¼ A1

2
ejy1

� ��
;

because A1 is real. In general,

A� �kð Þ
2

e�jy� �kð Þ ¼ Ak

2
e�jyk ¼ Ak

2
ejyk

� ��

We define

Xk ¼

Ak

2
ejyk ; k> 0;

xdc; k ¼ 0:

A�k

2
e�jy�k ; k< 0;

8>>>><
>>>>:

(16.7)

and write (16.6) as

x tð Þ ¼ xdc þ
X1
k¼1

Xk e
j2 p k f0 t þ

X�1

k¼�1

Xk e
j2 p k f0 t

¼
X1
k¼�1

Xk e
j2 p k f0 t; (16.8)

The right side of (16.8) is the exponential form of

a Fourier series and is the preferred form in most

applications. The quantities Xk ðk¼ 0; 	1; 	2; � � �Þ
given by (16.7) are the Fourier coefficients. From

(16.7), the Fourier coefficients for a real signal exhibit

conjugate symmetry, such that

X�k ¼ X�
k : (16.9)

The peak amplitudes and relative phases of the ac

terms of a Fourier series are expressed in terms of the

Fourier coefficients by

Ak ¼ 2 Xkj j ; yk ¼∡Xk ; k ¼ 1; 2; 3; � � � :
(16.10)

The dimension and SI unit of the Fourier coeffi-

cients are those of the signal x tð Þ represented by the

series (16.8).

Example 16.3. Obtain the Fourier coefficients

for a Fourier series expressed in amplitude-

phase form as

xðtÞ ¼ 5þ 10 cosð2 p f0 tÞ
þ 5 cosð4 p f0 tþ p=4Þ V:

Solution: From (16.7),

X0¼ 5 V, X	1 ¼ 5 V, X	2 ¼ 2:5 e	jp=4V;

and all other coefficients are zero.

Exercise 16.5. A certain Fourier series is

expressed in amplitude–phase form as
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x tð Þ ¼ �10þ 50 cos 2 p f0 tð Þ
þ 25 cos 6 p f0 t� 0:785ð Þ
þ 12:5 cos 10 p f0 t� 1:57ð Þ mV:

Obtain the Fourier coefficients for the

series.

Example 16.4. The Fourier coefficients for a

certain Fourier series are given by

Xk ¼ 1

1þ j k
V; k ¼ 0;	1;	2; � � � :

Obtain expressions for the peak amplitudes

and relative phases of the amplitude–phase

form of the series.

Solution: From (16.10),

A0 ¼ X0j j ¼ 1V ; y0 ¼ ff X0f g ¼ 0;

Ak ¼ 2 Xkj j ¼ 2ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2

p V; yk ¼ ff Xkf g

¼ � tan�1 kð Þ ; k > 0:

Exercise 16.6. A periodic voltage having

period T ¼ 2ms is expressed as a Fourier

series whose Fourier coefficients are given by

Xk ¼ 1

1þ j k
V; k ¼ 0;	1;	2; � � � :

What is the average value of the series?

What are the frequency, period, peak ampli-

tude, and relative phase of the third harmonic?

What is the rms amplitude of the fifth har-

monic? What are the frequency, relative

phase, and rms amplitude of the fundamental?

Exercise 16.7. The Fourier coefficients for a

certain Fourier series are given by

Xk ¼
25mA; k ¼ 0;

100

kp
sin

�
kp
4

�
mA; k 6¼ 0:

8><
>:

The period of the series is T ¼ 250 ms.
Obtain the first 8 terms of the amplitude–phase

form of the series.

16.3 Quadrature Series

Using the identity cos aþbð Þ� cos að Þcos bð Þ
�sin að Þsin bð Þ, we may write

xdc þ
X1
k¼1

Ak cos 2 p k f0 tþ ykð Þ

¼ xdc þ
X1
k¼1

½Ak cos ykð Þ cos 2 p k f0 tð Þ

� Ak sin ykð Þ sin 2 p k f0 tð Þ�

¼ xdc þ
X1
k¼1

ak cos 2 p k f0 tð Þ þ bk sin 2 p k f0 tð Þ½ �;

where

ak ¼ Ak cos ykð Þ; bk ¼ �Ak sin ykð Þ;
k ¼ 1; 2; 3; . . . :

(16.11)

Thus we have obtained the quadrature form of a

Fourier series, expressed as

x tð Þ ¼ xdc þ
X1
k¼1

ak cos 2 p k f0 tð Þ þ bk sin 2p k f0 tð Þ½ �;

(16.12)

where the quadrature coefficients ak; bk are given by

(16.11). The dimensions and SI units of the quadrature

coefficients are those of the signal represented by the

series (16.12). Of the three forms of Fourier series, the

quadrature form is probably least used.

Exercise 16.8. Show that the Fourier coeffi-

cients for a particular series can be expressed

in terms of the quadrature coefficients for that

series as
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X	k ¼ 1

2
ak � j bkð Þ; k ¼ 1; 2; 3; � � � (16.13)

and conversely

ak ¼ 2Re Xkð Þ; bk ¼ �2Im Xkð Þ;
k ¼ 1; 2; 3; � � � : (16.14)

Exercise 16.9. Define the quadrature coeffi-

cients a0; b0 in terms of the dc component xdc
such that (16.12) can be written

x tð Þ ¼
X1
k¼0

ak cos 2 p k f0 tð Þ þ bk sin 2 p k f0 tð Þ½ �

Exercise 16.10. The Fourier coefficients for a

certain Fourier series are given by

Xk ¼ 2þ 4 jk

1þ k2
V, k ¼ 0;	1;	2; � � � :

Obtain the quadrature coefficients ak; bk for

k ¼ 0; 1; 2; 3. (See Exercise 16.8)

Exercise 16.11. The amplitude–phase form of

the Fourier series for a certain signal is

xðtÞ ¼ xdc þ V0

X1
k¼1

1

k

� �2

cos 2 p k f0 tþ kpð Þ:

Give the quadrature and exponential forms

of the series.

16.4 Summary: Three Forms
of Fourier Series

The three forms of a Fourier series are:

(1) The amplitude–phase form

xðtÞ ¼ xdc þ
X1
k¼1

Ak cos 2 p k f0 tþ ykð Þ; (16.15)

(2) The exponential form

xðtÞ ¼
X1
k¼�1

Xk e
j2 p k f0 t; (16.16)

and (3) the quadrature form

x tð Þ ¼ xdc þ
X1
k¼1

ak cos 2p k f0 tð Þ þ bk sin 2p k f0 tð Þ½ �:

(16.17)

The three forms of a Fourier series are identical if

they have the same fundamental frequency f0, the

same dc component X0 ¼ xdcð Þ, and the parameters

are related as summarized in Table 16.1. We limit

our treatment to real signals, so all three series above

are real.

Example 16.5. The Fourier coefficients for a

certain Fourier series are given by

Xk ¼ 1

1þ j k
V; k ¼ 0; 	1; 	2; � � � :

Obtain the quadrature form of the series.

Solution: We can write the expression above

for the Fourier coefficients as

Xk ¼ 1� j k

1þ j kð Þ 1� j kð Þ =
1� j k

1þ k2
V;

k ¼ 0;	1;	2; � � � :

From Table 16.1,

a0 ¼ X0 ¼ 1 V,

ak ¼ 2Re Xkð Þ ¼ 2

1þ k2
V;

k ¼ 	1;	2;	3 � � � ;
bk ¼ �2Im Xkð Þ ¼ 2k

1þ k2
V,

k ¼ 	1;	2;	3 � � � :

16.4 Summary: Three Forms of Fourier Series 587



Exercise 16.12. Write out the dc and first

three ac terms of the amplitude–phase and

quadrature forms of the Fourier series for a

voltage having period T, and whose Fourier

coefficients are given by

Xk ¼ 1000 ej kp=6ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2

p mV:

16.5 Integral Formula for Fourier
Coefficients

In this section, we describe how to obtain a Fourier

series representing a function (e.g., a current or volt-

age) over an interval. We begin by deriving an impor-

tant identity.

Suppose we somehow obtain (or just make up) a set

of coefficients X0; X	1; X	2; � � �f g, and form the func-

tion x̂ tð Þ, given by

x̂ðtÞ ¼
X1
k¼�1

Xk e
j2 p k f0 t: (16.18)

We seek a relation between the coefficients

Xk; k ¼ 0;	1;	2; � � �f g of the series on the right

side of (16.18) and the sum of the series (the function

represented by the series) x̂ tð Þ on the left side of

(16.18). We multiply both sides of (16.18) by

e�j2 p n f0 t and integrate over one period, from t0 to

t0 þ T, where T ¼ 1=f0. This givesðt0þT

t0

x̂ tð Þ e�j 2 p n f0 t dt ¼
ðt0þT

t0

X1
k¼�1

Xk e
j2 p k f0 t

" #

e�j 2 p n f0 t dt

¼
X1
k¼�1

Xk

ðt0þT

t0

ej 2 p k�nð Þ f0 t dt;

(16.19)

where k and n are integers. The last integral on the

right equals T for k ¼ n because e0 ¼ 1. The integral

equals zero for k 6¼ n because

ej 2 p ðk�nÞ f0 t ¼ cos 2p k � nð Þf0 t½ � þ j sin 2p k � nð Þf0 t½ �

and the integral of a sinusoid over a whole number of

periods equals zero. Thus

ðt0þT

t0

ej 2 p ðk�nÞ f0 t dt ¼ T; k ¼ n;

0; k 6¼ n:

(
(16.20)

Using (16.20) in (16.19) gives

ðt0þT

t0

x̂ tð Þe�j2pnf0 t dt¼
X1
k¼�1

Xk�
T; k¼n

0; k 6¼n

( )
¼TXn;

Table 16.1 Relations among coefficients of the three forms of a Fourier series

2
k

k

A
X q k ,± = Ð ±

-

0 0 0cos( ) dcX A xq= =

( ),

0 0

1

2k k kX

X a

± =

=

0 0

2k k

k k

A X

A X

Xq

=

=

=

( )

2 2

0 0

k k k

k k k

A a b

A a

a jbq

= +

=

=

( ),k =1,2,... 2Rea X=k k

a X b, 0= =0 0 0

( ),k =1,2,... k kb X2Im= -

( ),cosk k kq=a A

( ),sink k kb A q= -

From
To

Exponential

Exponential

Amplitude-
Phase

Amplitude-
Phase

Quadrature

Quadrature

±

jba

,k =1,2,... 

,k =1,2,... 

k =1,2,... 

k =1,2,... 

k =1,2,... 
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or

Xn ¼ 1

T

ðt0þT

t0

x̂ tð Þe�j2pn f0 t dt; n¼ 0; 	1;	2; � � � :

(16.21)

Equation (16.21) is an identity that relates the coef-
ficients of the exponential harmonic series (16.18) to

the function x̂ tð Þ represented by the series. No matter

how we obtain the harmonic series (16.18), the coeffi-

cients Xn; n ¼ 0;	1;	2; � � �f g of the series and the

function x̂ tð Þ represented by the series are related as

specified by (16.21).

Now suppose we begin with a function x tð Þ and

compute a set of coefficients using (16.21); i.e.,

Xk ¼ 1

T

ðt0þT

t0

x tð Þe�j 2 p k f0 t dt; f0 ¼ T�1: (16.22)

The interval t0< t � t0 þ T in (16.22) is called the

interval of expansion. Having obtained a set of coef-

ficients from a function x tð Þ using (16.22), we can

define a function x̂ tð Þ as the harmonic series

x̂ðtÞ ¼
X1
k¼�1

Xk e
j2 p k f0 t; f0 ¼ T�1: (16.23)

The question is whether the function x tð Þ in (16.22)
and the function x̂ tð Þ represented by the series (16.23)

are the same in the interval of expansion (for

t0 < t � t0 þ T ). Many years ago, Dirichlet3 proved

that if a function x tð Þ has a finite number of maxima

and minima and a finite number of discontinuities in

the interval of expansion, and if the coefficients for a

function x tð Þ are obtained using (16.21), then the series
(16.23) converges to

x̂ tð Þ ¼ x t�ð Þ þ x tþð Þ
2

(16.24)

everywhere in the interval of expansion. This means

that the series x̂ tð Þ equals the function x tð Þ wherever
x tð Þ is continuous and that the series x̂ tð Þ equals the

average of the left and right limits of x tð Þ wherever

x tð Þ has a jump discontinuity. Because we assume the

function x tð Þ has a finite number of discontinuities, the

function x tð Þ and the series x̂ tð Þ differ at most at a

countable number of points. No physical system can

distinguish two currents or voltages that differ at only

a countable number of points, so we may regard an

infinite Fourier series as an exact representation of any

physical signal over the interval of expansion. Any

current or voltage can be expressed over any finite

interval (no matter how long) as a Fourier series

whose coefficients are obtained using (16.22).

For all practical purposes, the series x̂ tð Þ in (16.23)
and the function x tð Þ are indistinguishable for

t0 < t � t0 þ T if the coefficients for the series are

obtained using (16.22). The series x̂ tð Þ and the func-

tion x tð Þ are not necessarily the same outside the

interval t0 < t � t0 þ T, because the series x̂ tð Þ is peri-
odic with period T, whereas the function x tð Þ is not

necessarily periodic. However, at least conceptually,

we may choose the interval of expansion long enough

such that for many practical purposes, x̂ tð Þ ¼ x tð Þ.
In circuit analysis, Fourier series are used in two

ways: (1) to describe a periodic signal for all time and

(2) to describe a non-periodic signal over some inter-

val. In the first use, the series is an exact representation

for all time. In the second use, the series is exact over

the interval of expansion. We illustrate the first use,

first, and begin by illustrating how the Fourier coeffi-

cients for a signal are obtained using the integral

formula (16.22).

Example 16.6. Obtain the Fourier coefficients

for the periodic signal (rectangular pulse train)

defined in Fig. 16.1.

Solution: In (16.22), t0 is arbitrary for a periodic
signal. We usually choose a value for t0 that

makes the required integration as simple as

possible. In this example, we choose t0 ¼
�t=2 to minimize the number of integrations

required. (Any other value for which the

3Peter Gustave Lejeune Dirichlet (1805–1859), a German

mathematician.

x(t)

t = 250 μs

T = 1ms

x0 = 10V

Fig. 16.1 See Example 16.6
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interval t0< t � T þ t0 encompasses one

whole pulse works as well.) Thus,

Xk¼ 1

T

ðT�t=2

�t=2
xðtÞe�j2pkt=T dt

¼ 1

T

ðt=2
�t=2

x0e
�j2pkt=T dt

¼

1

T

ðt=2
�t=2

x0 dt¼x0t
T

; k¼0

x0
T

e�jpkt=T�ejpkt=T

�j2pk=T
; k¼	1;	2; ���

8>>>><
>>>>:

¼

x0t
T

; k¼0;

x0t
T

sin kpt=Tð Þ
kpt=T

; k¼	1;	2; ���:

8>><
>>:

Where the period of the signal is T ¼ 1 ms,

the pulse amplitude is x0 ¼ 10 V, and the pulse

width is t ¼ 250 ms:

Exercise 16.13. Use the integral formula

(16.22) to obtain an expression for the Fourier

coefficients for the square wave in Fig. 16.2

Example 16.7. Choose an appropriate inter-

val of expansion for the signal defined graphi-

cally by Fig. 16.3.

Solution: Using (16.22) with t0 ¼ �T=2 to com-

pute the coefficients requires two integrations:

Xk ¼ 1

T

ð�T=2þt=2

�T=2

xðtÞ e�j 2 p k f0 t dtþ 1

T

�
ðT=2
T=2�t=2

xðtÞ e�j 2 p k f0 t dt:

Using (16.22) with t0 ¼ �T=2� t=2
requires only one integration:

Xk ¼ 1

T

ð�T=2þt=2

�T=2�t=2
xðtÞ e�j 2 p k f0 t dt:

Therefore an appropriate choice for the

interval of expansion is

� T=2� t=2 � t< T=2� t=2;

as shown in Fig. 16.3.

Exercise 16.14. Specify another convenient

interval of expansion for the signal defined in

Example 16.7.

16.6 A Table of Fourier Coefficients4

It is rarely necessary to calculate Fourier coefficients

using (16.22) and pencil and paper. Tables of Fourier

coefficients for most periodic waveforms encountered

4In this chapter, we use xrms to denote the rms amplitude of a

signal x(t) because we use X to denote the Fourier coefficients of

the signal.

v (t)

Tτ
2

–
τ
2

V0

–V0

t

Fig. 16.2 See Exercise 16.13

t
0

x(t)

interval of expansion

x0

–T / 2– t / 2 T / 2– t / 2–T / 2+ t / 2 T / 2+ t / 2–T / 2 T / 2

Fig. 16.3 See Example 16.7
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in circuit analysis are readily available, and virtually

all mathematical software packages (e.g., Maple®,

Mathcad®, Matlab®) include functions or subroutines

for calculating Fourier coefficients and summing

(finite) Fourier series. Microsoft’s Excel® also pro-

vides such tools. Table 16.2 gives the Fourier coeffi-

cients for several waveforms that arise in applications

(some more than others). For example, the Fourier

series for a fractional sinusoid is useful in analyzing

circuits called class C amplifiers, which are found in

many radio and television transmitters.

In Table 16.2, we introduce a function called the

sampling function, defined by

sa xð Þ ¼
1; x ¼ 0;

sin xð Þ
x

; x 6¼ 0:

8<
: (16.25)

In many applications of Fourier analysis, it is help-

ful to have in mind a picture (graph) of the sampling

function. Figure 16.4 shows such a graph. The essen-

tial features of the sampling function are:

• The sampling function is an even function of its

argument.

• A graph of the sampling function exhibits a central

lobe and a number of smaller side lobes.

• The peak amplitude of the sampling function (the

height of the central lobe) equals unity.

• The heights (magnitudes) of the side lobes decrease

with increasing values of xj j, approximately as

1= xj j.

• The sampling function sa xð Þ equals zero for x ¼
	 kp; k ¼ 	1; 	2; � � � . The zeros of the sampling

function are also called the nulls of the function.

You should study the definition (16.25) and

Fig. 16.4 until you have the above five features firmly

in mind.

A function closely related to the sampling function

is the sine-cardinal function, defined by

sinc xð Þ ¼
1; x ¼ 0;

sin pxð Þ
px

; x 6¼ 0:

8<
: (16.26)

Thus

sinc xð Þ ¼ sa pxð Þ:

We prefer the sampling function because in appli-

cations, p appears explicitly in the argument, which

seems to lead to fewer computational errors. Others

prefer the sine-cardinal function. Using one or the

other is a matter of personal preference.

Exercise 16.15. Refer to Table 16.2 and

express the Fourier coefficients for a triangular

pulse train and those for a triangular wave in

terms of the sine-cardinal function.

Example 16.8. Find the peak amplitudes of

the first three non-zero terms in the amplitude-

phase Fourier series for a symmetric triangular

wave having peak amplitude x0 ¼ 10V and

period T ¼ 2 ms.

Solution: From Table 16.2, the Fourier coeffi-

cients for a symmetric triangular wave are

given by

X0 ¼ xdc ¼ 0;

Xk ¼ x0 sa
2 kp

2

� �
; k ¼ 	1; 	2; 	3; � � � :

We can use a spreadsheet (e.g., Excel), a

computer program (e.g., Matlab), or a pocket

calculator to compute the coefficients. We

obtain the values in Table 16.3:

–4 –3 –2 –1 0 1 2 3 4
0.5

0

0.5

1

x
p

sa(x)

Fig. 16.4 Graph of the sampling function defined in (16.25)
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Table 16.2 Fourier coefficients for selected waveforms5

t

0
2
t

−
2
t T

x0

x0
2t

T
xrms =

Symmetric Rectangular Pulse Train

x(t)

Xk =
x0t
T

sa
kpt
T

;   k = 0, ±1, ± 2,...

t
T

Symmetric Triangular Pulse Train

x0

x0
2t

3T
xrms =

x (t) Xk =
x0t
2T

kpt
2T

;   k = 0, ±1, ± 2, ...

0
2

t
−

2

t

sa2

t

T
2

T −
t

Sawtooth Pulse Train

x0

0
2

t
2

t

e–jkpt /T–saXk =
jx0

2kp
kpt
2T

;   k = ±1, ± 2,...
x (t)

−

x0
2t

3T
xrms =X0 =

x0t
2T

,

t
T

Symmetric Trapezoidal Pulse Train

x0

0

x(t)

2

t2

2

t1− −
2

t1

2

t2

x0
2

3T
xrms = (2t1+ t2)

k = 0,±1,± 2, ...

Xk =
x0

2T (t2 – t1)

kpt1

2T

kpt2

2T
– t1

2sa2t2
2sa2 

(continued)

5In the table, symmetric means even symmetry about the vertical axis.
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Table 16.2 (continued)

t
T0

Exponential Pulse Train

x0

x0e
– t / t

x(t)

x0
2t

2T
xrms  = (1–e–2T / t )

;    k = ± 2, ± 3, ± 4 ...Xk =
x0t (1 – e–T / t )

T + j2kpt

t
T

2
T

2
T

0

Symmetric Square Wave

x0

−x0

x (t)

X0
 = 0

xrms = x0

;    k = ± 1, ± 2, ± 3, ...Xk = x0sa
kp
2

t
T

Symmetric Triangular Wave

T / 2

x0

–x0

x (t) X0
 = 0

;    k = ± 1, ± 2, ± 3,...Xk = x0sa
2 kp

2

xrms   =
x0

2

3

0
t

Sawtooth Wave

T

–T / 2

T / 2

x0

x (t)
X0

 = 0

xrms   =
x0

2

3

–x0

;    k = ± 1, ± 2, ± 3,...Xk = pk

jx0 (–1)k

(continued)
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Table 16.2 (continued)

Symmetric Trapezoidal Wave

t
T

2
T

τ

x0

−x0

x(t)

x0
2

3T
xrms =  (T + 4t )

X0
 = 0

k = ± 1, ± 2,...

Xk =
x0

T (T – 2t)
kpt

– t 2sa2(T – t)2 sa2 kp [T – t ]

2T T

T
t

Symmetric Fractional Sinusoid

x0

x (t)

k = 0, ± 1, ± 2, ± 3,...

2x1

–t /2

t /2

xrms =
x1

2

2p
pt
T

pt
T

pt
T

x0
x1

sin cos + 4 + 3– 42
2

+–1
x0
x1

x0
x1

t =
T

p
cos–1 1 –

x0
x1

(k + 1)pt
T

kpt
T

Xk =
x1t
2T

(k – 1)pt
T T

(x1 – x0)tsa + sa – sa

t
2
T

Symmetric Clipped Sinusoid

2
τ

x1

x0

–x0

x(t)

k = ± 2, ± 3, ± 4...

t = T
p

cos–1 x0
x1

X0 = 0

2pt
T

pt
T

2x0t
T

X±1 =
x1t
T

x1

2
sa +– + 1 sa

2x0
x1

Xk =
x1t  (–1)k–1

2T

(k+1)p
2

(k–1)p
2

sa + sa
kpt
T

sa–

xrms =
x1

2

2pT
p (T– 2t)–T sin

2pt
T

2x0
2t

T
+

x (t)

t
T

x0

Symmetric Half-Wave Rectified Sinusoid

x0
2

4
xrms = 

; k = 0, ±1, ± 2,...saXk = (k–1)p
2

(k+1)p
2

+sa
x0
4

(continued)
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The first three non-zero coefficients are

X1; X3; X5. The peak amplitudes of the terms

in the corresponding amplitude–phase series are

A1 ¼ 2 X1j j ¼ 8:106 V,

A3 ¼ 2 X3j j ¼ 900 mV,

A5 ¼ 2 X5j j ¼ 324 mV:

Exercise 16.16. Find the peak amplitudes of

the first three non-zero terms in the amplitude-

phase Fourier series for a sawtooth wave

having peak amplitude x0 ¼ 10V and period

T ¼ 2 ms:

16.7 Modified Fourier Coefficients
for Composite Waveforms

The Fourier coefficients given in Table 16.2 are easily

modified to account for relatively minor changes to the

waveforms. Figure 16.5 illustrates three such changes

and the corresponding modifications of the Fourier

coefficients. The figure uses a sawtooth pulse train to

illustrate the changes, but the modifications to the

Fourier coefficients apply to any periodic signal.

Adding a constant to a Fourier series is equivalent

to translating the signal represented by the series ver-

tically, and alters only the dc component of the series.

The other harmonics are unchanged.

If

xðtÞ ¼
X1
k¼�1

Xk e
j2 p k f0 t; (16.27)

then

xðt� t1Þ ¼
X1
k¼�1

Xk e
j2 p k f0 t�t1ð Þ

¼
X1
k¼�1

Xk e
�j2 p k f0t1ej2 p k f0 t

¼
X1
k¼�1

X0
k e

j2 p k f0 t;

where

X0
k ¼ Xk e

�j2 p k f0 t1 : (16.28)

In words, time translation by t1 is equiva-

lent to multiplying the Fourier coefficients by

exp �j2 p k f0 t1ð Þ, where the translation is to the

right (is a delay) if t1> 0 and to the left (is an

advance) if t1 < 0.

Time reversal of a signal is achieved by replacing

t by � t. Thus

Table 16.2 (continued)

Symmetric Full-Wave Rectified Sinusoid

x (t)

t

x0

T
2

T
2

−

sax0[1+ (–1)k]
4

Xk = 

k = 0, ±1, ± 2, ...

x0
2

2
xrms = 

(k–1)p
2

(k+1)p
2

+sa

Table 16.3 See Example 16.8

k 0 1 2 3 4 5

Xk (V) 0.000 4.053 0.000 0.450 0.000 0.162
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xð�tÞ ¼
X1
k¼�1

Xk e
�j2 p k f0 t: (16.29)

The signal is real, so x �tð Þ�¼ x �tð Þ. Conjugating
(16.29) gives

xð�tÞ ¼
X1
k¼�1

X�
k e

j2 p k f0 t;

which implies that the Fourier coefficients of a time-

reversed signal are the conjugates of the original Four-

ier coefficients.

Negating a signal negates the Fourier coefficients.

Multiplying a signal by a constant multiplies the Four-

ier coefficients by the same constant. The Fourier

coefficients for the sum of two or more signals

having the same period are the sums of the Fourier

coefficients for the signals. These relations and those

illustrated by Fig. 16.5 can be expressed as follows:

Negation: y tð Þ ¼ �x tð Þ $ Yk ¼ �Xk;

k ¼ 0;	1;	2; � � � ; (16.30)

Amplitude scaling: y tð Þ ¼ Ax tð Þ $ Yk
¼ AXk; k ¼ 0;	1;	2; � � � ; (16.31)

Superposition: z tð Þ¼ x tð Þþy tð Þ$Zk¼Xk

þ Yk; k¼0;	1;	2; � � � ; (16.32)

DC shift: y tð Þ ¼ x tð Þ þ a $ Y0 ¼ X0 þ a;

Yk ¼ Xk; k ¼ 	1;	2; � � � ; (16.33)

Time translation: y tð Þ¼ x t� t1ð Þ$ Yk

¼Xk exp �j2pk f0 t1ð Þ;
k¼ 0;	1;	2; � � � ;

(16.34)

t

t
0

0
τ

–τ

t
0

t1 t1+ τ

(b) time translation (t1>0) Xk→ Xk exp(–j2pk f0t1)

t
0

τ

(c) time reversal: Xk→ Xk
*

t
0

τ t
0

τ

(a) amplitude shift X0→ X0+x1

x1

x (t)

x (t)

x (t) x(–t)

x (t– t1)

x (t)

Fig. 16.5 Illustrating how

amplitude shift, time

translation, and time reversal

alter the Fourier coefficients

of a waveform
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Time reversal: y tð Þ ¼ x �tð Þ $ Yk ¼ X�
k ;

k ¼ 0;	1;	2; � � � : (16.35)

Equations (16.30–16.35) are sometimes called

operational properties of Fourier coefficients. We

can use the properties summarized above to obtain

Fourier coefficients for various waveforms not in the

table but composed of those in the table.

Example 16.9. Figure 16.6(a) shows one

period of an asymmetric trapezoidal pulse

train, represented as the sum of a sawtooth

pulse train y tð Þ and a rectangular pulse train

z tð Þ. Figure 16.6(b) shows how the sawtooth

pulse train and rectangular pulse train given in

Table 16.2 are modified (time-translated) to

obtain the component waveforms y tð Þ and z tð Þ
in Fig. 16.6(a). From Table 16.2 and (16.28),

the Fourier coefficients of the trapezoidal pulse

train are given by

X0 ¼ x0t
2T

þ x0t
T

¼ 3x0t
2T

;

Xk ¼ j x0
2kp

e�jkpt=T � sa
kpt
T

� �	 

e�jpk f0t

þ x0t
T

sa
kpt
T

� �
e�j3pk f0 t;

k ¼ 	1; 	2; � � �

16.8 Convergence of Fourier Series

In any practical application of Fourier series, three

questions regarding convergence are of interest:

• Whether the series converges at all

• If the series converges, whether it is equal to the

signal being represented; and

• If it converges and equals the signal, whether the

series converges slowly or rapidly; i.e., whether

many or only a few terms are needed to represent

a signal with sufficient accuracy

The first two issues are addressed by Dirichlet’s

theorem, described in Section 16.5. But Dirichlet’s

theorem says nothing about how rapidly a series con-

verges. Put another way, Dirichlet’s theorem does not

tell us how many terms of a Fourier series are needed

to obtain a satisfactory representation of a signal,

which is an important issue in practical applications.

A series might converge rapidly for some times (or in

some intervals) and slowly for others. Depending upon

the form of a signal (or function) and the intended use

for the associated Fourier series, we might need rela-

tively few or relatively many terms to describe the

signal.

One way to specify the number of terms needed in a

finite Fourier series is to compare the mean-squared

amplitude (or rms amplitude) of the series with that of

the signal to be represented, assuming the latter is

τ τ τt t t2τ 2τ

x (t)

0 0 0

y ′(t) z ′(t)

= +

τ0

(a)

(b)

y (t) z(t)

τ
2

–
t t

x0 x0 x0 x0

t τ t2τ0

3τ
2

z′(t) = z  t–  

τ
2

τ
2

–
τ
2

τ
2

y′(t) = y  t–  

Fig. 16.6 See Example 16.9
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known or can be measured. Such a comparison is

equivalent to comparing the powers that the signal

and the Fourier series would cause to be dissipated in

a resistor. In Chapter 5, we show that superposition of

power applies to a sum of sinusoids having different

frequencies. Thus, the mean-squared amplitude of a

signal expressed as

xðtÞ ¼
XK
k¼0

Ak cos 2kp f0 tþ ykð Þ

is given by

x2rms ¼ A2
0 þ

1

2

XK
k¼1

A2
k ¼

XK
k¼�K

Xkj j2 (16.36)

which holds for any integer K, including K ! 1.

Equation (16.36) states that the mean-squared

amplitude of a periodic current or voltage x tð Þ equals
the sum of the squared magnitudes of the Fourier

coefficients for the current or voltage.

We may interpret (16.36) as follows: Suppose a

periodic current or voltage x tð Þ, expressed as

x tð Þ ¼
X1
k¼�1

Xke
j2pk f0t

is represented by the finite Fourier series

x̂ tð Þ ¼
XK
k¼�K

Xke
j2pk f0t

where the Fourier coefficients are in both cases

given by

Xk ¼ 1

T

ðt0þT

t0

x tð Þe�j2pk f0 tdt

The difference between the representation x̂ tð Þ and
the actual current or voltage x tð Þ can be defined in

terms of the average power each would cause to be

dissipated in the same resistive load. If both are

applied (individually) to the same resistive load,

then the ratio of the powers dissipated equals the

ratio of the mean-square amplitudes. By (16.36), the

ratio is

x̂2rms
x2rms

¼
PK

k¼�K

Xkj j2

P1
k¼�1

Xkj j2
¼ 1

x2rms

XK
k¼�K

Xkj j2 (16.37)

Because x̂ tð Þ approaches x tð Þ as K approaches infin-

ity, the ratio in (16.37) approaches unity as K

approaches infinity, and can be regarded as a measure

of how closely a finite number of terms from the

Fourier series for x tð Þ approximates x tð Þ. Because

X�k ¼ X�
k and Xkj j ¼ Ak=2, we may write (16.37) as

x̂2rms
x2rms

¼ 1

x2rms
X2
0 þ 2

XK
k¼1

Xkj j2
" #

¼ 1

x2rms
X2
0 þ

1

2

XK
k¼1

Ak
2

" #
(16.38)

Example 16.10. A certain triangular pulse

train has period T ¼ 4ms and pulse duration

t ¼ 1ms. How many terms are needed in a

finite Fourier series to account for at least

99.9% of the power the pulse train would

cause to be dissipated in a resistive load?

Solution: The Fourier coefficients of a triangu-
lar pulse train are given by

Xk ¼ x0t
2T

sa2
kpt
2T

� �
; k ¼ 0;	1; 	2; � � �

From Table 16.2, the mean-squared ampli-

tude of the triangular pulse train is

x2rms ¼
x20t
3T

¼ x20
12

where x0 is the amplitude of each pulse. A

finite Fourier series for the triangular pulse

train is

x̂ tð Þ ¼ x0t
2T

XK
k¼�K

sa2
kpt
2T

� �
ej2pkf0t

¼ x0
8

XK
k¼�K

sa2
kpt
2T

� �
ej2pkf0t
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From (16.37), the fraction of the mean-

squared amplitude of the pulse train that is

accounted for by the first K harmonics is

given by

x̂2rms
x2rms

¼ 12

x20

x20
64

1þ 2
XK
k¼1

sa4
kp
8

� �" #

¼ 3

16
1þ 2

XK
k¼1

sa4
kp
8

� �" #

A computer calculation yields the values

given in Table 16.4, which shows that the

mean-squared amplitude of a finite Fourier

series including harmonics through the 12th

equals 99.9% of the mean-squared amplitude

of the pulse train.

Figure 16.7 shows graphs of one period of

the triangular pulse train and the finite (12-

harmonic) Fourier series approximation.

The relation

x2rms ¼
1

T

ðt0þT

t0

x2 tð Þdt¼A2
0þ

1

2

X1
k¼1

A2
k ¼

X1
k¼�1

Xkj j2

(16.39)

holds for any signal represented over t0< t � t0 þ T
by the Fourier series

x tð Þ ¼
X1
k¼�1

Xke
j2pk f0t; Xk ¼ 1

T

ðt0þT

t0

x tð Þe�j2pk f0 tdt;

whether the signal is periodic or not. Therefore,

the ratio

PK
k¼�K

Xkj j2

P1
k¼�1

Xkj j2

can be used to specify how many terms of the Fourier

series for a signal are required to represent the signal

over the interval of expansion, whether the signal is

periodic or non-periodic.

16.9 Gibbs’ Phenomenon

A Fourier series (or other series) converges uniformly

at a point or over an interval if the magnitude of the

error of the partial sums (finite-series approximations)

at the point or over the interval decreases each time a

term is added to the series. It can be shown that the

Fourier series for a continuous signal converges uni-
formly everywhere in the interval of expansion, but

the Fourier series for a signal having a jump disconti-

nuity does not converge uniformly near the edges of

the discontinuity. The series does converge to the

signal (except at the discontinuity), but not until all

terms (an infinite number) are included in the series.

This behavior of a Fourier series is illustrated by

Fig. 16.8, which shows two finite Fourier series

approximations to a rectangular pulse train. The finite

series exhibit oscillations on each side of each discon-

tinuity. As the number of terms in the series is

increased, the oscillations crowd closer together near

Table 16.4 Quantities calculated in Example 16.10

k 0 1 2 3 4 5 6 7 8 9 10 11 12

ðx̂rms=xrmsÞ2 0.188 0.526 0.772 0.914 0.975 0.994 0.997 0.997 0.997 0.997 0.998 0.998 0.999

t (ms)

–2 –1.5 –1 –0.5 0 0.5 1 1.5 2
–2

–1

0

1

2

3

4

5

6

x (t) (V) x12(t) (V)

Fig. 16.7 See Example 16.10
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the jump discontinuities, but their maximum ampli-

tude does not decrease (uniformly). The amplitude

stabilizes at about 9% of the jump below the signal

on the low side of the jump and 9% of the jump above

the signal on the high side. It can be shown that this

behavior persists until the entire (infinite) series is

summed, when the series converges to the average

of the upper and lower values of the discontinuity.6

This phenomenon is called Gibbs’ Phenomenon7 and

the oscillations of a finite Fourier series near a discon-

tinuity are called Gibbs’oscillations.

Gibbs oscillations are troublesome in some appli-

cations, such as digital filter design, but those applica-

tions are beyond our scope. We describe Gibbs

oscillations here only because you will see them if

you evaluate (numerically) and plot a Fourier series

for a signal having one or more jump discontinuities.

16.10 Circuit Response to Periodic
Excitation

Recall from Chapter 15 that transfer functions are

defined in terms of the phasor representations for a

sinusoidal excitation and associated sinusoidal

response. For example, the voltage transfer function

for a circuit is given by

Hv ¼
~VL

~VS

;

where ~VL is the phasor for the response (load voltage)

and ~VS is the available source voltage. Multiplying

both numerator and denominator by exp jo tð Þ gives

Hv joð Þ ¼
~VL exp jo tð Þ
~VS exp jo tð Þ ¼

~vL tð Þ
~vS tð Þ ;

which shows that a transfer function can also be defined

as the ratio of the complex representation of the

response to the complex representation of the excita-

tion. That in mind, suppose an excitation given by

x tð Þ ¼
X1
k¼�1

Xk exp 2j kpf0 tð Þ (16.40)

is applied to a circuit having transfer functionH j2 p fð Þ.
Each term in the series above can be regarded as the

complex representation of a sinusoid. Thus, by super-

position, the corresponding response is given by

y tð Þ ¼
X1
k¼�1

Yk exp 2j kpf0 tð Þ;

Yk ¼ H j2p k f0ð ÞXk:

(16.41)

0 0.5–0.5 0.25–0.25

t

T

–0.2

0

0.2

0.4

0.6

0.8

1

1.2

x, x̂ (V)

–0.2

0

0.2

0.4

0.6

0.8

1

1.2

x, x̂ (V)

x̂ (t)x  (t)

K = 8

0 0.5–0.5

(a)

(b)

0.25–0.25

t

T

K = 16

x̂ (t)x  (t)

Fig. 16.8 Illustration of Gibbs’ phenomenon for a rectangular

pulse train (a) K ¼ 8 (b) K ¼ 16

6See G. Moretti, Functions of a Complex Variable, Prentice-
Hall, 1964, pp 334–337.

7After Josiah Willard Gibbs (1839–1903), a mathematical phys-

icist who first explained the phenomenon.
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If an excitation is represented by the Fourier series

(16.40), then the response is represented by the Fourier

series (16.41).

We can use Fourier series, frequency-domain meth-

ods, and superposition to obtain the response of a

linear circuit to a periodic excitation, as follows:

• Obtain the Fourier coefficients for the excitation,

from Table 16.2 if possible, using (16.22) if not.

• Obtain the appropriate transfer function for the

circuit.

• Obtain the Fourier coefficients for the response,

using (16.41).

• If necessary, sum and plot the Fourier series for the

response, using a computer.

Example 16.11. Refer to Fig. 16.9, where the

op amp is ideal and the excitation vS is a half-

wave rectified 800 kHz sinusoid having peak

amplitude x0 ¼ 200 mV. (a) Obtain an expres-

sion for the Fourier coefficients for the

response vL. (b) Calculate the peak amplitudes

of the first four non-zero terms in the amplitu-

de–phase series for the response.

Solution: (a) From Table 16.2, the Fourier

coefficients for the excitation are given by

Xk ¼ x0
4

(
sa

k þ 1ð Þp
2

	 

þ sa

k � 1ð Þp
2

	 
)
,

k ¼ 0;	1; 	2; � � � : (16.42)

Using frequency-domain (phasor) methods,

we find that the voltage transfer function for

the circuit is

Hv j2pfð Þ ¼
~VL

~VS

¼ R2=R1

1þ j2pf R2C
: (16.43)

The Fourier coefficients for the response are

given by

Yk ¼ Hv 2pk f0ð ÞXk;

k ¼ 0;	1; 	2; � � � : (16.44)

Table 16.5 gives the peak amplitudes and

relative phases of the first four zero terms,

where

A0 ¼ Y0j j; y0 ¼ ∡Y0 ¼ 0;

Ak ¼ 2 Ykj j; yk ¼ ∡Yk; k ¼ 0; 1; 2; � � � :

Figure 16.10 shows a graph of one period of

the excitation and of the approximate response,

given by

ŷ tð Þ ¼
X4
k¼�4

Yk exp 2j kpf0 tð Þ

Example 16.12. In Fig. 16.11, the op amp is

ideal, C ¼ 220 pF, R2 ¼ 100 kO, and

vS ¼ A½cos 2 p f0 tð Þ þ cos 10 p f0 tð Þ
þ cos 100 p f0 tð Þ�;

with A ¼ 10 mV and f0 ¼ 50 kHz. (a) Express

the excitation as an exponential Fourier series

and obtain the Fourier coefficients for the load

+

–
R1

R2

C

RLRX

vS

vL

+
–

C = 3.2 pF
R1 = 1kΩ
R2 = 50kΩ

Fig. 16.9 See Example 16.11

Table 16.5 Amplitude and phase of the first five terms of the

Fourier series for the response of the circuit considered in

Example 16.11. The graph does not change perceptibly if the

number of terms is doubled

k 0 1 2 3 4

Ak (V) 3.183 3.896 1.120 0.000 0.126

yk 0.000 �0.677 �1.015 0.000 1.872
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voltage vL. (b) Express the load voltage in

amplitude–phase form.

Solution: (a) The fundamental frequency is f0
and the harmonics present in the excitation

have frequencies f0, 5 f0, and 50 f0. Euler’s

identity (or Table 16.1) gives

vS ¼ A

2

�
ej2pf0 t þ e�j2pf0 t þ ej10pf0 t þ e�j10pf0 t

þ ej100pf0 t þ e�j100pf0 t
�

¼
X1
k¼�1

Xke
j2pk f0 t;

with

Xk ¼
A

2
; k ¼ 	1; 	5; 	50;

0; otherwise:

8<
:

We need the voltage transfer function for

the circuit. Kirchhoff’s current law gives

� j2p f C ~Vs ¼
~VL

R2

) Hv ¼
~VL

~VS

¼ �j2p f C R2 ¼ �j2p f t

with t ¼ R2C ¼ 22ms. The Fourier coeffi-

cients for the load voltage are

Yk ¼
Hv k f0ð ÞA

2
; k ¼ 	1; 	5; 	50

0; all other k

8<
:

9=
;

¼ �jpk f0 tA; k ¼ 	1; 	5; 	50;

0; all other k;

(

where f0 ¼ 50 kHz, t ¼ 22ms, and A¼10 mV.

Thus,

Yk ¼

�j35 mV, k ¼ 1;

�j173 mV, k ¼ 5;

�j1:728 V, k ¼ 50;

Y�
k ; k ¼ �1; �5; �50;

0; all other k:

8>>>>>><
>>>>>>:

(b) From Table 16.1, the amplitude–phase

parameters for the load voltage are

Bk ¼ 2 Ykj j ¼

69:1 mV; k ¼ 1

345 mV; k ¼ 5

3:456 V; k ¼ 50

0; all other k

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
;

yk ¼ ∡Yk ¼
� p
2
; k ¼ 1; 5; 50

0; all other k

8<
:

9=
;:

–0.5 –0.4 –0.3 –0.2 –0.1 0 0.1 0.2 0.3 0.4 0.5
0

50

100

150

200

x (t) (mV )
50

(mV)
ŷ(t)

t (μs)

Fig. 16.10 See Example 16.11
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R2

RL

vLvS
+
–

+

–

Fig. 16.11 See Example 16.12
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and the amplitude–phase series for the load

voltage is

vL ¼ 0:069 cos 2pf0 t� p
2

� �
þ 0:345 cos 2p5f0 t� p

2

� �
þ 3:456 cos 2p50 f0 t� p

2

� �
V:

The components of the source voltage have

equal amplitudes. The highest-frequency com-

ponent of the load voltage is 25 times larger

than the lowest-frequency component, illus-

trating that differentiation enhances the high-

frequency components of a signal.

Exercise 16.17. Refer to Fig. 16.12, where

R1 ¼ 10 kO, C1 ¼ 320 nF, R2 ¼ 50 kO, and
C2 ¼ 320 nF: The op amp is ideal and the

excitation vS is a symmetric triangular wave

having peak amplitude V0 ¼ 500 mV and

period T ¼ 100 ms. (a) Obtain an expression

for the Fourier coefficients for the response vL.

(b) Calculate the peak amplitudes of the first

four non-zero terms in the amplitude–phase

series for both the excitation and response.

16.11 Spectra and Spectral Analysis

The peak amplitudes and relative phases of the com-

ponents of the amplitude–phase series for a signal,

regarded as functions of frequency, comprise the

one-sided spectrum of the signal, where one-sided
refers to the fact that the associated frequencies are

non-negative. In the sequel, we define two-sided spec-

tra based upon the exponential Fourier series.

The peak amplitudes of an amplitude–phase series

comprise the one-sided amplitude spectrum and the

relative phases comprise the one-sided phase spec-

trum. The dimension of the one-sided amplitude spec-

trum for a signal is the dimension of the signal. The

one-sided phase spectrum is dimensionless and (in this

book) is expressed in radians.

Example 16.13. Obtain and plot the first 12

values of the amplitude spectrum and the phase

spectrum for a symmetric rectangular pulse

train (see Table 16.2) having pulse duration

t ¼ 250 ms, period T ¼ 1ms and amplitude

V0 ¼ 500 mV.

Solution: From Table 16.2, the Fourier coeffi-

cients for the specified pulse train are given by

Xk ¼ V0t
T

sa
kpt
T

� �
(16.45)

The amplitude and phase spectra are given by

Ak ¼
X0j j; k ¼ 0

2 Xkj j; k ¼ 1; 2; 3; � � �

( )
;

yk ¼ ∡Xk; k ¼ 0; 1; 2; � � �
(16.46)

Table 16.6 gives the values of the Fourier

coefficients, the peak amplitude, and the rela-

tive phase of the first 12 components, where

f ¼ k f0 ¼ k T�1. The values were calculated

C2C1

R2

R1

RLRX

vL

vS
+
–

+

–

Fig. 16.12 See Exercise 16.17

Table 16.6 Fourier coefficients for the rectangular pulse train treated in Example 16.13

k 0 1 2 3 4 5 6 7 8 9 10 11

f (kHz) 0 1 2 3 4 5 6 7 8 9 10 11

Xk (mV) 125 112.5 79.6 37.5 0 �22.5 �26.5 �16.1 0 12.5 15.9 10.2

Ak (mV) 125 225 159 75.0 0 45.0 53.1 32.2 0 25.0 31.8 20.5

yk (rad) 0 0 0 0 0 3.14 3.14 3.14 3.14 0 0 0
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on a computer and rounded to three significant

figures.

Figures 16.13 and 16.14 show the graphs of

the amplitude spectrum and the phase spec-

trum, respectively. Conventionally, lines are

drawn from the spectral values to the horizon-

tal axis, presumably to make such graphs

resemble what one would see on the screen of

a spectrum analyzer. Partly for this reason,

such spectra are called line spectra. But only

the spectral values are significant. The lines

have no mathematical meaning, but are visu-

ally helpful.

Exercise 16.18. Plot the amplitude and phase

spectra for the exponential pulse train in Table

16.2, where the pulse amplitude, time constant,

and period are v0 ¼ 50 mA, t ¼ 5 ms, and

T ¼ 100 ms, respectively.

The two-sided amplitude spectrum and the two-

sided phase spectrum for a signal x tð Þ are defined as

the magnitudes and angles, respectively, of the Fourier

coefficients for the signal, regarded as functions of

frequency. Formally,

ax k f0ð Þ ¼
Xkj j; k ¼ 0;	1;	2; � � �
0; otherwise

( )
;

fx k f0ð Þ ¼
∡Xk; k ¼ 0;	1;	2; � � �
0; otherwise

( ) (16.47)

The Fourier coefficients for a real signal have con-

jugate symmetry about k ¼ 0 (because X�k ¼ X�
k ), so

the two-sided amplitude spectrum is an even function
of frequency and the two-sided phase spectrum is an

odd function of frequency. It is sufficient to compute

values for only f � 0, but often helpful to display both

sides graphically. For most purposes, the exponential

form of Fourier series and thus two-sided spectral

representations are preferred.

Example 16.14. Obtain and plot the two-

sided amplitude and phase spectra for the rect-

angular pulse train of Example 16.13 for

k ¼ 0; 	1; 	2; � � � ;	8.

Solution: The Fourier coefficients are given

in Table 16.2. The two-sided amplitude and

phase spectra are given by

avðf Þ ¼
Xkj j; f ¼ k f0

0; otherwise

( )
;

fv fð Þ ¼
∡Xk; f ¼ k f0

0; otherwise

( )

Figure 16.15 shows the spectral plots.

0 1 2 3 4 5 6 7 8 9 10 11 12
0

50

100

150

200

250
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Fig. 16.13 See Example 16.13
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4
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Fig. 16.14 See Example 16.13
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Exercise 16.19. Plot the two-sided amplitude

and phase spectra for the exponential pulse

train in Table 16.2, where the pulse amplitude,

time constant, and period are v0 ¼ 50 mA,

t ¼ 5 ms, and T ¼ 100 ms, respectively.

The graph of a spectrum tells us at a glance the

relative significance of the components.

An amplitude–phase Fourier series expresses a sig-

nal as a dc term and a sum of real sinusoids. In the

associated one-sided spectrum, the independent vari-

able f is frequency of sinusoidal oscillation (number

of cycles per second), and is a positive quantity. The

associated exponential Fourier series expresses the

same signal as the dc term and a sum of complex

exponentials (in conjugate pairs). Each exponen-

tial can be represented by a point orbiting the origin

of a complex plane, where the frequency of the

exponential is the angular velocity of the point

(revolutions per second). This frequency can be pos-

itive (for counter-clockwise motion) or negative (for

clockwise motion), and the two-sided spectrum

associated with an exponential Fourier series as

both positive-frequency and negative-frequency

components. Neither the positive-frequency compo-

nents nor the negative-frequency components are

physical (real). Only the sums of conjugate pairs

yield real sinusoids.

16.12 Problems

P 16.1 Provide the missing entries in the table below.

P 16.2 Express each composite periodic waveform

shown in Fig. 16.1 in terms of waveforms given in

Table 16.2, where T is the period of the composite

waveform.

P 16.3 If the period of a signal x tð Þ is T, what is the
period of x 2tð Þ ? Of x t=2ð Þ ?

P 16.4 If the fundamental frequency of a Fourier

series is doubled but the Fourier coefficients are

not changed, how is the waveform changed? Use

graphs of triangular pulse trains to illustrate your

answer.

P 16.5 Let Xk; k ¼ 0;	1;	2; � � �f g denote the

Fourier coefficients for the waveform given in

Fig. P 16.1. Draw the waveform represented by

y tð Þ ¼
X1
k¼�1

Yk exp j 2 k p f0 tð Þ
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4
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fk (rad)

f (kHz)

f (kHz)

Fig. 16.15 See Example 16.14

Amplitude–

phase

Exponential Quadrature

xdc¼5V; yk¼0

Ak¼ 10V

k2þ1
; k¼1;2;���

Xk¼100exp �jpk=3ð Þ
1þk2

mA;

k¼0;	1;	2;���
a0¼1V,b0¼0

ak¼ 2V

k2þ1
; k¼1;2;���

bk¼� 1V

k2þ1
; k¼1;2;���
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if (a) Yk ¼ �X�
k , (b) Yk ¼ Xk exp �j k p f0 t=2ð Þ, (c)

Yk ¼ Xk � X�
k exp �j k p f0 tð Þ

P 16.6 In Fig. P 16-2, the source voltage vS is a

symmetric triangular wave having period T ¼ 1 ms

and peak amplitude x0 ¼ 1 mV, with a positive peak

at t� 0. Obtain the Fourier coefficients for the load

voltage vL. Draw graphs of the waveforms of the

source and load voltages.

P 16.7 In Fig. P 16.3, the source impedance is

negligible, R1 ¼ 10 kO, R2 ¼ 1MO, RL ¼ 50 kO, and
C ¼ 10 pF. The excitation vS tð Þ is the ac component of
a rectangular pulse train having amplitude V0 ¼
100mV, pulse duration t ¼ 10 ms, and period

T ¼ 100 ms.

(a) Obtain an expression for the Fourier coefficients)

for the excitation vS tð Þ.
(b) The excitation is to be represented by a finite

Fourier series

v̂S tð Þ ¼
XK
k¼�K

Xk exp j 2k p f0 tð Þ

Specify the smallest value of K for which the mean-

squared value of v̂S tð Þ is at least 99% of the mean-

squared value of vS tð Þ.
(c) Use the finite Fourier series (the value of K ) found

in part (b) to represent the excitation. Obtain the

corresponding finite Fourier series v̂L tð Þ for the

response vL tð Þ.
(d) Plot R2v̂S tð Þ=R1 and � v̂L tð Þ on the same axes.

P 16.8 Under certain conditions, the circuit

shown in Fig. P 16.4(a) functions as a differentiator.

The period of the excitation shown in Fig. P 16.4(b) is

tt−t

a

b

x (t)

t−t t
2

t
2

−

a

b

x (t)

t 2tt t
0

x (t)

x (t) x (t) x (t)

2a

a

t 2t 3t0

a

b

t

(d) T = 3t (e) T = 2t (f ) T = 6t

(a) T = 8t (b) T = 5t (c) T = 4t

t
2tt−t

a

−2a

a

−a

t 2t
3t

t

Fig. P 16.1 See Problem

P 16.2

+

–

CR1

RL
vLvS

R1 = 10 Ωk

C = 20nF

+
–

Fig. P 16.2 See Problem P 16.6

+

–

R1

R2

C

RL

vS

vL

+
–

Fig. P 16.3 See Problem P 16.7
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T ¼ 100 ms. The circuit parameters are R ¼ 10 kO;
C ¼ 100 nF.

(a) Obtain an expression for the voltage transfer func-

tion for the circuit.

(b) If the excitation is a sinusoid having frequency f0,
under what condition(s) is the response vL tð Þ
approximately proportional to the derivative of

the excitation? Is the response then approximately

proportional to the derivative of any higher-fre-

quency sinusoidal excitation?

(c) Assume the circuit acts as a perfect differentiator

(except for gain) for the excitation shown in Fig. P

16.4(b) and draw a graph of the response.

(d) Obtain an expression for the Fourier coefficients

for the excitation, express the excitation as a finite

Fourier series

v̂S tð Þ ¼
XK
k¼�K

Xk exp j 2k p f0 tð Þ;

where K ¼ 50, and obtain the corresponding finite

Fourier series for the response.

(e) Plot one period of the response and comment.

P 16.9 Design a circuit that will remove the dc

component from a triangular pulse train having period

T ¼ 500 ms and pulse duration t ¼ 125 ms. Use Four-

ier analysis to demonstrate the effectiveness of the

circuit in this task.

P 16.10 In Fig. P 16.5, the excitation iS tð Þ is a
symmetric fractional sinusoid as described in Table

16.2, with b ¼ 5mA, x0 ¼ 1mA, and T ¼ 2 ms. The
coil has inductance L ¼ 10mH and quality factor

Q ¼ 50 at f0 ¼ 500 kHz and the circuit (as seen by

the excitation) is resonant at 500 kHz.

(a) Use a finite Fourier series to represent the excita-

tion as

îS tð Þ ¼
XK
k¼�K

Xk exp j2kpf0 tð Þ

with K ¼ 50. Plot îS tð Þ versus t for � T=2 � t � T=2

as a check on the series representation.

(b) Approximate the voltage vL tð Þ as a finite Fourier

series

v̂L tð Þ ¼
XK
k¼�K

Yk exp j2kpf0 tð Þ

with K ¼ 50. Plot v̂L tð Þ versus t for � T=2 � t � T=2.
On the same axes, plot the fundamental component of

v̂L tð Þ and comment.

P 16.11 All amplifiers are nonlinear, to lesser

or greater degree, depending upon the quality of the

amplifier and the amplitude of the excitation. The

response of an amplifier to sinusoidal excitation is

periodic, but not perfectly sinusoidal, and consists of

a fundamental, having the frequency of the excitation,

and harmonics that would not be present if the ampli-

fier were linear, because in that case the response

would be sinusoidal. The standard measure of distor-

tion for audio amplifiers is total harmonic distortion,

or THD. Total harmonic distortion is measured or

specified in either of two ways: One is the total rms

amplitude of the second and higher harmonics,

expressed as a percentage of the rms amplitude of

the fundamental. The other is total power that would

be dissipated in a load by the second and higher

100

t(μs)

vS(t)(mV)

5−10 −5 0

(a) (b)

10

+
–

vS

R

R

C

RvL
+
–

Fig. P 16.4 See Problem

P 16.8

CiS

vL

coil

Fig. P 16.5 See Problem

P 16.10
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harmonics, expressed in dB relative to the power that

would be dissipated in the same load by the fundamen-

tal. We denote the first by THD% and the second by

THDdB. (There is a simple relation between these two

measures, as you are asked to show in part (c), below.)

Specifically, if the response is given by

vL tð Þ ¼
X1
k¼1

Ak cos 2pk f0 tþ ykð Þ

where the fundamental frequency f0 is the frequency

of the excitation, then

THD%¼100

ffiffiffiffiffiffiffiffiffiffiffiffiP1
k¼2

A2
k

s

A1

; THDdB¼10 log

P1
k¼2

A2
k

A2
1

0
BB@

1
CCA

In either case, the amplitude of the excitation is the

specified full-scale amplitude for the amplifier under

test, and THD usually is measured at three or more

frequencies in the amplifier passband.

This problem considers THD caused by clipping

(saturation), which is much more severe than would

be seen in a high-quality audio amplifier subjected to a

full-scale input. The purpose is to illustrate the defini-

tions. More realistic calculations would require meth-

ods beyond our scope.

(a) Refer to the symmetric clipped sinusoid in Table

16.2. Let T ¼ 1ms, x1 ¼ 1V, and x0 ¼ ax1. Cal-
culate and plot THD% and THDdB versus a, for
a ¼ 0:5; 0:6; 0:7; 0:8; 0:9.

(b) To be unnoticeable, the THDdB must be below

about � 70 dB. What are the corresponding

values of a and THD%?

(c) Show that

20 log THD%ð Þ ¼ 40þ THDdB

Note: You do not need to calculate any Fourier

coefficients other than the first X1ð Þ to perform the

calculations called for above. Bear in mind that the

mean-squared amplitudes of different-frequency sinu-

soids are additive.

P 16.12 Obtain and plot the two-sided amplitude

and phase spectra for the sawtooth pulse train in

Table 16.2 for k ¼ 0; 1; 2; � � � ; 8, where the pulse

amplitude is A ¼ 25 mV, the pulse duration is t ¼
250 ns, and the period is T ¼ 1ms, for 0 � f � 8 MHz:

P 16.13 In Fig. P 16.6(a), R ¼ 100 kO,
L ¼ 1mH, and C ¼ 1:62 nF. The excitation iS tð Þ is a
symmetric triangular pulse train having period

T ¼ 8 ms, pulse duration t ¼ 2 ms, and pulse amplitude

I0 � 10mA, as shown in Fig. P 16.6(b). (a) Obtain the

Fourier coefficients for the excitation iS tð Þ and the

response vL tð Þ. (b) Plot the one-sided amplitude spec-

tra of the excitation and response. (c) Plot one period

of the excitation and response on the same axes.

P 16.14 Refer to Fig. P 16.7, where V0 ¼ 5V,
R ¼ 10O, and C ¼ 100 nF. The switch changes posi-

tion – from a to b or from b to a every 10 ms. (a) Plot
one period of the current i tð Þ, assuming the switch is

moved from a to b at t ¼ 0. (b) Find the rms amplitude

of i tð Þ. (c) Find the dc component of the current i tð Þ.
(d) Obtain and tabulate the Fourier coefficients and the

peak amplitudes and relative phases of the amplitude–

phase series for i tð Þ, for 0 � f � 8=T.

P 16.15 For each signal listed below, the period

and amplitude are 1 s and 1 V, respectively. Plot the

two-sided amplitude and phase spectra for each, for

� 10Hz � f � 10Hz.

(a) Symmetric square wave, (b) symmetric saw-

tooth wave, (c) symmetric triangular wave, (d) sym-

metric half-wave rectified sinusoid, (e) symmetric

full-wave rectified sinusoid.

+

–

R

RCV0

a b i

Fig. P 16.7 See Problem P 16.14
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Fig. P 16.6 See Problem P 16.13
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Chapter 17

Operational Amplifiers II: AC Model and Applications

Chapter 7 describes a dc model for an op amp and

gives examples of dc resistive circuit design based

on the model. Such a treatment is instructive but

unrealistic for all but simple circuits operating at

relatively low frequencies. In almost all practical

applications of op amps, the frequency responses

of surrounding circuitry and of op amps themselves

must be considered.

In this chapter, we present a linear ac model for

an op amp and describe ac analysis of op amp cir-

cuits. We present expressions for input impedance,

output impedance, and the voltage transfer function

for inverting, non-inverting, and voltage follower

configurations. We describe slew rate, which is a

limitation on an op amp’s ability to track a rapidly

varying input. We discuss power dissipation and

power-conversion efficiency of op-amp circuits, and

we discuss typical issues in linear op-amp circuit

design.

As a reminder, when we compare impedances by

writing that one is larger or smaller than another,

magnitudes are implied (because complex numbers

cannot be ordered).

17.1 AC Model for an Op Amp

The transfer function of the ideal op amp (model)

treated in Chapter 7 is independent of frequency. The

voltage gain of a real op amp decreases with fre-

quency, the decrease beginning at about 10 Hz for

typical integrated op amps. The primary cause of the

decrease is a capacitor internal to most op amps,

whose purpose is described in the next paragraph.

A transistor exhibits capacitance (e.g., junction

capacitance) that limits the bandwidth of a transistor

circuit. An op amp contains a number of transistors

and a corresponding number of bandwidth-limiting

capacitances. For reasons you will learn in subsequent

courses, these capacitances and the gains of the tran-

sistors can cause an op amp to be unstable, even

if the net external feedback is negative. Most op

amps contain one (intentional) dominant capacitor,

called a compensating capacitor, whose purpose is to

eliminate this inherent instability. Op amps contain-

ing such a compensating capacitor are said to be

internally compensated. Those that are not internally

compensated must be externally compensated, and

provide additional terminals for that purpose. We

limit our discussion to internally compensated op

amps.

The compensating capacitor in an op amp is dom-

inant for frequencies where the op amp is useful (for

frequencies where the intrinsic voltage gain exceeds

unity). For purposes of analyzing linear op-amp cir-

cuits, we may assume that the intrinsic voltage

transfer function of a compensated op amp is of

the form

m j2pfð Þ ¼ m0
1þ j f=f0ð Þ ; f < fT ; (17.1)

where m0 is theintrinsic dc voltage gain, also called

the open-loop dc voltage gain, f0 is the intrinsic (or

open-loop) bandwidth of the op amp, and fT defines

the upper end of the useful bandwidth of the op amp

(and of the model), as described further below. For a

typical general-purpose op amp, the intrinsic band-

width f0 is on the order of 10 Hz and the intrinsic dc

gain is on the order of 105.

T.H. Glisson, Introduction to Circuit Analysis and Design,
DOI 10.1007/978-90-481-9443-8_17, # Springer ScienceþBusiness Media B.V. 2011
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Exercise 17.1. Draw a Bode gain plot for the

voltage gain of an op amp whose voltage trans-

fer function is given by (17.1), with m0 ¼ 105

and f0 ¼ 10Hz:

Figure 17.1 shows a linear ac model for an op amp.

The only differences between the dc model treated in

Chapter 7 and the ac model in Fig. 17.1 are that the

intrinsic voltage transfer function m and input imped-

ance Zi in the ac model are functions of frequency. The

output impedance of an op amp is resistive for fre-

quencies below the unity-gain frequency. The intrinsic

voltage transfer function is given by (17.1). The input

impedance Zi of an op amp is typically that of a

resistor Ri in parallel with a capacitor Ci, given by

Zi ¼ Ri

1þ j f=fi
; fi ¼ 1

2pRiCi
: (17.2)

The resistance Ri is on the order of 1MO for op

amps having bipolar junction transistors (BJTs) in the

input stage and is on the order of 1 TO 1012 Oð Þ for op
amps having field-effect transistors (FETs) in the input

stage. The capacitance Ci is on the order of 1 pF in

either case. The input impedance is usually large

enough that it is inconsequential to performance of

linear op-amp circuits. Keep in mind that Zi given by

(17.2) is the input impedance of an op amp, not nece-

ssarily the input impedance of a circuit in which the op

amp is embedded.

The intrinsic voltage gain of an op amp is the

magnitude of the intrinsic voltage transfer function.

From (17.1),

m j2pfð Þj j ¼ m0
1þ j f=f0ð Þ
����

����
¼ m0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ f=f0ð Þ2
q ; f < fT : (17.3)

The unity-gain frequency, denoted by fT, is the

frequency for which the intrinsic voltage gain mj j
equals unity. Thus

m j 2pfTð Þj j ¼ m0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ fT=f0ð Þ2

q ¼ 1

) fT=f0ð Þ2¼ m0
2 � 1:

(17.4)

Because m0 � 1, it follows from (17.4) that

fT
f0
ffi m0 ) fT ffi m0f0: (17.5)

The product m0 f0 (equal to the unity-gain frequency
fT) is called the gain-bandwidth product of the op

amp. Gain-bandwidth products for typical general-pur-

pose integrated op amps are on the order of 100 kHz to

1 MHz. Gain-bandwidth products for some high-speed

op amps range from about 100 MHz to more than 1

GHz. Gain-bandwidth product is an important parame-

ter in op-amp circuit analysis and design.

Exercise 17.2. With reference to (17.1), show

that the voltage transfer function for an op amp

can be expressed as

Hv ¼ m0
1þ jm0 f=fTð Þ

For frequencies above the unity-gain frequency fT,
internal device capacitances cause the intrinsic voltage

gain m j2pfð Þj j to decrease with frequency more

sharply than is implied by (17.1), but that behavior is

excluded from the model (17.1) because frequencies

above fT are beyond those for which the associated op

amp is useful. Linear op-amp circuits are intended and

designed to operate at frequencies below fT.

We usually write m for m j2pfð Þ unless explicit indi-
cation of frequency dependence is necessary to avoid

confusion. Also, we usually omit the condition f < fT
when using the model (17.1), with the understanding

that the model and relations derived from the model

are valid only for f < fT .

The intrinsic voltage gain defined by (17.3) is a

positive, dimensionless, real function of frequency

and is expressed in dB as

+
–

p

n

o

mvpn
Zi

Ro

Fig. 17.1 AC linear circuit model for an op amp
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mdB ¼ 20 log mj j

¼ 20 log m0ð Þ � 20 log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f=f0ð Þ2

q� �
(17.6)

or normalized to the intrinsic dc gain as

mdB0 ¼ 20 log
m
m0

����
����

¼ �20 log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f=f0ð Þ2

q� �
: (17.7)

The asymptotic approximation to the normalized

intrinsic voltage gain is

mdB0 ffi
0; f � f0;

� 20 log f=f0ð Þ; f > f0:

(
(17.8)

Figure 17.2 shows both actual (dashed) and asymp-

totic Bode plots of the intrinsic gain (17.3) in dB, both

normalized to the dc gain, versus frequency. For fre-

quencies below f0, the intrinsic gain is approximately

m0, independent of frequency. For frequencies above
f0, the intrinsic voltage gain decreases by 20 dB/

decade; e.g., as the frequency increases from 10 f0 to

100 f0, the voltage gain mj j decreases from (approxi-

mately) m0=10 (�20 dB) to m0=100 (�40 dB).

Example 17.1. The intrinsic voltage gain of a

certain op amp 2 decades above the intrinsic

bandwidth (the corner frequency) is 60 dB.

The gain-bandwidth product for the op amp is

1 MHz. What are the intrinsic dc voltage gain

and intrinsic bandwidth?

Solution: Refer to Fig. 17.3, which displays

the information given in the problem statement

on an asymptotic graph of gain versus fre-

quency. Because the gain decreases by 20 dB/

decade above the intrinsic bandwidth f0 and the

gain is 60 dB 2 decades above f0, the dc gain

must be

m0 dB ¼ 60þ 40 ¼ 100 dB ) m0 ¼ 105:

Because the gain at f ¼ f0 equals 105 and

because above f0 the gain decreases by

20 dB/decade, the gain equals 0 dB 5 decades

above f0, Thus

fT ¼ 105f0 ¼ 1MHz ) f0 ¼ 10Hz

17.2 Linear Resistive-Feedback
Amplifiers

A resistive-feedback amplifier is an op-amp-based

inverting or non-inverting amplifier in which the ele-

ments external to the op amp are resistive (or conduc-

tors, as in a voltage follower). Figure 17.4 shows the

actual asymptotic

0.1 1 10 100
–40

–30

–20

–10

0

10

m
m0

(dB)

f

f0

Fig. 17.2 Intrinsic voltage gain versus frequency for an op amp

f
fT = 106 Hzf0

mdB

m0 dB

100 f0

60 dB

0

2 decades 3 decades

Fig. 17.3 See Example 17.1
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feedback amplifiers considered in this section. To con-

serve space, sources and loads are not shown but

assumed present. More general configurations are trea-

ted in Section 17.3.

Symbols used in references to op-amp-based resis-

tive-feedback amplifiers are defined as follows:

R1; R2 are as defined in Fig. 17.4;

ZS; ZL are the source and load impedances;

Hv is the amplifier voltage transfer function with

source and load connected;

Ri is the op-amp input resistance;

Ci is the op-amp input capacitance;

Zi ¼ Zi j2pfð Þ is the op-amp input impedance, given

by (17.2);

Ro is the op-amp output resistance;

m0 is the op-amp intrinsic dc voltage gain;

f0 is the op-amp intrinsic bandwidth;

fT ¼ m0f0 is the op-amp gain-bandwidth product

(unity-gain frequency);

m ¼ m j2pfð Þ is the op-amp intrinsic voltage transfer

function, given by (17.1);

and, under conditions usually met in applications,

Av0 ¼ R2=R1 is the dc voltage gain for an inverting

amplifier;

Av0 ¼ 1þ R2=R1 is the dc voltage gain for a non-

inverting amplifier;

W ¼ fT=Av0 is the approximate bandwidth of an

inverting or non-inverting amplifier, provided

Av0 � 1. See (17.9).

Under conditions met in most applications, the

overall voltage transfer function Hv (including source

and load resistances) for each configuration in Fig. 17.4

is to a good approximation a function of the form

Hv ffi Hv 0ð Þ
1þ j f=W

; W ¼ fT
Hv 0ð Þj j ¼

fT
Av0

; (17.9)

where Hv 0ð Þ is the dc voltage transfer ratio, Av0 ¼
Hv 0ð Þj j is the dc voltage gain, W is the half-power

bandwidth, and fT is the op-amp gain-bandwidth prod-

uct (unity-gain frequency). From (17.9),

Av0W ¼ fT ¼ m0f0 (17.10)

Thus, under conditions met in most applications,

the gain-bandwidth product of an op-amp based

inverting amplifier, non-inverting amplifier, or voltage

follower equals that of the op amp. If the required gain
and bandwidth of an amplifier are specified, the gain-

bandwidth product of the op amp is determined. Con-

versely, the gain-bandwidth product of an op amp

determines the gain-bandwidth product of an amplifier

built around the op amp.

For an inverting amplifier,

Av0 ffi R2

Ri
¼ �Hv 0ð Þ; (17.11)

for a non-inverting amplifier,

Av0 ffi R2

Ri
þ 1 ¼ Hv 0ð Þ; (17.12)

and for a voltage follower,

Av0 ffi 1 ¼ Hv 0ð Þ: (17.13)

Table 17.1 gives the conditions under which (17.9)

through (17.13) are valid for the amplifiers in

Fig. 17.4.

Table 17.2 gives the approximate expressions for

input impedance Zin and output impedance Zout and the

conditions under which the expressions are valid.

+

–

+
–

+
–

vin

vin vin

vout

vout vout

(a) inverting (b) non-inverting (c) follower

R1

R1 R2

R2

Fig. 17.4 Circuit diagrams

for resistive-feedback

amplifiers

Table 17.1 Conditions under which (17.9) through (17.13) are

valid for basic resistive-feedback amplifiers

Amplifier Conditions

Inverting R2 � Ro; ZLj j � Ro; Zij j � R1 � ZSj j;
m0 � Av0

Non-inverting R2 � Ro; ZLj j � Ro; Zij j � ZSj j;
Zij j � R1; m0 � Av0

Voltage follower ZLj j � Ro; mZij j � Ro; Zij j � Ro þ ZSj j
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Example 17.2. The parameters of a certain op

amp are:

Input resistance Ri ¼ 3MO,
Input capacitance Ci ¼ 1:4 pF,

Intrinsic dc voltage gain m0 ¼ 2� 105,

Intrinsic bandwidth f0 ¼ 10Hz,

Gain-bandwidth product fT ¼ m0 f0 ¼ 2:0MHz,

Output resistance Ro ¼ 75O.

The op amp is used in an inverting amplifier

having the form shown in Fig. 17.4(a), with

R1 ¼ 10 kO and R2 ¼ 1MO. The source and

load are resistive. It is known that the source

resistance is no larger than 100O and that the

load resistance is no smaller than 5 kO.

(a) Calculate the no-load voltage gain of the

amplifier at dc and at the amplifier passband

edge (for f ¼ 0 and f ¼ W). Validate the

calculations by confirming that the condi-

tions in Table 17.1 are met.

(b) Use the expressions in Table 17.2 to calcu-

late the amplifier input impedance and out-

put impedance at dc and at the amplifier

passband edge. Validate the calculations by

confirming that the conditions in Table 17.2

are met.

Solution: (a) From (17.9) and (17.11),

Hv0 ¼ �R2

R1

¼ � 1MO
10 kO

¼ �100 ;

W ¼ fT
Hv 0ð Þj j ¼

2:0MHz

100
¼ 20 kHz;

Hv ¼ Hv 0ð Þ
1þ j f=W

¼ � 100

1þ j f=W
;

which are valid if

R2 � Ro; ZLj j � Ro;R1 � ZSj j;
Zij j � R1; m0 � Av0:

We have R2¼1MO�Ro¼75O, ZLj j�5kO
�Ro¼75O, R1¼10kO� ZSj j�100O. From

(17.2),

Zi ¼ Ri

1þ j f=fi
; fi ¼ 1

2pRiCi
ffi 38 kHz:

The minimum value of Zij j in the amplifier

passband is

Zi j2pWð Þj j ¼ Ri

1þ jW=fi

����
����

¼ 3MO
1þ j 15kHz=38kHzð Þ
����

����ffi 2:7MO;

so Zij j � R1 throughout the amplifier passband

(for 0 � f � W).

(b) From Table 17.2,

Zin 0ð Þj j ffi R1 ¼ 10 kO;

Zin j2pWð Þj j ffi 1þ j W=Wð Þ
1þ j W=fTð Þ
����

����R1

¼ 1þ j

1þ j 0:01ð Þ
����

����R1 ffi
ffiffiffi
2

p
R1 ffi 14:1 kO:

The conditions that must be met for the cal-

culation above to be valid are

R1> >RS; R2 � Ro;RL � Ro;

m0 � Av0 � 1; m0 Zij j � R2:

Table 17.2 Input and output impedance of (direct-coupled) resistive-feedback amplifiers

Amplifier Input impedance Output impedance

Inverting
Zin ffi 1þ j f=Wð Þ

1þ j f=fTð ÞR1

R1 � RS; R2 � Ro; RL � Ro;

m0 � Av0 � 1; m0 Zij j � R2

Zout ffi 1þ j f=f0ð Þ
1þ j f=Wð Þ

Av0Ro

m0
m0 � Av0 � 1; Av0 Zij j � R2 � Ro;

R1 � RS

Non-inverting
Zin ffi 1þ j f= f0 þWð Þ

1þ j f=f0

� �
m0Zi
Av0

R2 � Ro;RL � Ro; Zij j � R1; m0 � Av0

Zout ffi 1þ j f=f0
1þ j f= f0 þWð Þ

� �
f0Ro

f0 þW

Zij j � RS þ R1; R2 � Ro; m0 � Av0

Voltage follower
Zin ffi 1þ j f=fT

1þ j f=f0
m0Zi

RL � Ro; Zij j � Ro; m0 � 1

Zout ¼ 1þ j f=f0
1þ j f=fT

� �
Ro

m0
Ri � Ro; Zij j � RS; m0 � 1
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As an exercise, show that the conditions are

met.

The op-amp gain-bandwidth product is

fT ¼ m0f0 ¼ 2:0MHz, so the op-amp intrinsic

bandwidth is f0 ¼ fT=m0 ¼ 10Hz. Thus, from

Table 17.2,

Zout 0ð Þj j ffi Av0Ro

m0
¼ 0:0375O;

Zout j2pWð Þj j ffi 1þ jW=f0
1þ jW=W

����
����Av0Ro

m0

¼ 1þ j2000

1þ j

����
���� 0:0375Oð Þ ffi 53O:

The conditions that must be met for the

calculation above to be valid are

m0 � Av0 � 1; Av0 Zij j � R2 � Ro; R1 � RS:

As an exercise, show that the conditions

are met.

Exercise 17.3. The parameters of a certain op

amp are those given in Example 17.2. The

op amp is used in a non-inverting amplifier

having the form shown in Fig. 17.4(b), with

R1 ¼ 10 kO and R2 ¼ 1MO. The source and

load are resistive. It is known that the source

resistance is no larger than 100O and that the

load resistance is no smaller than 5 kO.

(a) Calculate the no-load voltage gain of the

amplifier at dc and at the amplifier pass-

band edge (for f ¼ 0 and f ¼ W).

(b) Use the expressions in Table 17.2 to calcu-

late the amplifier input impedance and

output impedance at dc and at the amplifier

passband edge.

Exercise 17.4. Prior to studying the following

paragraphs, sketch neatly and label fully

asymptotic graphs of the magnitudes of each

input and output impedance in Table 17.2

versus frequency for 0:1f0 � f � 10 fT . Use a

logarithmic scale for frequency. Let Ri ¼
500 kO, Ro ¼ 75O, m0 ¼ 2� 105, and fT ¼
1MHz. These values are typical for a 741

BJT op amp, first introduced in 1968 and still

in production. Use a source impedance of RS ¼
50O and a load resistance of RL ¼ 5 kO.
For inverting and non-inverting amplifiers, let

R1 ¼ 10 kO and R2 ¼ 1MO, which gives each

amplifier a dc voltage gain of Av0 ffi 100 and a

bandwidth of W ffi 10 kHz. Plot an asymptotic

approximation to

20 log
Zinj j
R1

� �

versus frequency for an inverting amplifier and

an asymptotic approximation to

20 log
Zinj j
Ri

� �

versus frequency for a non-inverting ampli-

fier and voltage follower. Plot an asymptotic

approximation to

20 log
Zoutj j
Ro

� �

for both inverting and non-inverting amplifiers

and for a follower. Drawing and labeling the

graphs will help you follow and understand the

discussion in the following paragraphs.

From Table 17.2, the magnitude of the input imped-

ance of a direct-coupled inverting amplifier increases

from R1 at dc to

Zin j2pWð Þj j ffi 1þ j W=Wð Þ
1þ j W=fTð Þ
����

����R1 ffi
ffiffiffi
2

p
R1 (17.14)

at the passband edge and increases with frequency

thereafter (throughout the useful range of the op

amp). For an inverting amplifier, the dc gain is given

by Av0 ¼ R2=R1. The resistance R2 is typically on the

order of 1MO and the dc gain is typically on the order

of 100. As a result, the minimum input resistance of

an inverting amplifier R1ð Þ is typically on the order of

10 kO in the amplifier passband.
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From Table 17.2, the magnitude of the input imped-

ance of a direct-coupled non-inverting amplifier

decreases from m0Ri=Av0 at dc to

Zin j2pWð Þj j ffi 1þ jW=W

1þ jW=f0

����
���� m0

Av0

� �
Ri

ffi m0f0
Av0W

� � ffiffiffi
2

p
Ri ffi

ffiffiffi
2

p
Ri (17.15)

at the passband edge, and approaches Ri at higher

frequencies (assuming W> f0, which is usually the

case). For a typical op amp and non-inverting ampli-

fier, m0 is on the order of 105 and Av0 is on the order of

100, so m0=A0 is on the order of 103. Thus the input

impedance in the passband of a direct-coupled non-

inverting amplifier typically exceeds 1MO for BJT op

amps and 1TO for FET-input op amps. The input

impedance of a direct-coupled non-inverting amplifier

is typically much larger than that of a comparable

inverting amplifier throughout the passband.1

From Table 17.2, the magnitude of the input imped-

ance of a follower decreases from m0Ri at dc to

Zin j2pWð Þj j ffi 1þ jW=fT
1þ jW=f0

����
����m0Ri ffi m0f0

W
Ri (17.16)

at the passband edge W of a cascaded amplifier. If the

gain-bandwidth product of the cascaded amplifier

equals that of the follower, then

Zin j2pWð Þj j ffi m0f0
W

Ri ¼ fT
fT=Av0

Ri ¼ Av0Ri:

In any case, the magnitude of the input impedance

of a follower at the upper edge fT of the follower

passband is given by

Zin j2pfTð Þj j ffi 1þ jfT=fT
1þ jfT=f0

����
����m0Ri ffi

ffiffiffi
2

p
Ri: (17.17)

Because m0 is typically on the order of 105, the dc

input impedance of a follower is on the order of 105Ri,

decreasing to
ffiffiffi
2

p
Ri for f ¼ fT , which is the bandwidth

of a follower and well beyond the bandwidth of any

cascaded inverting or non-inverting amplifier. This

input impedance of a follower is much larger than

that of a typical inverting or non-inverting amplifier

throughout the passband of the amplifier.

From Table 17.2, the magnitude of the output

impedance of either an inverting or non-inverting

amplifier increases from Av0Ro=m0 at dc to

Zout j2pWð Þj j ffi 1þ jW=f0ð Þ
1þ jW=Wð Þ

����
����Av0Ro

m0

ffi Roffiffiffi
2

p ; W � f0 (17.18)

at the passband edge W. For a typical general-purpose

BJT op amp and amplifier, the intrinsic output resis-

tance Ro is on the order of 100O, the intrinsic dc

voltage gain m0 is on the order of 105 and the amplifier

gain is on the order of 100. Thus the output resistance

of a typical amplifier increases from about 10�3Ro at

dc to R0

� ffiffiffi
2

p
at the passband edge. To ensure efficient

voltage transfer and to avoid having the load and

output impedances alter the frequency response of

the amplifier, the load impedance should be about

10Ro or larger.

From Table 17.2, the magnitude of the output

impedance of a follower increases from Ro=m0 at dc to

Zout j2pWð Þj j ffi 1þ jW=f0
1þ jW=fT

� �����
����Ro

m0
ffi WRo

fT
(17.19)

at the edge of the passband of a cascaded amplifier. If

the gain-bandwidth product of the cascaded amplifier

equals that of the follower fTð Þ, then

Zout j2pWð Þj j ffi WRo

fT
¼ Ro

Av0
;

where Av0 is typically on the order of 100. The magni-

tude of the output impedance increases to

Zout j2pfTð Þj j ffi 1þ jfT=f0
1þ jfT=fT

� �����
����Ro

m0
ffi Roffiffiffi

2
p (17.20)

at the upper edge fT of the follower passband.

Because m0 is typically on the order of 105, the

dc output impedance of a follower is typically on

the order of 10�5Ro and is given to a good approxima-

tion by WRo=fT at the passband edge of a cascaded

1However, if the source is capacitance coupled to the amplifier,

the required dc bias-current compensation drastically reduces

the input impedance.
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amplifier having bandwidth W. If the follower and

cascaded amplifier have equal gain-bandwidth pro-

ducts, then the maximum output impedance of the

follower in the amplifier passband is given to a good

approximation by Ro=Av0, where the amplifier dc volt-

age gain Av0 is typically on the order of 100. decreas-

ing to Ro

� ffiffiffi
2

p
for f ¼ fT , which is the bandwidth of a

follower and well beyond the bandwidth of any cas-

caded inverting or non-inverting amplifier. The output

impedance of a follower is much smaller than that of a

typical inverting or non-inverting amplifier throughout

the passband of the amplifier.

Followers can greatly increase the input impedance

and greatly decrease the output impedance of an

amplifier in the amplifier passband, as illustrated by

Fig. 17.5, which shows input and output impedances

at the passband edge (for f ¼ W ¼ 10 kHz) of a

buffered inverting amplifier for a case where R1 ¼
10 kO, R2 ¼ 1MO, and the op amps are identical,

with f0 ¼ 10Hz, m0 ¼ 105, Ro ¼ 75O, and Ri ¼
1MO. The follower at the input increases the input

impedance from 14:14 kO to 100MO and the follower

at the output decreases the magnitude of the output

impedance from 53O to 0:75O.
Input and output impedances of linear resistive op

amp circuits (such as inverting and non-inverting

amplifiers) are functions of frequency and depend (in

general) upon parameters of the op amp and upon

parameters of the feedback circuit in which the op

amp is imbedded. Frequency dependence of the input

impedance and output impedance of a linear op amp

circuit are irrelevant in many applications. But such

dependence can come into play if an amplifier either is

driven by a source having a large output impedance or

drives a load having a small input impedance.

Op-amp gain-bandwidth products range from about

10 kHz to more than 1 GHz. The largest gain-band-

width products are provided by relatively expensive

“high-speed” op amps. Most inexpensive general-

purpose integrated op amps have gain-bandwidth pro-

ducts from 1 to 10 MHz. If we require a dc voltage

gain on the order of 100 from a single-stage (inverting

or non-inverting) amplifier using a general-purpose op

amp, which is somewhat typical, the maximum band-

width we can achieve is from 10 to 100 kHz. In other

words, feedback amplifiers built around typical gen-

eral-purpose op amps are limited to applications where

the highest frequency of interest is on the order of

100 kHz. Such op amps are suitable for audio-fre-

quency applications, but not for (e.g.) video-frequency

applications.

The gain-bandwidth product fT of an op amp is a

critical parameter in specifying or determining the

bandwidth of a resistive feedback amplifier built

around the op amp.2 If the dc voltage gain and the

bandwidth of an amplifier are specified, then the

required gain-bandwidth product is determined. From

another point of view, if we know the required dc gain,

we can easily calculate the bandwidth that can be

achieved with any particular op amp. Conversely, if

we know the required bandwidth, we can find the

maximum dc gain that can be achieved.3

Op amps typically have three stages of amplifica-

tion: An input stage, middle stage, and output stage.

Almost all of the gain is provided by the input and

middle stages, with the output stage generally provid-

ing near-unity gain and low output resistance. Op

amps are built using various kinds of transistors. The

primary types are constructed using (1) only bipolar

junction transistors (BJTs), (2) junction field-effect

transistors (JFETs) in the input stage and BJTs else-

where, and (3) metal-oxide-semiconductor field-effect

transistors (MOSFETs) throughout.

+

–
+
– +

–

R1

R2

|Z′in| ≅ 100MΩ |Z′in| ≅ 14.14kΩ |Z′out| ≅ 0.75 Ω|Z′out| ≅ 53 Ω

Fig. 17.5 A buffered

inverting amplifier

2Another is slew rate, discussed in Section 17.5.
3We assume here that the bandwidth of the feedback amplifier

exceeds that of the op amp alone, which is almost always the

case (except for a follower). Because the gain-bandwidth prod-

uct for a feedback amplifier equals that for the op amp alone, and

because the dc gain of a stable feedback amplifier is smaller than

that of the op amp, the bandwidth of the amplifier must be larger

than that of the op amp.
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The dc voltage gain of a BJT stage is roughly an

order of magnitude higher than that of a JFET or

MOSFET stage. An all-BJT op amp has two BJT gain

stages (input and middle). A JFET-input op amp has

one JFET gain stage (input) and one BJT gain stage

(middle), so the dc voltage gain of an all-BJT op amp is

about an order of magnitude higher than that of a JFET-

input op amp. A MOSFET op amp has two MOSFET

gain stages (input andmiddle), so the dc voltage gain of

an all-BJT op amp is roughly two orders of magnitude

higher than that for a MOSFET op amp.

For a BJT op amp, Ri is on the order of 1MO. For a
JFET-input or MOSFET op amp, Ri is on the order of

1 TO. In each case, Ci is on the order of 1 pF. Thus (1)

the corner frequency fi is on the order of 100 kHz for a

BJT op amp and on the order of 0.1 Hz for a JFET-input
or MOSFET op amp and (2) the input impedance of a

JFET-input or MOSFET op amp is many orders of

magnitude larger than that for a BJT op amp throughout

any passband established by external feedback circuitry.

Although the exceedingly large input impedances

of JFET-input or MOSFET op amps seem attractive,

input impedances of BJT op amps are adequate for

most applications of general-purpose op amps. Also,

because JFET-input and MOSFET op amps provide

lower gains than and cost about three times as much as

BJT op amps, BJT op amps are the op amps of choice

for many linear applications. But where linear and

MOSFET-based digital circuits are integrated in a

single IC, MOSFET op amps are preferred because

manufacture of such integrated circuits is less difficult

if all transistors are of the same kind.

17.3 Linear Reactive-Feedback Circuits

A reactive-feedback op-amp circuit is one in which

reactive elements appear in the feedback network.

Examples of reactive-feedback circuits include inte-

grators, differentiators, and virtually all op-amp based

linear active filters. Circuits treated in this section have

the forms shown in Fig. 17.6, where at least one of

Z1; Z2 is complex. The source and load impedances

might be real or complex.

The bandwidth of a linear reactive-feedback circuit

depends upon the bandwidth of the op amp itself

and also upon the bandwidth of surrounding circuitry.

For example, refer to the inverting configuration in

Fig. 17.6(a). The voltage transfer function for the

inverting reactive-feedback amplifier in Fig. 17.6(a) is

Hv ¼
~VL

~VS

ffi � Z2
Z1

; jZij � jZSj (17.21)

and the voltage transfer function for a non-inverting

reactive feedback amplifier in Fig. 17.6(b) is

Hv ¼
~VL

~VS

¼ 1þ Z2
Z1

(17.22)

provided:

1. The product of the magnitude (gain) of Hv and

the bandwidth of Hv does not exceed the gain-

bandwidth product of the op amp throughout the

passband of Hv.

2. The op-amp input impedance Zi is such that Zij j �
Z1j j throughout the passband of Hv.

3. The op amp output resistance Ro is such that Ro �
ZLj j and Ro � Z2j j throughout the passband of Hv.

In most applications, reactive-feedback amplifiers

are designed such that these conditions are satisfied.

Of course, (17.21) and (17.22) also are valid if the op

amps are ideal (if m0 ! 1).
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+
–

ZS

ZS
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ZL

Z1

Z1

Z2

Z2

(a) Inverting

(b) Non-Inverting

VS
~

VS
~

VL
~

VL
~

+
–

+
–

Fig. 17.6 Basic inverting and non-inverting linear reactive-

feedback circuits
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Example 17.3. In Fig. 17.7(a), the circuit and

op-amp parameters are

RS ¼ 40O; R1 ¼ 10 kO; R2 ¼ 402 kO;

C ¼ 19:8 pF;RL ¼ 2 kO

m0 ¼ 4� 105; fT ¼ 4MHz;Ri ¼ 5MO;

Ci ¼ 3 pF;Ro ¼ 75O

(a) Obtain and justify an approximate expres-

sion for the voltage transfer functionHv ¼ ~Vo

�
~VS.

(b) Construct a linear model for the circuit and

obtain an exact expression for the voltage transfer

function. (c) On the same axes, draw graphs of

voltage gain versus frequency as obtained from

the approximate expression from part (a) and from

the exact expression from part (b).

Solution: (a) For the parameters given, R1 � RS

and RL � Ro. From (17.21), if the associated con-

ditions are met, the voltage transfer function is

Hv ffi � Z2
R1

¼ � R2=R1

1þ j f=f2
;

f2 ¼ 1

2pR2C
¼ 20 kHz (17.23)

so the half-power bandwidth is 20 kHz. To vali-

date (17.23), we must show that mj j � 1 and

Zij j � R1 for f � f2, where R1 ¼ 10 kO. Both
mj j and Zij j decrease monotonically with increas-

ing frequency, so the minimum values of those

quantities for f � f2 are

mj j ¼ m0
1þ jf2=f0

����
����¼ m0

1þ j2�103

����
����¼ 200� 1;

Zij j ¼ Ri

1þ j2pf2RiCi

����
����¼ Ri

1þ j20=10:6

����
����

¼ 2:34MO�R1:

Therefore, the ideal model should suffice.

(b) Figure 17.7(b) shows the linear model for

the circuit in Fig. 17.7(a). Applying Kirchhoff’s

current law to nodes n and o gives

~Vn � ~VS

R1S
þ

~Vn

Zi
þ

~Vn � ~V0

Z2
¼ 0;

~Vo � ~Vn

Z2
þ

~Vo þ m ~Vn

Ro
þ

~Vo

RL
¼ 0:

Eliminating ~Vn and solving for Hv ¼ ~Vo

�
~VS

yields the voltage transfer function

Hv ¼ �RLZi mZ2�Ro½ 	
ZþR1S RLþRoþmRL½ 	f gZiþR1SZ

; (17.24)

where R1S ¼ R1 þ RS and

Z ¼ RoRL þ Z2 RL þ Roð Þ: (17.25)

(c) Figure 17.8 shows graphs of the exact

voltage gain given by (17.24) and the approxi-

mate voltage gain given by (17.23). Figure 17.8(a)

suggests that the approximation is quite good.

But the magnified view in Fig. 17.8(b) shows that

the bandwidth is somewhat less than that pre-

dicted by the approximate relation (17.23). The

true half-power bandwidth is approximately 16.5

kHz, whereas that given by the approximation

(17.23) is approximately 20 kHz. This difference

might be significant in a few demanding applica-

tions; however, the exact gain is less than 1 dB
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RLRoZi

RL
R1

R1S
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Z2

C

p

n

ovS

(a) circuit diagram

+
–

VS
~

(b) linear model

o

p

n

+
–

+
–

m Vp – Vn
~ ~

Fig. 17.7 See Example 17.3
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below the approximate gain at 20 kHz, and a 1 dB

error would be insignificant inmany applications.

Indeed, even larger errors can arise from uncer-

tainties in circuit and op-amp parameter values.

Exercise 17.5. For the circuit shown in

Fig. 17.7(a), what is the smallest value of the

capacitance C for which the circuit bandwidth

is determined by the impedance Z2?

17.4 Output Swing

The output swing of an op amp is the largest output

swing the op amp can provide, assuming an adequate

symmetric supply.4 For example, if the output swing

of a rail-to-rail op amp is specified as 
 15V, and if

the supply is 
 15V, the input and voltage gain must

be such that the magnitude of the output does not

attempt to exceed 15 V.
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Hv ( j2p f )

Hv ( 0)

exact
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Fig. 17.8 See Example 17.3

4The output swing of an op amp is defined as if the supply is

symmetric, whether or not that is actually the case.
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The required output swing for a waveform having

a known peak amplitude is easy to determine. For

example, If a sinusoid having peak amplitude 100

mV is applied to the input of a feedback amplifier

whose voltage gain is 100 at the frequency of the

sinusoid, the required output swing for that input

is 
 10V.

Example 17.4. The voltage transfer function

for a certain inverting amplifier built around a

rail-to-rail op amp is given by

Hv ¼ Av0

1þ j f=W
; Av0 ¼ 250; W ¼ 25 kHz

The input is a sinusoidal voltage having

frequency f0 ¼ 15 kHz and rms amplitude

VS ¼ 50mV. What output swing is required

of the op amp? What supply voltage is

required? (Assume a symmetric supply.)

Solution: The peak amplitude of the input is

50
ffiffiffi
2

p
mV. The voltage gain of the amplifier at

15 kHz is

Hv j2pf0ð Þj j ¼ 250

1þ j15=25

����
���� ffi 206

Thus the peak amplitude of the output is

Vout ffi 206ð Þ 50
ffiffiffi
2

p
mV

	 

ffi 14:6V

and the required output swing is 
 14:6V. A


 15V supply would be adequate.

It is impossible to describe many physical signals,

such as voltages representing speech, music, or video,

as simple functions of time. Instead, such signals are

described probabilistically; for example, in part by

a function that gives the probability that the instan-

taneous amplitude of the signal will exceed any spe-

cified value. When we compute (or measure) such

probabilities for many common physical signals, it

turns out that many ac signals spend most of their

lives within three rms amplitudes of zero and that

almost any ac physical signal x tð Þ spends essentially
all of its life within five rms amplitudes of zero.

Consequently, when designing an amplifier for a cur-

rent or voltage representing a signal such as speech,

music, or video, we would specify the gain and output

swing (power supply) such that the peak-to-peak out-

put swing is approximately six to ten times the rms
amplitude of the output signal. For a symmetric swing

(symmetric supply), we might require that

VOS � k vout rms; (17.26)

where 3 � k � 5, depending on the nature of the signal

to be amplified. The output swing is approximately

equal to the supply voltage VCC for rail-to-rail op

amps and is about 1 V lower for non rail-to-rail op

amps. We would design the amplifier such that the

peak output does not exceed three to five times the

product of the gain and the rms amplitude of the input.5

Example 17.5. A certain public-address

amplifier whose output stage is an inverting

amplifier, must deliver 25W to an 8O resistive

load. If the output stage is powered by a sym-

metric supply, and if the op amp output can

swing to within 1 V of either supply voltage,

what supply voltage is required?

Solution: The power delivered to the load is

given by

P ¼ Vrms
2

RL
:

Thus the rms amplitude of the output is

Vrms ¼
ffiffiffiffiffiffiffiffi
RLP

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8Oð Þ 25Wð Þ

p
¼ 14:14V:

If the output (speech or music) is almost

always within 3 rms amplitudes of zero, the

required output swing is 
 3ð Þ 14:14Vð Þ ffi

42:4V and the required supply voltages are


 43:4V, so we might use a 
 45V supply.

5It also is possible to use a circuit called an automatic gain
control (AGC), which keeps the rms amplitude of an input

within specified bounds. You might learn about AGCs in a

subsequent course.
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17.5 Slew Rate

The slew rate of an op amp is the maximum rate of

change (magnitude) of output voltage that can be

supported by the op amp. The slew-rate limitation

arises from the fact that the current available to charge

or discharge the internal compensating capacitor is

limited. Thus the rate of change of the capacitor volt-

age is limited, which imposes a limit on the rate of

change of an output.

Slew rates for general-purpose integrated op amps

often are expressed in units such as (e.g.) kilovolts

per second (kV s�1) or, equivalently, volts per milli-

second (Vms�1). Slew rates for integrated op amps

range from about 0:1Vms�1 100 kV s�1ð Þ to more than

1; 000Vms�1. Op amps having large gain-bandwidth

products and slew rates of about 100Vms�1 or more

are commonly called high-speed op amps because

they can track relatively fast changes in an input at

relatively high gains.

To illustrate the limitation imposed by slew rate,

we consider a sinusoidally excited op amp having slew

rate SR and we let vðtÞ ¼ V0 cos o tð Þ denote the out-

put. The rate of change of the output is given by

dv

dt
¼ d V0 cos o tð Þ

dt
¼ �2 p f V0 sin o tð Þ:

Themaximum rate of change of the output is given by

max
dv

dt

� �
¼ 2 p f V0:

The maximum rate of change of the output cannot

exceed the slew rate (SR) of the op amp, which requires

2 p f V0 < SR: (17.27)

Equation (17.27) leads to the requirement

fmax ¼ SR

2 pVCC
; (17.28)

where VCC is the maximum allowable peak amplitude

of the output for linear operation, assuming a symmet-

ric supply 
 VCC and rail-to-rail operation.

Figure 17.9 illustrates the effect of slew rate

for a hypothetical amplifier having slew rate SR ¼
4:5Vms�1. The amplifier output is unable to track a

5-V, 1 MHz sinusoid and degenerates to a triangular

wave. As shown on the figure, the slope (magnitude)

of each straight-line segment of the triangular wave is

the slew rate.

Example 17.6. The input to a certain invert-

ing amplifier is a sinusoid whose frequency

does not exceed 10 kHz. The voltage gain of

the amplifier is given by

Hv ¼ K

1þ j f=Wð Þ ; K ¼ 100; W ¼ 1 kHz

and the maximum output swing is 
 VCC, with

VCC ¼ 10V. The amplifier must operate line-

arly for 0 � f � 10 kHz. Specify the maxi-

mum allowable amplitude of the input as a

function of frequency and the minimum

acceptable slew rate.

5

1

–1

–5

T = 1µs

vout (V)

t

4.5 V

Fig. 17.9 Effect of slew rate

for an amplifier having a

sinusoidal input. The dashed

(sinusoidal) waveform would

be the output in absence of the

slew rate limitation. The solid

(triangular) waveform is the

actual output
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Solution: For any frequency, the maximum

amplitude of the output may not exceed VCC.

Thus for frequencies below W, where the gain

is approximately equal to K, the input ampli-

tude Vin may not exceed VCC=K ¼ 100mV.

For frequencies aboveW, the voltage gain is

given approximately by

Av fð Þ ¼ Kj jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f=Wð Þ2

q ffi Kj jW
f

and the amplitude Vin of an input having fre-

quency f must satisfy

Kj jW
f

Vin < VCC ) Vin <
f VCC

Kj jW :

The amplitude of the output may not exceed

VCC at any frequency, so the slew rate must

satisfy

SR > 2pVCC f

for all frequencies of interest. The highest fre-

quency of interest is 10 KHz, so we require

SR> 2p 10Vð Þ 10 kHzð Þ ¼ 628 kV s�1:

Many general-purpose op amps will meet

that requirement, but many will not. In partic-

ular, both the venerable 741 op amp and the

generic (virtual) simulated op amp provided

by Electronic workbench have slew rates of

500 kV s�1: However, if the amplitude of the

input does not increase with increasing fre-

quency and the voltage gain decreases with

frequency, or if the amplifier must be linear

only within the passband f < W, the required

slew rate would be smaller – perhaps by an

order of magnitude or more.

Finite bandwidth and finite slew rate both limit the

ability of an op amp to respond to a rapidly changing

input, but in different ways. The effect of finite band-

width is a reduction of gain with increasing fre-

quency; that is, as the frequency of a sinusoidal input

is increased, the amplitude of the sinusoidal output

decreases, but the output remains sinusoidal. But if

the amplitude and frequency of a sinusoidal output

are such that the slope (derivative) of the output

exceeds the slew rate, the output becomes non-

sinusoidal, as illustrated by Fig. 17.9. In other words,

when slew rate comes into play, the amplifier becomes

nonlinear. Generally, it is desirable to ensure that slew

rate does not come into play at frequencies within the

passband (below the bandwidth) of an amplifier. As a

conservative rule of thumb, the slew rate of a rail-to-

rail op amp for a linear application and sinusoidal

input should satisfy the inequality

SR> 2pW VCC (17.29)

where W is the desired bandwidth. The voltage trans-

fer functions of resistive-feedback amplifiers are of

the form

Hv ¼ Hv 0ð Þ
1þ j f=Wð Þ ;

for which a 1-decade (factor of ten) increase in fre-

quency of a sinusoidal output is accompanied by

a 20 dB (factor of ten) decrease in the amplitude of

the output. Thus, if (17.29) is satisfied, no higher-

frequency input will cause the slew rate to be

exceeded.

Example 17.7. Figure 17.10 shows an inverting

amplifier using an LF411 op amp, where the

supply voltages are 
 15V. Typical values of

the gain-bandwidth product and slew rate of an

LF411 are 4 MHz and 15Vms�1, respectively.

The maximum output swing of an LF411 is

approximately 
 VCC� 1Vð Þ; i.e., from �VCCþ
1V to VCC� 1V.

+

–

20kΩ

1kΩ RL

LF411

vS vL

Fig. 17.10 See Example 17.7
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(a) Find the bandwidth of the amplifier (b) Deter-

mine the maximum allowable amplitude of a

sinusoidal output whose frequency equals the

amplifier bandwidth.

Solution: (a) The dc voltage gain of the ampli-

fier is

Av0 ¼ R2

R1

¼ 20

1
¼ 20:

Thus the amplifier bandwidth is

W ffi fT
Av0

¼ 4MHz

20
¼ 200 kHz:

(b) From (17.29), the maximum amplitude of a

200 kHz sinusoidal output that can be tracked

by the op amp output is

Voutmax ¼ SR

2pW
¼ 15V ms�1

2pð Þ 200 kHzð Þ ¼ 11:9V:

For full-scale output 
14Vð Þ, slew rate, not

frequency response, limits the useful band-

width. The highest frequency for which full-

scale output can be obtained without slew

rate distortion is

fmax ¼ SR

2p 14Vð Þ¼
15Vms�1

2p 14Vð Þ ¼ 171kHz: (17.30)

The circuit is nonlinear for full-scale outputs

at higher frequencies. Generally, linear op-

amp circuits are designed such that gain-

bandwidth product, and not slew rate, limits

the bandwidth of the circuit.

Strictly, (17.29) applies only to a sinusoidal input. In

most applications, inputs and outputs of interest are not

sinusoidal, but often are much more complex signals

such as currents or voltages representing speech, music,

and similar signals. Limits on output-swing require that

the rms amplitude of such a signal not exceed about

VOS=3 (see (17.26)). Let W denote the bandwidth of

an amplifier for such a signal. In the worst case, the

input is a single sinusoid having frequency W and rms

amplitude VOS=3. In such a case, the peak amplitude of

the output is
ffiffiffi
2

p
VOS

�
3 and the slew rate must satisfy

SR> 2pW

ffiffiffi
2

p
VOS

3
ffi 3WVOS: (17.31)

Equation (17.31) is a reasonable guide for prelimi-

nary design (for input voltages representing speech,

music, and similar signals), with a follow-up simula-

tion. There are more complicated ways to estimate

maximum rates of change of such signals, and thus

to specify required slew rates, but such calculations

are beyond our scope.

Example 17.8. Refer to Example 17.7.

Figure 17.11 shows an inverting amplifier using

an LF411 op amp, where the supply voltages are


 15V. (a) Find the bandwidth of the amplifier.

(b) The amplifier is to be an audio amplifier for

telephone-quality speech signals having band-

width 4 kHz. Determine the maximum allowable

rms amplitude of such an input.

Solution: (a) The dc (passband) gain is

Av0 ¼ 1MO
1 kO

¼ 103:

The bandwidth of the amplifier is

W ffi fT
Av0

¼ 4MHz

1000
¼ 4 kHz:

(b) The required output swing is approximately


 three rms amplitudes of the output, which

implies that the rms amplitude of the input

must satisfy

3Av0VS rms ¼ 14V ) VS rms � 14V

3000
ffi 4:7mV:

From (17.31), the required slew rate is

SR ¼ 3W VOS ¼ 3 4 kHzð Þ 14Vð Þ ¼ 168Vms�1:

Slew rates of most general-purpose op amps

exceed this value. Thus output swing, not

slew rate, limits the allowable rms amplitude

of an input to 4.7 mV.
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Although generally disadvantageous, the limited

slew rate of an op amp can be used to advantage in a

few applications. One such application is in suppres-

sing sharp, undesirable voltage “spikes” corrupting an

input; for example, as might be seen if attempting to

restore an old recording from a scratched vinyl disk. In

this application, the slew rate might suppress the spikes

without affecting the more slowly varying waveform

representing the desirable signal (the music).

17.6 Amplifiers in Cascade

If the voltage transfer function for an inverting or non-

inverting amplifier is approximately independent of

the load on the amplifier, which is almost always the

case (by design), the overall voltage transfer function

of two or more such amplifiers in cascade equals the

product of the voltage transfer functions of the indi-

vidual amplifiers.

Example 17.9. Figure 17.12 shows a two-stage

amplifier, where R1 ¼ 5 kO, R2 ¼ 200 kO,
R3 ¼ 10 kO, and R4 ¼ 400 kO. The op amps

are identical, each having gain-bandwidth

product fT ¼ 2MHz, intrinsic dc voltage gain

m0 ¼ 105, output resistance Ro ¼ 75O, and

input resistance Ri ¼ 4MO. The source and

load resistances are RS ¼ 25O; RL ¼ 1 kO.
(a) Using expressions given in Table 17.2,

calculate the minimum input impedance and

maximum output impedance (magnitudes) for

each amplifier in the respective passbands. Is

loading significant? (b) Obtain an expression

for the voltage transfer function for the circuit.

(c) Draw a Bode plot of voltage gain versus

frequency for the circuit.

Solution: (a) From Table 17.2 or (equivalently)

(17.14) and (17.15), the minimum input impe-

dances of the two stages are

Zin 1j jmin ffi R1 ¼ 5 kO;

Zin 2j jmin ffi
ffiffiffi
2

p
Ri ¼ 5:66MO:

Thus, Zin 1j jmin¼ 200RS, so the load on the

source is negligible. The maximum output

impedances are both equal (approximately) to

Zoutj jmaxffi
Roffiffiffi
2

p ffi 53O:

Thus, Zout1j jmax < 0:001 Zin 2j jmin and

Zoutj jmax < 0:0002RL, so the loads on the

first and second stages are negligible.

(b) From part (a), loading is insignificant, so the

voltage transfer function for the cascade is

approximately the product of the voltage

transfer functions for the two stages. The

dc voltage gains f the first stage (inverting

amplifier) and second stage (non-inverting

amplifier) are

Av01 ¼ R2

R1

¼ 40; Av02 ¼ 1þ R4

R3

¼ 41:

The respective bandwidths are

W1 ffi fT
Av01

¼ 50 kHz; W2 ffi fT
Av02

¼ 48:8 kHz

Thus the individual voltage transfer func-

tions are

Hv1 ¼ �Av01

1þ j f=W1ð Þ ; Hv2 ¼ Av02

1þ j f=W2ð Þ ;

R1

R2

R3 R4

+

–
+
–

RS

VL RL
~

VS
~

V1
~

+
–

Fig. 17.12 See Example 17.9
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1MΩ

1kΩ
RL

LF411

vS vL

Fig. 17.11 See Example 17.7
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and the voltage transfer function for the cas-

cade is

Hv ¼ �Av01Av02

1þ j f=W1ð Þ½ 	 1þ j f=W2ð Þ½ 	

Often, a desired gain and bandwidth for an ampli-

fier cannot be attained using a single op amp (because

the desired gain-bandwidth product exceeds that for

the op amp). In such cases, it might be possible to

achieve the desired gain and bandwidth using a cas-

cade of two or more stages. An alternative (usually

better) is to use an op amp having an adequate gain-

bandwidth product. But if for some reason cascading

stages is a better approach (or the only available

approach), it is useful to know how overall bandwidth

of a cascade of identical stages depends upon the

bandwidth of a single stage and the number of stages.

An end-of-chapter problem asks you to show that the

� 3 dB bandwidth of a cascade of n inverting or non-

inverting amplifiers (or a mix), all having the same

bandwidth W, is given by

Wn ¼ W
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
21=n � 1

p
: (17.32)

For example, the bandwidth of a cascade of two

identical amplifiers is about 0:64W, where W is the

bandwidth of either stage.

Example 17.10. The gain-bandwidth product

for a certain op amp is 1 MHz. Using one or

more of these op amps in non-inverting config-

uration, design an amplifier having dc gain

A0 ¼ 100 and bandwidth W � 40 kHz.

Solution: The overall gain-bandwidth prod-

uct required is 100ð Þ 40� 103ð Þ ¼ 4MHz, so

we cannot meet the specifications with a single

stage using the specified op amp. Because

100 ¼ 102 and 1MHzð Þ=10 ¼ 100 kHz, we

can meet the specification using a two-stage

amplifier, each stage having gain 10 and band-

width 100 kHz, as shown in Fig. 17.13. The

overall bandwidth will be about 64 kHz. The

dc voltage gain of each stage is

A ¼ 1þ R2

R1

:

If we choose R2 ¼ 9 kO; R1 ¼ 1 kO, then
A ¼ 10 and the overall dc gain is A2 ¼ 100:

As an aside, the number N of identical amplifiers in

cascade that maximizes the overall bandwidth and

gives a specified overall dc gain A is given by

NðAÞ ¼ ln 2ð Þ
ln

�2 ln Að Þ
ln 2ð Þ � 2 ln Að Þ

� � : (17.33)

For example, if we want to maximize the band-

width of a cascade of N amplifiers, subject to the

constraint that the overall gain equals 100, then the

number of stages is

Nð100Þ ¼ ln 2ð Þ
ln

�2 ln 100ð Þ
ln 2ð Þ � 2 ln 100ð Þ

� � ¼ 8:86;

so we would use either eight or nine stages, depending

on which gave the largest bandwidth. From (17.32),

WðNÞ ¼ Wð1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
21=N � 1

p
;

where

Wð1Þ ¼ fT
A1=N

is the gain of a single stage. Thus

Wð8Þ ¼ fT
1001=8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
21=8 � 1

p
¼ 0:169 fT ;

Wð9Þ ¼ fT
1001=9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
21=9 � 1

p
¼ 0:170 fT ;

+

–
+

–

R1 R2 R1 R2

vout

vin

Fig. 17.13 See Example 17.10

17.6 Amplifiers in Cascade 625



so eight stages are about as good as nine. We would

probably use eight (for simplicity and economy).

17.7 Capacitance Coupling

Where the output of one circuit is connected to the

input of another, the circuits are said to be coupled. A

source connected to an amplifier as shown in

Fig. 17.14(a) is said to be direct coupled to the ampli-

fier. A source connected to an amplifier through a

capacitor, as shown in Fig. 17.14(b), is said to be

capacitance coupled to the amplifier. The usual pur-

pose of capacitance coupling is to prevent the dc

component of a current or voltage from reaching the

input of a subsequent amplifier (or other circuit). In

this application, the capacitor is called a coupling

capacitor or dc blocking capacitor.

Refer to Fig. 17.14(b). The impedance seen by the

source is given by

Z0
in ¼ ZC þ Zin ¼ 1

j2pf C
þ Zin

where C is the capacitance of the coupling capacitor

and Zin is the input impedance of the amplifier. Capac-

itance coupling alters the impedance seen by the

source at low frequencies and thereby alters the low-

frequency response of an amplifier. If fmin denotes the

lowest frequency of interest in the input, the capacitor

must be large enough that

1

j2pfmin C

����
���� � Zin j2pfminð Þj j

) C � 1

2pfmin Zin j2pfminð Þj j
(17.34)

For any particular value of fmin, increasing the input

impedance (magnitude) of the amplifier for f ¼ fmin

decreases the required size of a coupling capacitor.

Consequently, if capacitance coupling is used, it is

desirable that the amplifier have large input impedance

(magnitude) at the lowest frequency of interest (for

f ¼ fmin).

Example 17.11. A certain voltage source is

to be capacitance coupled to an amplifier

whose input impedance at dc (for f ¼ 0) and

throughout the passband is 10 kO: The pass-

band of the amplifier must extend down to

fmin ¼ 10Hz. Specify the capacitance of the

coupling capacitor.

Solution: We have from (17.34) that

C � 1

2pfmin Zin j2pfminð Þj j ) C � 1

2p 10ð Þ 104ð Þ
¼ 1:59 mF

If we interpret “ � ” to mean “ten times

larger than,” we would require C ¼ 15:9 mF,
which is quite a large capacitor in the context

of many modern electronic circuits and espe-

cially in integrated circuits.

Capacitance coupling requires more components

than direct coupling and in an integrated circuit would

therefore require more real estate (a larger chip area)

than an equivalent direct-coupled circuit. Consequently,

direct coupling is preferred to capacitance coupling,

especially in integrated circuits, and such circuits

often are designed such that capacitance coupling is

not required. You will learn more about this topic if

you take a subsequent course in electronic circuits.

C

Zin ZinvS vS

ZS ZS

source amplifier source amplifier

(a) direct coupling (b) capacitance coupling

+
–

+
–

Fig. 17.14 Direct and

capacitance coupling
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17.8 Input Bias Current Compensation
in Capacitance-Coupled
Amplifiers6

Any circuit in which an op amp is imbedded must

provide dc paths to ground from both the n and

p input terminals for the input dc bias currents. Also,

it usually is desirable that one of the paths to ground

contain a compensating resistance RX that greatly

reduces the input voltage offset that would otherwise

be produced by the input bias currents. Figure 17.15

depicts usual approaches to such compensation for

inverting and non-inverting amplifiers.

Compensating for input bias currents might be

optional in non-demanding applications of inverting

and direct-coupled non-inverting amplifiers, but com-

pensation as shown in Fig. 17.15(a) is required for

capacitance-coupled non-inverting amplifiers because
otherwise there is no dc path to ground from the

positive (p) input of the op amp.

The compensating resistances shown in Fig. 17.15

for capacitance-coupled inverting and non-inverting

amplifiers are given by7

RX ¼ R1 R2k (non-inverting amplifier) (17.35)

RX ¼ R1 ðinverting amplifierÞ (17.36)

If the op amp used has sufficiently large dc gain (if

m0 ! 1), the input impedance in the passband (for

0 � f < W) of a non-inverting amplifier is approxi-

mately that of the op amp itself; i.e., Rin ffi Ri. Thus the

input impedance (for 0 � f < WÞ of the capacitance

coupled non-inverting amplifier in Fig. 17.15(a) is

given by

Zin ffi 1

j2pf C
þ RX Rik ffi 1

j2pf C
þ RX

¼ 1

j2pf C
þ R1 R2k

Similarly, if the op amp used has sufficiently large

dc gain (if m0 ! 1), the input impedance in the pass-

band (for 0 � f < WÞ of an inverting amplifier is

approximately that of the resistor R1. Thus the input

impedance (for 0< f < W) of a capacitance coupled

inverting amplifier is given by

Zin ffi 1

j2pf C
þ R1

Comparing these relations shows that the input

impedance of a capacitance coupled non-inverting

amplifier for which Av0 � 1 ) R2 � R1 is about the

same as that for an inverting amplifier having the same

value for R1. If the gain is less than 10, the input

impedance of a capacitance coupled non-inverting

amplifier can be substantially less than that for an

inverting amplifier having the same value for R1.

+

–

+

–

(d) direct coupled inverting amplifier: (R1 + RS)||R2

(c) capacitively coupled inverting amplifier: RX = R2

+

–

+
–

(a) capacitively coupled non-inverting amplifier: RX = R1||R2

(b) direct-coupled  non-inverting amplifier: RX = R1||R2 – RS

VS
~

VS
~

VS
~

VS
~

RS

RS

RS

RS

RL

RL

RL

RL

RX

RX

RX

RX

C

C

R1 R2

R1

R1

R1

R2

R2

R2

+
–

+
–

+
–

+
–

Fig. 17.15 Resistive compensation for input bias current in

non-inverting and inverting amplifiers

6You might find it helpful to review Section 8.10 of Chapter 8

before proceeding. 7See Section 8.10.7 in Chapter 8.
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17.9 Power Dissipation in Op Amps
and Op-Amp Circuits

Removing heat from a circuit can be expensive, as can

providing the wasted power that produces the heat.

Circuits that operate hot generally produce more elec-

trical noise than similar circuits that operate at lower

temperatures. Also, parameter values change with

increasing temperature (usually for worse), and com-

ponent lifetime generally decreases with increasing

operating temperature. For these and other reasons,

specifying power-dissipation ratings for circuit com-

ponents is an essential part of circuit design.

The power that can be dissipated (internally) by an

op amp is limited. Typical small integrated op amps

can dissipate from about 500mW to a little more than 1

W. Much larger power op amps can dissipate 100W or

more, but such power op amps are typically modular,

not integrated, and cost a few hundred dollars each.

The power dissipated by an op amp depends upon a

number of things, including the supply voltage, the

input voltage, the load (output) voltage, the load resis-

tance, and properties of other surrounding circuitry

(e.g., the resistors in a feedback network). Thus expres-

sions for power dissipated can be complicated and

difficult to interpret. An op-amp circuit designer

needs a simple, approximate, and conservative relation

that allows initial specification of the power dissipation

rating required of an op amp. If necessary, the specifi-

cation can be refined by subsequent more detailed

analysis, by simulation, or by construction and testing.

In this section, we derive a few simple relations that are

useful in design of linear resistive op-amp circuits.

The total power delivered to an op-amp circuit con-

sists of the power PS delivered by the supply and the

power Pin delivered to the circuit by an input. The total

power dissipated in an op-amp circuit consists of the

power PA dissipated in the op amp and the power PR

dissipated in the load and other circuit components

external to the op amp. Because power is conserved,

the power delivered equals the power dissipated; that is,

PS þ Pin ¼ PA þ PR (17.37)

In virtually all linear applications, the power deliv-

ered by an input is negligible (Pin � PS). The power

dissipated by an op amp in a linear circuit is given to a

good approximation by

PA ffi PS � PR (17.38)

In what follows, we obtain an expression for the

power dissipated by an op amp in a resistive circuit,

assuming sinusoidal excitation and linear operation.
The power dissipated in circuit components exter-

nal to the op amp is given to a good approximation by

PR ffi VL
2

2R0
L

¼ VL rms
2

R0
L

(17.39)

where VL rms is the rms amplitude of the load voltage

and R0
L is the effective load on the op amp, which is

the resistance seen by the current exiting the output (o)

terminal of the op amp. To minimize waste, we would

like most of the power PR to be dissipated in the

load RL.

Figure 17.16 shows how we obtain an expression

for the power PS delivered by the supply. Because of

the internal structure of an op amp, the positive half-

cycles of the output current io pass into the positive

supply terminal and out of the op-amp output terminal.8

The negative half-cycles pass into the negative supply

terminal and out through the output terminal. The

total instantaneous power delivered by the power

+

–

+–

+ –

VCC

VCC

t

t

t

io

io
+

io
+

io
–

io
–

io = io+ + io
– 

effective
load

o
p

n

+      VL = vo      –

Fig. 17.16 Supply currents in a sinusoidally driven symmetri-

cally powered op amp operating linearly

8The output stage of an op amp is typically a push-pull configu-
ration of two transistors, where one transistor amplifies the

positive parts of an applied voltage and the other amplifies the

negative parts. There is actually small crossover voltage range

near zero where there is current through both supplies. However,

this current is usually quite small, relative to a typical load

current.
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supply (both sources in Fig. 17.16) is given approxi-

mately by9

pS ffi VCC io
þ þ VCC �io

�ð Þ ¼ VCC ioj j

where io is the current exiting the output (o) terminal

of the op amp. The effective load depends upon the

actual load on the circuit and (in general) components

of the feedback network. For an inverting amplifier
and resistive load RL, the effective load is given by

R0
L ¼ RL R2k (17.40)

For a non-inverting amplifier and resistive load RL,

the effective load is given by

R0
L ¼ RL R1 þ R2ð Þk (17.41)

Usually, the specified gain is large enough that

R2 � R1, in which case the effective load for a non-

inverting amplifier is approximately R0
L ¼ RL R2k , or

about the same as that for an inverting amplifier. To

minimize the load on the op amp in an inverting or

non-inverting amplifier (to maximize the effective

load resistance), the feedback resistance R2 should be

as large as possible.

The average power delivered by the supply is the

average of the instantaneous power, given by (the

voltage VCC is constant)

PS ¼ pS ¼ VCC ioj j (17.42)

Let R0
L denote the effective load resistance. Then

io ¼ vL
�
R0
L and

PS ¼ VCC

R0
L

vLj j (17.43)

For sinusoidal excitation and linear operation, the

load voltage vL is sinusoidal. We assume the voltage

vL ¼ VL cos o tð Þ is expressed in standard form, so

VL � 0. From Chapter 5, the average magnitude of

the voltage vL is given by

vLj j ¼ VL cos o tð Þj j ¼ VL

T

Z T

0

cos
2 p t
T

� �����
����dt

¼ 4VL

T

Z T=4

0

cos
2 p t
T

� �
dt ¼ 2VL

p
sin

2 p t
T

� �����
T=4

0

¼ 2VL

p
(17.44)

It follows from (17.43) and (17.44) that the average

power delivered by the supply is given to a good

approximation by

PS ¼ 2VCC VL

pR0
L

(17.45)

where VL is the amplitude of the (sinusoidal) load

voltage, VCC is the positive supply voltage, and R0
L is

the effective load.

From (17.38), (17.39), and (17.45), the power dis-

sipated by an op amp in a sinusoidally excited resistive

circuit operating linearly is given by

PA ¼ PS � PR ¼ 2VCC VL

pR0
L

� V2
L

2R0
L

(17.46)

The power given by (17.46) is a quadratic function

of the peak load voltage VL. The power-dissipation

rating for an op amp should be the maximum power

dissipated. The peak load voltage for which the maxi-

mum power is dissipated by the op amp (for a fixed

supply and load) is given by

dPA

dVL
¼ 0 ) 2VCC

pR0
L

� VL

R0
L

¼ 0

) VL ¼ 2VCC

p
ffi 0:64VCC

(17.47)

Using the right side of (17.47) for VL in (17.46)

gives the maximum power dissipated by an op amp

in a sinusoidally excited resistive circuit operating

linearly:

PAmax ¼ 4VCC
2

p2 R0
L

� 2VCC
2

p2R0
L

¼ 2VCC
2

p2R0
L

(17.48)

where VCC is the supply voltage and R0
L is the effective

load.

9Actually, this is only the power delivered by the supply to the

output stage. A typical op amp is a three-stage amplifier, and

even if no input is applied (even if i0 ¼ 0), some dc power is

required to keep the op amp in an active (ready) state.
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A worst case is a constant (dc) input, in which case,

from (17.43), the power delivered by the supply is

given by

PS ¼ VCC vLj j
R0
L

¼ VCC VL

R0
L

(17.49)

For a dc input (and load voltage), the power deliv-

ered to resistances external to the op amp is given by

PR ¼ VL
2

R0
L

(17.50)

and the power dissipated by the op amp for a dc input

VL is given by

PA ffi PS � PR ¼ VCC VL

R0
L

� VL
2

R0
L

(17.51)

From (17.51), the power dissipated by the op amp

for a dc input is maximum for VL ¼ VCC=2 and is

given by

PAmax ¼ VCC
2

4R0
L

(17.52)

Comparing (17.52) and (17.48) reveals that the

maximum power dissipated in the op amp for a dc

input is about 25% larger than that for a sinusoidal

input. But a 25% safety margin is not unreasonable.

Also, if the circuit operates linearly, (17.52) gives the

maximum power that could possibly be dissipated by

the op amp, regardless of the nature of the input.

Consequently, (17.52) often is used for initial screen-

ing of op amps suitable for a particular application

(assuming the supply voltage and the equivalent load

resistance are known).

Example 17.12. (Follower) In Fig. 17.17, the

supply voltage is VCC ¼ 25V and the load

resistance is RL ¼ 1 kO. Specify the power-

dissipation rating for the op amp assuming (a)

sinusoidal excitation and (b) dc excitation.

Solution: The current io equals the load current
iL because the current entering the n terminal

of the op amp is negligible. Thus the effec-

tive load is the actual load on the circuit

R0
L ¼ RL

� �
. (a) The maximum power dis-

sipated by the op amp (the specified power-

dissipation rating) for sinusoidal excitation is

PAac ¼ 2VCC
2

p2 R0
L

¼ 2ð Þ 25Vð Þ2
p2ð Þ 1kOð Þ

¼ 127mW (for sinusoidal excitation)

(b) For constant (dc) excitation, the power-

dissipation rating should be

PAdc ¼ VCC
2

4R0
L

¼ 25Vð Þ2
4ð Þ 1kOð Þ

¼ 156mW (dc excitation):

When specifying power-dissipation ratings, keep in

mind that the mathematical definition of average

power is the average of instantaneous power over all

time. For example, the (mathematical) average power

caused to be dissipated in a resistive load R by a

sinusoidal voltage having peak amplitude V is given

by P ¼ V2
�
2Rð Þ, regardless of the frequency of the

sinusoid. Mathematically, the power dissipated by a

resistor subjected to a sinusoidal voltage having fre-

quency f ¼ 10�10 Hz (period T ¼ 1010 s> 3000

years) is the same as would be dissipated if the fre-

quency were 106 Hz. Physically, this is nonsense. So

far as anyone could tell with ordinary instruments, a

10�10 Hz sinusoid is essentially constant, and whereas

a 1 O; 1=2 W resistor might endure a 1 V, 106 Hz

sinusoidal voltage for a long time, it probably would

not long endure a 1 V, 10�10 Hz sinusoid if the voltage

happened to be near a peak when applied to the resis-

tor. In general, beware of using ac power dissipation

formulas to rate components that will be subjected to

very slowly-varying currents or voltages. It is safer to

use peak or dc ratings in such cases.

+

–

vS VCC

vL = vS

–VCC

io iL

RL

Fig. 17.17 See Example 17.12
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Example 17.13. (Inverting amplifier) In Fig.

17.18, VCC ¼ 25V, RL ¼ 1 kO, R1 ¼ 1 kO,
and R2 ¼ 5 kO. Specify the power-dissipation

rating for the op amp assuming (a) sinusoidal

excitation and (b) dc excitation.

Solution: Because vn ¼ 0, the effective resis-

tance seen by the current io exiting the op amp

output terminal (the effective load) is

R0
L ¼ RL R2k ¼ 5kOð Þ 1kOð Þ

5kOþ 1kO
¼ 833O

and the maximum power dissipated by the op

amp (the specified power-dissipation rating) is

PAac ¼ 2VCC
2

p2 R0
L

¼ 2ð Þ 25Vð Þ2
p2ð Þ 833Oð Þ

¼ 152mW (for sinusoidal excitation)

or

PAdc ¼ VCC
2

4R0
L

¼ 25Vð Þ2
4ð Þ 833Oð Þ

¼ 188mW (dc excitation)

It is safer to use the more conservative dc

rating unless you are absolutely certain that the

output will be sinusoidal and not too-slowly

varying.

We can express the average power dissipated by an

op amp as a fraction of the maximum power dissipated

by the op amp. From (17.46) and (17.48), the fraction

for sinusoidal excitation is given by

PA

PAmax

¼ 2VCCVL

pR0
L

� VL
2

2R0
L

� �
2VCC

2

p2R0
L

� ��1

¼ p
VL

VCC

� �
� p2

4

VL

VCC

� �2

(17.53)

From (17.51) and (17.52), the fraction is given for

constant (dc) excitation by

PA

PAmax

¼ 4VL

VCC
1� VL

VCC

� �
(17.54)

Figure 17.19 shows graphs of the fractions

PA=PAmax versus VL=VCC given by (17.53) (ac) and

(17.54) (dc), where VL denotes dc voltage and the peak

(not rms) amplitude of ac load voltage. For a dc input,

the maximum occurs when the load voltage equals half

of the supply voltage. For an ac input, the maximum

occurs when the peak load voltage equals about 64%

of the supply voltage (see (17.47)). The maximum

power dissipated by the op amp can be calculated

using (17.52) (for a dc input) or (17.48) (for an ac

input). The ratio of the maximum ac power dissipated

to the maximum dc power dissipated is

PAmax ac

PAmax dc
¼ 2VCC

2

p2 R0
L

� �
4R0

L

VCC
2

� �
¼ 8

p2
ffi 0:81 (17.55)

Again, the conservative approach is to assume dc

excitation. In absence of sufficient contrary knowl-

edge of the expected input, we should use (17.52) to

specify the power dissipation rating for an op amp in a

linear resistive circuit.

Example 17.14. The supply voltage to a

follower is 
 25V. The follower is to drive

PA

PAmax

VL

VCC

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

AC

DC

Fig. 17.19 Power-dissipation curves for an op amp in a fol-

lower circuit

+

–

p

n

o

R1

R2

i2

io iL RL

vL+ –

Fig. 17.18 See Example 17.13
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a 2 kO resistive load. Specify the power-

dissipation rating for the op amp.

Solution: Because we are not told whether the

excitation will be dc or ac, we assume dc. From

(17.52), the power-dissipation rating for the op

amp must be

PAmax ¼ VCC
2

4RL
¼ 25Vð Þ2

4 2kOð Þ ¼ 78:1mW

Virtually any op amp will satisfy this

requirement.

Equations (17.45) and (17.49) imply that the aver-

age power dissipated by an op amp equals zero if

vL ¼ 0. Actually, an idle op amp draws a dc quiescent

current, which usually is given on the manufacturer’s

data sheet. For a PA03 high-power op amp, for exam-

ple, the quiescent supply current for a 
 75=2ð Þ ¼

37:5V supply is about 300 mA, which means that

the average power dissipated by an idling PA03 can be

as much as 2ð Þ 75=2ð Þ 0:3ð Þ ¼ 22:5W. The idle power

dissipated by an op amp must be considered when

specifying the capacity of the power supply and

when specifying the power-dissipation rating for the

op amp. In many cases, the idle power is a negligible

fraction of the active power, but not always.

17.10 Power-Conversion Efficiency

A figure of merit for amplifiers is the power conver-

sion efficiency, denoted by � and defined by

� ¼ PL

PS
(17.56)

where PL is the power delivered to the (actual, not

effective) load, given by

PL ¼ VL
2

2RL
(17.57)

for sinusoidal excitation and by

PL ¼ VL
2

RL
(17.58)

for dc excitation.

The power conversion efficiency expresses the

power delivered to the load as a fraction of the total

power PS provided to the circuit, and is the fraction of

power supplied that is put to good use.

From (17.45) and (17.57), the power conversion

efficiency for a sinusoidally-excited resistive op-amp

circuit operating linearly is given by

�ac ¼
PL

PS
¼ VL

2

2RL

2VCC VL

pR0
L

� ��1

¼ pVL R
0
L

4RL VCC
(17.59)

and for dc excitation, from (17.49) and (17.57), by

�dc ¼
VL

2

RL

VCC VL

R0
L

� ��1

¼ VL R
0
L

VCC RL
(17.60)

In (17.59) and (17.60), RL is the actual load and R0
L

is the effective load. If R0
L ffi RL and VL ffi VCC in

(17.59) and (17.60), then

�acmax ffi
p
4
¼ 0:785; �dcmax ¼ 1 (17.61)

The value above for �acmax is the maximum possi-

ble power conversion efficiency for a resistive op-amp

circuit driven by a sinusoidal input and operating

linearly. For a circuit operating at maximum power

conversion efficiency, 78.5% of the power supplied by

the power supply is delivered to the load and 21.5% is

dissipated in the op amp and surrounding circuitry,

largely in the op amp and largely as heat. Note, how-

ever, that operating at maximum efficiency requires

that the peak amplitude of the output equal the supply

voltage. If the peak amplitude of the output is less than

the supply voltage, the power dissipated by the op amp

is a larger fraction of the power delivered by the

supply (see Fig. 17.19) and the efficiency is less than

the maximum possible value. Similar remarks hold for

dc excitation.

Two useful relations are derived from (17.56) as

follows: The power PC dissipated in external circuitry

other than the load is given by PC ¼ PR � PL. Usually,

PC � PL þ PA and Pin � Ps, in which case (17.37)

gives PL ffi PS � PA and (17.56) gives

� ffi PS � PA

PS
¼ 1� PA

PS

) PS ffi PA

1� �
;PC � PL þ PA

(17.62)
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Similarly,

� ffi PL

PL þ PA
) PL ffi �

1� �
PA;

PC � PA þ PL:

(17.63)

17.11 Op-Amp Amplifier Circuit Design

This section describes and illustrates design of invert-

ing and non-inverting amplifiers, including selection

of an appropriate op amp from among those readily

available.

Figure 17.20 defines symbols used in the following

discussion.

The following rules govern design of op-amp-based

feedback amplifiers:

• The amplifiermust provide negative feedback at dc,

must provide dc paths to ground from both the n

and p input terminals of the op amp, and must
provide more negative than positive feedback at

all frequencies below the unity-gain frequency.

• The maximum possible output voltage swing must

accommodate the actual output voltage, the maxi-

mum possible output current cannot be exceeded,

the slew rate must be greater than the maximum

slope (magnitude) of any output, and the power

dissipated by any component must not exceed the

dissipation rating for that component.

• The gain-bandwidth product of the amplifier cannot

exceed that of the op amp.

The following considerations are relevant to

designing op-amp-based feedback amplifiers:

• The input impedance of a direct-coupled inverting
amplifier, a capacitance-coupled inverting ampli-

fier, or a capacitance coupled non-inverting ampli-

fier is very nearly resistive and approximately equal

to R1 throughout the amplifier passband. If neces-

sary, a voltage follower can be used to boost the

input impedance. In such a case, the input imped-

ance of the follower in the amplifier passband is no

smaller than that of the op amp (typically 1MO or

more), and the output impedance in the passband is

no larger than that of the op amp (typically 100O or

less). If it is necessary to boost the input impedance

of a capacitance-coupled amplifier, the follower

must precede the capacitor.

• The input impedance of a direct-coupled non-

inverting amplifier is a fairly strong complex func-

tion of frequency. The magnitude of the input

impedance increases from m0 Zij j=Av0 at dc to

approximately
ffiffiffi
2

p
Zij j at the upper edge of the

passband (for f ¼ W). However, the magnitude

throughout the passband is so large relative to that

of typical source impedances that the frequency

dependence of the input impedance is rarely a

concern. The input impedance (magnitude) of a

non-inverting direct-coupled amplifier typically

exceeds 1MO for BJT-input op amps and is on

the order of 1 TO 1012 Oð Þ for FET-input op

amps. For many practical purposes, the input

impedance of an op amp is essentially infinite.

• For an inverting amplifier, the resistance RX that

compensates for dc input bias current is indepen-

dent of the source resistance. Thus we do not need to

know the source impedance before specifying RX.

• For a direct-coupled non-inverting amplifier, the

compensating resistance RX is in series with the

source, so the source resistance is in effect part of

the compensating resistance.10 If the source resis-

tance is unknown, it might be necessary to use a

variable compensating resistor and some in-situ

adjustment. If the source resistance is larger than

R1 R2k , compensation is impossible or impractical.

• For some nonlinear sources, the apparent dc source

resistance is effectively a function of the source

voltage (amplitude), and bias-current compensation

of a direct-coupled non-inverting amplifier driven

by such a source is ineffective. In such cases, it

might be necessary to use an inverting amplifier,

possibly preceded by a follower if large input

impedance is required.+

–
R1

R1 R2

R2

vin

vin

vout

+
–n

p

n

p

o

o

(a) inverting amplifier (b) non-inverting amplifier

Fig. 17.20 Notation used in Section 17.11

10Direct coupling is used almost exclusively in integrated

circuits.
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• In some non-demanding applications, the offset

caused by input bias currents can be tolerated

and the compensating resistor RX can be omitted.

However, the compensating resistor is required

for a capacitance-coupled non-inverting amplifier,
because otherwise there is no dc path to ground

from the non-inverting input and the amplifier will

saturate.

• If the source output impedance is large (if the

source looks more like a current source than a volt-

age source), an inverting amplifier (with R1 ¼ 0)

can serve as a transimpedance amplifier (current in

– voltage out), whereas a non-inverting amplifier is

less suited for that purpose.

• The effective load on an op amp in an inverting

amplifier is R0
L ¼ RL R2k . The effective load on an

op amp in a non-inverting amplifier is R0
L ¼

RL R1 þ R2ð Þk , which, for dc gains greater than

10 (i.e., in most applications) is approximately

R0
L ¼ RL R2k . In most applications, the effective

load R0
L will be approximately the same for compa-

rable non-inverting and inverting amplifiers.

All things considered, most practicing circuit

designers would choose an inverting configuration in

absence of a good reason to do otherwise. About the

only cases where one would choose a non-inverting

amplifier are where inversion is not allowable (rare),

where a source is coupled directly to the amplifier

and the input impedance must be much larger than

R1 (and using a follower is undesirable), or where

the gain is less than 10 and the difference in effec-

tive load is significant (where power dissipation is

critical).

Exercise 17.6. Specifications on an amplifier

call for a dc voltage gain of Av0 ¼ 2 00. If

RL ¼ 5 kO and it is specified that R2 ¼ 1MO,
what would be the ratio of the effective load on

an inverting amplifier to that of a non-inverting

amplifier in this application? What would be

the ratio of the powers dissipated by the op

amps in the two configurations?

As noted a few times in this book, preliminary

design is easiest if the relevant governing relations

are simple. For example, compare the following

two expressions for the voltage transfer function of

a resistive-feedback inverting amplifier:

Hv ¼ �ZiZL mR2 � Roð Þ
Dþ Z1S mþ 1ð ÞZL þ Ro½ 	f gZi þ Z1SD

;

Z1S ¼Z1 þ ZS; D ¼ RoZL þ R2ZL þ R2Ro;

(17.64)

and

Hv ffi �R2

R1

: (17.65)

The relation (17.64) is exact for a fairly complete

linear model, whereas (17.65) is an approximation

valid under certain conditions. The relation (17.64)

contains at least 11 parameters (m and each complex

impedance contain at least two), whereas (17.65) con-

tains only two. It is much easier to base a preliminary

design on a two-parameter model than on one contain-

ing 11 parameters, especially when (as in this case)

there are also nonlinear effects to be considered. Thus

it is desirable, if possible, to ensure that the conditions

that validate (17.65) are met. For example, R1 should

be much larger than ZSj j (the source impedance) but

no larger than about 1% of Zij j (the op-amp input

impedance), ZLj j (the load impedance) should be

much larger than the op-amp output resistance Ro,

and the desired dc voltage gain Av0 ¼ R2=R1 should

be no larger than about 1% of the op-amp voltage gain

mj j in the amplifier passband, given by W ffi fT=Av0,

where fT is the unity-gain frequency (or gain-bandwidth

product) of the op amp. If these conditions are met,

then (17.65) is a good approximation to the amplifier

voltage gain in the amplifier passband. Fortunately, in

many applications, these conditions are not difficult

to meet.

Designing an inverting amplifier having dc voltage

gain Av0 < 10 or approaching m0 is problematic, partly

because the gain-bandwidth product Av0W of the

amplifier is not equal to the gain-bandwidth product

fT ¼ m0f0 of the op amp unless 1 � Av0 � m0, where
m0 is the intrinsic dc voltage gain of the op amp.

Although we can achieve fractional gain using an

inverting amplifier (but not a non-inverting amplifier),

there is little reason to do so. Fractional gain is easily
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obtained using a voltage divider and follower, as

shown in Fig. 17.21, where we would choose R1

much larger than the source impedance to prevent

loading from affecting the desired gain.

Independent specifications on input resistance and

dc gain or bandwidth might be inconsistent. For exam-

ple, if particular values are specified for both input

resistance and dc voltage gain of an inverting ampli-

fier, then both R1 and R2 are determined, and they in

turn determine bandwidth (for any particular op amp).

If the resistance R1 does not meet guidelines given

above (for the specified dc gain), it might be difficult

to obtain the specified bandwidth. In such cases it

might be necessary to use a voltage follower as an

input stage.

Generally, we would begin design of an inverting

amplifier by specifying R1, either to satisfy a specifi-

cation on input resistance or to make the input resis-

tance as large as possible. If we cannot achieve a

specified minimum input resistance while keeping

R1 � 0:01 Zij j, we might either select another op amp

(e.g., one having JFET inputs), use a non-inverting

amplifier (if direct coupling is possible), or precede

the amplifier with a voltage follower.

After specifying R1, we calculate the value of R2

(based upon the specified dc gain). We then calculate

the value of the input-bias-current compensating resis-

tor RX, either as RL R2k for an inverting amplifier or as

RL R1 þ R2ð Þk for a non-inverting amplifier.

The input dc offset voltage (typically on the order

of 1 mV) can be troublesome. Most op amps provide

additional terminals for external circuitry that reduces

the offset to a negligible value. The external circuitry

usually consists of a voltage divider that uses a frac-

tion of the supply voltage to null the offset. For one-of-

a-kind or prototype circuits, the voltage divider can be

a variable resistor (potentiometer). If the amplifier is

part of a larger, high-precision integrated circuit to be

produced in quantity, the voltage divider might be

adjusted by laser trimming (there are automated pro-

cesses for such adjustments).

Power dissipation by the various components of an

amplifier are of interest for at least three reasons: One

is to specify power-dissipation ratings. Another is to

estimate demand on the power supply, and the third is

to specify any required measures for cooling. Typi-

cally, the powers dissipated by the resistors R1; R2; RX

are quite small relative to that dissipated by the op

amp. In an inverting amplifier, the voltage across R1

does not exceed the input voltage, the voltage across

R2 does not exceed the output voltage, and the voltage

across RX is exceedingly small. Except in high-voltage

or high-power applications, the input voltage is typi-

cally no larger than about 1 V and R1 is typically on

the order of 10 kO, so the average power dissipated by
R1, given by P1 ¼ V2

in rms

�
R1, is less than 100 mW. The

power dissipated by RX is even smaller. In circuits

built using discrete (individually packaged) general-

purpose op amps, the peak output voltage is rarely

more than 25 V. If R2 is on the order of 1MO, the
power dissipated by R2 is no more than about 625 mW.

Thus the total power dissipated by the three external

resistors in low-power voltage amplifiers is typically

less than 1 mW. The power-dissipation ratings for the

resistors R1; R2; RX are rarely a concern in typical

low-power discrete circuits, where the smallest resis-

tors one can readily obtain off the shelf have dissipa-

tion ratings of 125 mW.

The precision required of the resistances R1 and R2

depends upon the precision required of the dc voltage

gain. For example, if the voltage gain must be within

1% of 100, then the ratio R2=R1 must also be within

1% of 100 for an inverting amplifier or within 1% of

99 for a non-inverting amplifier. Let a denote the

maximum fraction by which either resistance departs

from the specified value. For example, if we use 
 5%

resistors, then a ¼ 0:05. Maximum departures of the

dc voltage gain of an inverting amplifier from the

specified value A0 are given by

A0max ¼R2 þ aR2

R1 � aR1

¼ R2

R1

1þ a
1� a

� �
¼ A0

1þ a
1� a

� �

A0min ¼R2 � aR2

R1 þ aR1

¼ R2

R1

1� a
1þ a

� �
¼ A0

1� a
1þ a

� �
(17.66)

where A0 is the nominal (specified) dc voltage gain

and a is the precision of the resistances R1; R2. The

relations (17.66) can be reduced by long division to

+
–

Vin
~

Vin
~

Vout
~

Vout
~

RL

R1
R2

R1 + R2R2

=

Fig. 17.21 Buffered voltage divider
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A0max ¼ A0 1þ 2aþ 2a2 þ � � �� � ffi A0 1þ 2að Þ
A0min ¼ A0 1� 2aþ 2a2 þ � � �� � ffi A0 1� 2að Þ

(17.67)

From (17.67), the precision (tolerance) of the resis-

tors R1 and R2 must be half the desired precision of

the dc voltage gain. For example, if the voltage gain

must be within 2% of the specified value, then the

resistances R1 and R2 must be within 1% of the speci-

fied values. Although derived above for an inverting

amplifier, the same rule holds for a non-inverting

amplifier, provided the specified dc gain is greater

than about 10.

The discussion of precision above is relevant to

discrete fabrication. In integrated fabrication, it is eas-

ier to achieve a specified precision on a ratio of resis-

tances than it is to achieve a specified precision on any

particular resistance. You will learn more about such

things if you take a subsequent course in integrated

circuit design.

Once the values of R1 and R2 have been deter-

mined, we must find an op amp that allows the ampli-

fier to meet the remaining specifications. First, the

gain-bandwidth product fT of the op amp must satisfy

fT � Av0 W (17.68)

where Av0 is the specified dc (or passband) gain andW

is the specified bandwidth. For a conservative design,

the slew rate must satisfy

SR � 2pW VCC (17.69)

where W is the specified bandwidth and VCC is supply

voltage, which limits the maximum amplitude of the

output. The supply voltage must be sufficient to allow

the expected output swing.

For a conservative design, the power-dissipation

rating for the op amp must satisfy

PAmax�V2
CC

4R0
L

;
R0
L¼RL R2k inverting amp

R0
L¼RL R1þR2ð Þk non-inverting amp


(17.70)

where VCC is the supply voltage (assumed symmetric),

and R0
L is the effective load on the op amp.

Recall from Chapter 7 that for proper operation of

an op amp, the larger supply voltage V2 must exceed

the smaller V1 by at least an amount VB, but must not

exceed V1 by more than an amount VA, where VA and

VB depend upon the internal structure of the op amp,

vary from one op amp to another, and are often speci-

fied on manufacturers’ data sheets. If so, the supply

voltages must satisfy the inequality

VA � V2 � V1 � VB (17.71)

For a symmetric supply, V1 ¼ �VCC and V2 ¼ VCC, so

(17.71) implies

VA

2
� VCC � VB

2
(17.72)

which determines the maximum output swing; e.g.,


 VCC ¼ 
VA=2 for a rail-to-rail op amp, and approx-

imately 
 VCC � 1Vð Þ otherwise.
Instead of specifying VA and VB, some manufac-

turers specify the maximum symmetric supply voltage

and the output swing for a particular load resistance.

For example, for their LF411 general-purpose op amp,

National Semiconductor specifies a maximum supply

voltage of 
 18V and an output swing of at least


 12V for a 10 kO load, with 
 13:5V being typical.

Some manufacturers also specify a minimum supply

voltage. Specifying minimum and maximum supply

voltages is equivalent to specifying VA and VB. For a

symmetric supply 
 VCC, the maximum input voltage

(for linear operation) must satisfy

max vinj jð Þ � VCC

Av
; (17.73)

where Av is the passband gain. If designing an entire

system from scratch, we might be able to specify the

power-supply voltages, in which case we might post-

pone that choice until more is known about the

required or desired voltage and/or power levels in the

system. But often, we are called upon to design a

circuit that will become part of an existing system or

be powered by an existing supply, in which case there

might be little or no choice regarding supply voltages.

Supply voltages can be increased or decreased using

additional circuitry, but at additional cost.

The current that an op amp can deliver to a load

also is limited. The limit on output current is imposed

intentionally by internal circuitry to protect the op

amp from overload (e.g., from being destroyed by
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accidental shorting of the output to ground). For any

particular load, the limit on output current imposes a

limit on output swing. For example, if the maximum

possible output current is 3 A and the supply voltage is

30 V, then the minimum permissible effective load

resistance (for linear operation) is 30=3 ¼ 10O. For
a conservative design, the output current the op amp is

asked to deliver must satisfy

max ioutj jð Þ � VCC

R0
L

(17.74)

The following example illustrates application of the

design guidelines given above.

Example 17.15. Specify the parameters of the

op amp and surrounding components for an

inverting amplifier meeting the following speci-

fications:

Input resistance of 10 kO or larger, dc voltage

gain of 50 dB
 1 dB, 3-dB bandwidth greater

than 10 kHz, load resistance of 10 kO, and output
swing of 
 12V. The available supply voltage

is 
 15V. Simulate the amplifier to verify that

the 3-dB bandwidth exceeds 10 kHz.

Solution: To meet the input resistance specifica-

tion, we choose R1 ¼ 10 kO. The required nomi-

nal dc voltage gain is

20 log
R2

R1

� �
¼ 50 dB ) Av0 ¼ R2

R1

¼ 1050=20 ¼ 316:2

Thus

R2 ¼ 316R1 ¼ 3:16MO

The 
 1 dB tolerance on dc voltage gain in

decibels corresponds to

Av0min ¼ 1049=20 ¼ 282 ¼ Av0 � 34;

Av0max ¼ 1051=20 ¼ 355 ¼ Av0 þ 39

Because 34< 39, we specify Av0 ¼ 316
 34

and the gain tolerance in percent is

34

316
� 100 ¼ 10:8%

so we require

R‘1 ¼ 10 kO
 5%; R2 ¼ 3:16MO
 5%

The required dc bias compensating resistance

is

RX ¼ RL R2k ffi 10 kO

To allow adjustment, we might use a 15 kO
potentiometer or (e.g.) a fixed 5 kO resistor in

series with a 10 kO variable potentiometer.

Because the supply voltages are 
 15V, the

value of VA for the op amp must equal or exceed

30 V and VB must be less than 30 V (see (17.72)).

In that case, the inverting amplifier easily meets

the output swing specification 
12Vð Þ, even

with a non-rail-to-rail op amp.

The required gain-bandwidth product is

fT �A0maxW¼ 316þ34ð Þ�10kHz¼ 3:5MHz

The required slew rate, maximum output cur-

rent, and required power-dissipation rating are

SR� 2pVCCW¼ 2pð Þ 15Vð Þ 10kHzð Þffi 1Vms�1

Iomax � VCC

R0
L

¼ VCC

RL R2k ¼ 1:2mA

PAmax � V2
CC

4R0
L

¼ 3:64mW

A great many relatively inexpensive op amps

would meet or exceed these specifications.

Figure 17.22 shows a simulation of the cir-

cuit, where the op-amp parameters are as shown

in Fig. 17.23. The voltage gain at 10 kHz relative

to the dc gain is11

20 log
Av 10kHzð Þ
Av 0Hzð Þ

� �
¼ 20 log

2:324V=10mV

316

� �

ffi�2:67dB

which is greater than � 3 dB, so the 3-dB band-

width exceeds 10 kHz, as specified.

11The 14.14 mV source voltage shown is peak. The meter

reading is rms.
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Hundreds (if not thousands) of op amps are

available from various manufacturers. To facilitate

selection, manufacturers group their offerings using

somewhat consistent descriptions. Op amps are com-

monly described as being general-purpose or special-

purpose, the latter meaning one or more of high-speed,

high-precision, high-power, low-power, low-noise,
and high-voltage. General-purpose op amps have rea-

sonably good characteristics across the board. High-

speed op amps have large gain-bandwidth products

and large slew rates. High-precision op amps have

small dc bias currents, small input offset voltages,

and other properties not treated above. High-power

op amps have large power-dissipation ratings. Low-

power op amps are designed to consume very little

power (from a supply) when no input is applied, and

have small quiescent supply currents. High-voltage op

amps can accept high supply voltages, can tolerate

large voltages across their input terminals, and can

produce large load voltages. We do not describe low-

noise op amps because a useful discussion of noise is

beyond the scope of this book, but the implication is

that a low-noise op amp produces relatively little elec-

trical noise internally. In the descriptions just given for

special-purpose op amps, large and smallmean signif-

icantly larger or smaller than would be the case for a

general-purpose op amp.

Lines of demarcation between the various types of

op amps are not sharply drawn, and an op amp might

belong to two or more classes; for example, an op amp

might be both high-speed and low power. Although

boundaries are a bit fuzzy, they are fairly consistent

among various manufacturers and most manufacturers

offering a wide variety of op amps group their offer-

ings according to the categories described above.

Some manufacturers’ web sites also allow a prospec-

tive user to sort offerings (e.g., in order of power-

dissipation rating) to further narrow a search.12

Table 17.3 gives selected parameters for represen-

tative members of the classes listed above. The col-

umn contents are as follows:

• Type is the manufacturer’s designation for the op

amp.

• VB; VA are the minimum and maximum permissi-

ble differences between the upper and lower supply

voltages; e.g., for a symmetrically powered LF411,

Fig. 17.23 See Example 17.15

+

+

–

+

–

R1

R2 XMM1

U1
RL

RX
10 kΩ

5 kΩ

3.16 MΩ

VS

14.14 mV
10 kHz
0Deg

10 kΩ OPAMP_3T_VIRTUAL

–

Fig. 17.22 See Example

17.15

12Virtually all manufacturers of op amps have extensive web

sites describing their offerings.
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a bipolar supply must be at least 
 10=2 ¼ 
5V

and no larger than 
 36=2 ¼ 
18V.

• Idc bias is the average of the dc bias currents entering
or exiting the n and p terminals when the op amp is

driven by a source.

• SR is the slew rate.

• fT is the gain-bandwidth product.

• Iomax is the maximum current the op amp can

deliver, and is generally the current delivered if

the output terminals are shorted. Many op amps

can endure shorted output terminals indefinitely,

but some cannot.

• PAmax is the maximum permissible power dissipa-

tion (at 25�C).
• Zin; Zout are the input and output impedances (at

dc). Not all manufacturers specify a value for out-

put impedance. Often, input impedance is capaci-

tive at frequencies above dc, and is specified by a

device data sheet as Rin Ck ; e.g., as 1012 O 4 pFk ,

which means that the input impedance is that of a

1012 O resistor in parallel with a 4 pF capacitor.

In addition to intended application, op amps

can be grouped by internal structure. The primary

types are bipolar (BJT), JFET-input, and MOSFET

(throughout), meaning (respectively) that op amps

are constructed using only bipolar junction transistors

(BJT’s), or with junction field-effect transistors

(JFET’s) in the input stage and BJT’s thereafter, or

entirely from metal-oxide-silicon field-effect transis-

tors (MOSFET’s). All of the entries in Table 17.3 are

BJT op amps having JFET inputs, as one can tell from

the input impedances. BJT-input op amps have input

impedances on the order of 1MO.

Often, linear (analog) and digital circuits are

fabricated on a single chip (e.g., as in an analog-to-

digital converter). Because digital circuits are almost

always constructed using MOSFET’s, and because

fabrication is easier if all transistors on a single chip

have the same basic structure, MOSFET op amps

usually are preferred when op amps and digital circuits

appear together in a single integrated circuit. Also,

input impedances of both JFET-input and MOSFET

op amps are much larger than those of BJT op amps

and the input bias currents are much smaller (but more

sensitive to temperature). On the downside, the gain-

bandwidth products of MOSFET op amps tend to be

smaller than those available from BJT op amps. As a

rule of thumb, the dc gain achievable for an inverting

or non-inverting amplifier using a JFET-input BJT op

amp is typically about ten times the dc gain achievable

with a MOSFET op amp. You will learn more about

these things in subsequent courses.

Example 17.16. Determine which (if any) of

the op amps in Table 17.3 could be used in an

inverting amplifier subject to the following

specifications:

Dc gain ¼ 20

Bandwidth ¼ 50 kHz

Output swing ¼ 
 25V

Solution: Assuming rail-to-rail operation, the

specified output swing requires VA � 50V, so

we can immediately eliminate all but the

OPA445 and the PA03. None of the others

can support the specified output swing.

Both the OPA445 and the PA03 have the

Table 17.3 Representative op amps

Class Type VB

ðVÞ
VA

ðVÞ
Idc bias

ðpAÞ
SR

Vms�1
� � fT

(MHz)
Iomax

ðmAÞ
PAmax

ð25�CÞ
ðmWÞ

Zin

ðOÞ
Zout

ðOÞ

General purpose LF411 10 36 200 15 4 20 670 1012 NAa

Precision OPA124 10 36 1 2 2 3.5 750 1013 100

High speed AD380JH 6 20 10 330 300 10 1500 1011 NA

Low power TL061C 4 36 400 3.5 1 5 680 1012 NA

High voltage OPA445 20 90 10 15 2 25 680 1013 220

High power PA03 15 75 50 10 5 30 A 500 W 1011 NA
aNA ¼ not available from manufacturer’s data sheet. Op amp output impedances are typically on the order of 100 O.
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minimum required gain-bandwidth product of

20� 50 kHz ¼ 1MHz.

From (17.28), the minimum acceptable

slew rate is

SRmin ¼ 2 p fmax VCC ¼ 2 pð Þ 50� 103
� �

25ð Þ
¼ 7:85Vms�1

Both the OPA445 and the PA03 can meet

this condition. Based upon only the three spe-

cifications given, either the OPA445 or the

PA03 would serve. Before choosing one over

the other, we would need more information

(e.g., cost and load and power-dissipation

requirements).

Data sheets for most op amps (and other electronic

devices) specify a temperature range over which the

op amp will operate as described, typically from about

� 50�C to about 125�C. The maximum power dissi-

pation ratings given by Table 17.3 are the absolute

maximum ratings and assume an operating tempera-

ture no greater than 25�C. In most circuits, and espe-

cially in high-speed and high-power circuits, heat

sinking and forced-air cooling are needed to keep

operating temperatures anywhere near 25�Cð77�FÞ.
More often, operating temperatures are nearer 70�C
158�Fð Þ.
Maximum power-dissipation ratings for op amps

are strong functions of operating temperature and

often are given by graphs of power dissipation versus

operating temperature, as illustrated by Fig. 17.24 for

a PA03 op amp. For a PA03, permissible internal

power dissipation is 500 W at or below 25�C, but
drops to 300 W at 80�C. Internal temperature-moni-

toring circuitry shuts the PA03 op amp down if the

internal temperature rises above 80�C. Typical power-
dissipation limits for small general-purpose op amps

range from a few hundred mW to a little more than 1

W (at 25�C).

Example 17.17.

(a) Design an inverting amplifier subject to the

following specifications and constraints:

Dc voltage gain ¼ 100
 10%

Input resistance ¼ 5 kO
 10%

Bandwidth � 20 kHz

Available supply ¼ 
 15V

Load resistance � 15 kO
Source output resistance � 10O
Input amplitude vSj j � 120mV

The amplifier and source are to be directly

coupled.

(b) Which, if any, of the op amps in Table 17.3

could be used in this application?

Solution: Figure 17.25 shows an inverting

amplifier, driven by a source having output

resistance RS and driving a resistive load

having resistance RL.

The specifications on dc gain and input

amplitude imply that the peak output can be

+
+
–

–
RS

vS

R1

R2

RX
RL

n

p

o

vL = vo

+

–

Fig. 17.25 An inverting amplifier, driven by a source and

driving a load
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Fig. 17.24 Permissible internal power-dissipation for a PA03

op amp (Courtesy of Cirrus Logic, Inc.)
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as large as 12 V for any frequency in the

passband. The 
 15V supply should support

this swing, even if the op amp is not rail-to-rail.

The input resistance equals the resistance

R1, so

R1 ¼ 5 kO

The source resistance is a negligible frac-

tion of the input resistance and can be ignored.

From the specification on the dc voltage gain

A0, we obtain

R2 ¼ R1 � A0 ¼ 5 kOð Þ 100ð Þ ¼ 500 kO

The dc voltage gain must satisfy Av0 ¼
100
 10%, which means (see (17.67)) R1

and R2 must satisfy R1 ¼ 5 kO
 5%; R2 ¼
500 kO
 5% ; i.e., if Av0 ¼ R2=R1 is the nom-

inal dc gain, then

Av0max ¼ 1:05R2

0:95R1

¼ 1:105Av0;

Av0min ¼ 0:95R2

1:05R1

¼ 0:905Av0

Thus the 
 10% specification on gain, not

the 
 10% specification on input resistance,

determines the precision of the resistor R1.

The compensating resistance is

RX ¼ RL R2k ¼ 14:6 kO ffi 15 kO

The difference between the two (p and n)

input dc bias currents can be as large as 20%. If

dc-bias compensation is critical, we might

decrease RX and use a variable (trimmer) resis-

tor in series with RX to provide fine adjustment;

for example, we could use a 10 kO fixed resis-

tor in series with a 10 kO trimmer. Alterna-

tively, we could eliminate the fixed resistor

and use only a variable resistor whose maxi-

mum resistance is about 20 kO.
Together, the specified dc gain Av0 and

bandwidth W determine the minimum accept-

able gain-bandwidth product:

fT � Av0W ¼ 100ð Þ 20 kHzð Þ ¼ 2MHz

If the specified bandwidth is to be achieved

for full-scale output, the slew rate must satisfy

the inequality

SR > 2pWVCC ¼ 2pð Þ 20 kHzð Þ 13Vð Þ
ffi 1:64Vms�1

The specified supply voltage and load resis-

tance provide a conservative estimate of the

required power-dissipation rating for the op

amp:

PA ffi VCC
2

4RL
¼ 13Vð Þ2

4ð Þ 15 kOð Þ ffi 2:82mW

Assuming a full-scale output, the maximum

output current must satisfy

Iomax ¼ VCC

RL
¼ 13V

15 kO
ffi 867 mA

Thus we seek an op amp satisfying the

following conditions:

fT � 2MHz; SR � 1:64Vms�1;

VCCmin � 15V;VCCmax � 15V;

PAmax � 2:82mW; Iomax � 867 mA

Consulting Table 17.3, we find that the gen-

eral-purpose LF411 op amp meets or exceeds

the specifications.

For the LF 411, the dc input-bias current is

200 pA. In absence of the compensating resis-

tor RX, the dc offset in the output would be

Voffset ¼ R2 Idc bias ¼ 500 kOð Þ 200 pAð Þ
¼ 100 mV

which is probably insignificant in any applica-

tion specified as loosely as this one, and the

compensating resistor can probably be omit-

ted. In more demanding applications, where

such a small offset might be considered signif-

icant, we would find additional specifications

on things such as noise levels.
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17.12 Problems

Section 17.1 is prerequisite for the following

problems.

P 17.1 Figure P 17.1 shows two ac circuit models for

an op amp. Show that the model in Fig. P 17.1(a) can be

simplified to the ac model defined in Fig. P 17.1(b).

Express the intrinsic dc gain m0 and the intrinsic band-
width f0 of the ac model in Fig. P 17.1(b) in terms of the

circuit parameters g; k; R1; C in Fig. P 17.1(a).

P 17.2 Are there values of R, C, and m0 for which
the circuit in Fig. P 17.2 is equivalent to the model

shown in Fig. P 17.1(b)? If so, prove it. If not, explain

why not.

P 17.3 Are there values of R, C, and g0 for which

the circuit in Fig. P 17.3 is equivalent to the model

shown in Fig. P 17.1(b)? If so, prove it. If not, explain

why not.

P 17.4 Are there values of RA, CA, and m0 for which
the circuit in Fig. P 17.4 is equivalent to the model

shown in Fig. P 17.1(b)? If so, prove it. If not, explain

why not.

P 17.5 The intrinsic dc voltage gain and gain-band-

width product for a certain op amp are 2� 105 and

5MHz, respectively. What is the intrinsic 3 dB band-

width of the op amp?

P 17.6 The unity-gain frequency and intrinsic band-

width for op amp A are 5MHz and 10 Hz, respectively.

The unity-gain frequency and intrinsic bandwidth for

op amp B are 2:5MHz and 50 Hz, respectively. Which

op amp has the larger intrinsic dc voltage gain?

P 17.7 It is found by careful measurement that the

intrinsic bandwidth of a certain op amp is 15 Hz and

the intrinsic voltage gain at 500 Hz is 80 dB. What is

the gain-bandwidth product for the op amp?

Section 17.2 is prerequisite for the following

problems.

P 17.8 In a certain application, an inverting ampli-

fier must have a dc voltage gain of 120 and a band-

width of 80 kHz. What gain-bandwidth product is

required of the op amp?

P 17.9 The dc voltage gain and 3-dB bandwidth of a

certain non-inverting amplifier are 75 and 100 kHz,

respectively. What is the voltage gain at 200 kHz?

P 17.10 For a certain project, you require an inverting

amplifier having half-power bandwidth W ¼ 50 kHz.

You have available an op amp having a gain-bandwidth

product of 2.5 MHz. What is the maximum dc voltage

gain you can achieve if you use that op amp?

P 17.11 The voltage gain of a certain op-amp-based

non-inverting amplifier is 60 dB at 5 kHz and 40 dB

at 50 kHz. What is the gain-bandwidth product of the

op amp?
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Fig. P 17.2 See Problem P 17.2
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P 17.12 The gain-bandwidth product for the op

amp in a certain inverting amplifier is 2 MHz. The

half-power bandwidth of the amplifier is 20 kHz.

What is the dc voltage gain of the amplifier?

P 17.13 Simulate the circuit shown in

Fig. P 17.5, using your simulation software’s virtual,

generic, or default op amp and use trial-and-error to

find the op amp’s gain-bandwidth product.

P 17.14 You have available an op amp whose

gain-bandwidth product exceeds 100 kHz but is other-

wise unknown.

(a) Design a non-inverting amplifier having a gain of

101, such that neither resistor has a resistance

exceeding 1MO What is the lower bound on the

half-power bandwidth of the amplifier?

(b) Simulate the amplifier using your simulation soft-

ware’s virtual, generic, or default op amp and use

trial-and-error to find the amplifier’s half-power

bandwidth.

(c) What is the maximum dc voltage gain you could

obtain if the required amplifier half-power band-

width is 1 kHz?

P 17.15 In the circuit shown in Fig. P 17.6,

R2 ¼ 1MO and RL ¼ 5 kO. (a) Measurements reveal

that for vS ¼ 200mV (dc), Vo ¼ 10V. Find the resis-

tance R1 and the current exiting the output (o) terminal

of the op amp. (b) Further measurements reveal that

for vS ¼ 200 cos o1 tð ÞmV, with f1 ¼ 20 kHz, the peak

amplitude of the output vo equals 5 V. Find the op-amp

gain-bandwidth product.

P 17.16 Refer to Fig. P 17.7, which shows a current-

to-voltage converter. Obtain an expression for the

frequency-dependent transfer function Hz ¼ ~Vo

�
~IS

based on the usual linear ac model for the op amp.

Show that your expression reduces to the correct

expression if the op amp is ideal. Invoke reasonable

approximations to obtain a simple expression for the

bandwidth of the circuit, defined as the frequency W

for which

Hz j2pWð Þ
Hz 0ð Þ

����
����
2

¼ 1

2

Section 17.3 is prerequisite for the following

problems.

P 17.17 In Fig. P 17.8, the circuit parameters are

RS ¼ 50O; R1 ¼ 1 kO; R2 ¼ 100 kO; C ¼ 159 pF;

RL ¼ 5 kO:

+
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Fig. P 17.8 See Problem P 17.17
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Fig. P 17.5 See Problem P 17.13
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Fig. P 17.6 See Problem P 17.15
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Fig. P 17.7 See Problem P 17.16
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The op-amp input resistance, output resistance, and

gain-bandwidth product are Ri ¼ 10MO, Ro ¼ 75O,
and fT ¼ 6MHz.

(a) Obtain and justify an approximate expression for

the voltage transfer function Hv ¼ ~Vo

�
~VS. Use the

expression to calculate and plot the voltage gain in

dB versus frequency for 1Hz � f � 1MHz

(b) Simulate the circuit, modifying the default

(virtual) op-amp parameters as indicated by

Fig. P 17.9. Set the rms amplitude of the sinusoidal

input to 1 mV. Obtain the voltage gain for

f ¼ 1Hz; 1 kHz;10 kHz; 100 kHz and plot the

values (in dB) on the graph obtained in part (a).

(c) Replace the op amp in Fig. P 17.8 with the model

shown in Fig. P 17.4, using RA ¼ 100 kO and the

resistance values given above. Find the value of

CA such that the intrinsic bandwidth of the op

amp (model) equals 30 Hz. Determine the value of

m0 such that the gain-bandwidth product of the op

amp (model) is 6 MHz. Then simulate the circuit

and find the voltage gain in dB for f ¼ 1Hz;

1 kHz;10 kHz; 100 kHz. Compare the values with

those obtained in parts (a) and (b).

P 17.18 In Fig. P 17.10, the circuit parameters are

RS ¼ 5O; R1 ¼ 10 kO; R2 ¼ 1MO;

C1 ¼ 1:59 pF; C2 ¼ 15:9 pF; RL ¼ 5 kO:

(a) Assume the op amp is ideal. Obtain an expression

for the voltage transfer function Hv ¼ ~Vo

�
~VS.

Express the transfer function in standard form

and express the dc gain and corner frequencies in

terms of the circuit parameters. Employ reason-

able approximations to simplify the expression.

Construct an asymptotic plot of voltage gain in

dB versus frequency for 1Hz � f � 1MHz.

(b) Assume the op-amp input resistance, output

resistance, and gain-bandwidth product are

Ri ¼ 10MO, Ro ¼ 75O, and fT ¼ 6MHz. Simu-

late the circuit, modifying the default (virtual) op-

amp parameters as indicated by Fig. P 17.9. Set

the rms amplitude of the sinusoidal input to 1 mV.

Obtain from the simulation the voltage gain for

f ¼ 10Hz; 100Hz; 1 kHz;10 kHz; 100 kHz and

plot the values (in dB) on the graph obtained in

part (a). Explain any differences between the gains

obtained in part (a) and those obtained from the

simulation.

P 17.19 In Fig. P 17.11, the circuit parameters are

RS ¼ 5O; R1 ¼ 20 kO; R2 ¼ 330 kO;

C1 ¼ 200 nF; C2 ¼ 15:9 pF; RL ¼ 5 kO:

Fig. P 17.9 See Problem P 17.17

+

–
R1

R2

C2C1

vS

RS

RL+
–

Fig. P 17.10 See Problem P 17.18
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Fig. P 17.11 See Problem P 17.19
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(a) Assume the op amp is ideal. Obtain an expression

for the voltage transfer function Hv ¼ ~Vo

�
~VS.

Express the transfer function in standard form

and express the dc gain and corner frequencies in

terms of the circuit parameters. Employ reasonable

approximations to simplify the expression. Con-

struct an asymptotic plot of voltage gain in dB

versus frequency for 1Hz � f � 1MHz.

(b) Assume the op-amp input resistance, output

resistance, and gain-bandwidth product are

Ri ¼ 10MO, Ro ¼ 75O, and fT ¼ 6MHz. Simu-

late the circuit, modifying the default (virtual) op-

amp parameters as indicated by Fig. P 17.9.

Set the rms amplitude of the sinusoidal input to

100 mV. Obtain from the simulation the voltage

gain for f ¼ 10Hz; 100Hz; 1kHz;10kHz;100kHz

and plot the values (in dB) on the graph obtained

in part (a). Explain any differences between the

gains obtained in part (a) and those obtained from

the simulation.

P 17.20 In Fig. P 17.12, the circuit parameters are

RS ¼ 5O; R1 ¼ 10 kO; R2 ¼ 1MO;

C1 ¼ 1mF; C2 ¼ 15:9 pF; RL ¼ 5 kO

(a) Assume the op amp is ideal. Obtain an expression

for the voltage transfer function Hv ¼ ~Vo

�
~VS.

Express the transfer function in standard form

and express the dc gain and corner frequencies in

terms of the circuit parameters. Employ reason-

able approximations to simplify the expression.

Construct an asymptotic plot of voltage gain in

dB versus frequency for 1Hz � f � 1MHz.

(b) Assume the op-amp input resistance, out-

put resistance, and gain-bandwidth product are

Ri ¼ 10MO, Ro ¼ 75O, and fT ¼ 6MHz. Simu-

late the circuit, modifying the default (virtual)

op-amp parameters as indicated by Fig. P 17.9.

Set the rms amplitude of the sinusoidal input to

100 mV. Obtain from the simulation the voltage

gain for f ¼ 10 Hz; 100 Hz; 1 kHz; 10 kHz;

100 kHz;1 MHz and plot the values (in dB) on

the graph obtained in part (a). Explain any differ-

ences between the gains obtained in part (a) and

those obtained from the simulation.

P 17.21 If Z1j j � ZSj j, Z2j j � Ro, and ZLj j � Ro,

then the input impedance of an inverting circuit is

given by

Zin ffi Z1 þ ZiZ2
mþ 1ð ÞZi þ Z2

:

Can this expression be simplified further if the

op amp used is a JFET-input op amp? If so, show

how.

Sections 17.4 and 17.5 are prerequisite for

the following problems.

P 17.22 In Fig. P 17.13, vin is a sinusoid. The source
impedance is negligible and the load resistance is

RL ¼ 10 kO. The op-amp parameters are:

Input resistance: Ri ¼ 1TO
Input capacitance: Ci ¼ 1:5 pF

Input impedance: Zi ¼ Ri joCið Þ�1
��

Output resistance: Ro ¼ 55O
Intrinsic dc voltage gain: m0 ¼ 2� 105

Unity-gain frequency: fT ¼ 1:5MHz

Output swing: Rail-to-rail, up to 
 21V

Slew rate: 500 kV s�1.
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−15V
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Fig. P 17.13 See Problem P 17.22
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Fig. P 17.12 See Problem P 17.20
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(a) Assuming linear operation, obtain an expression

for the voltage transfer function of the circuit.

(b) Under what conditions on the peak amplitude and

frequency of the input is the circuit linear?

P 17.23 If you worked Problem P 17.17, you might

have noticed that the simulated voltage gains were in

very good agreement with the graph of theoretical gain

for f < 10 kHz, but began falling below the theoretical

values for higher frequencies. Was the output limited

by the op amp’s output swing or slew rate?

P 17.24 Refer to Problem P 17.18. Use a simu-

lation to explore whether the limited slew rate of the

op amp comes into play at 100 kHz or below.

P 17.25 Refer to Problem P 17.19. Use simula-

tion to explore whether the limited slew rate of the op

amp comes into play at 100 kHz or below.

P 17.26 Refer to Problem P 17.20. Use simula-

tion to explore whether the limited slew rate of the op

amp comes into play at 1 MHz or below.

P 17.27 In Fig. P 17.14, the circuit parameters are

RS ¼ 5O; R1 ¼ 1 kO; R2 ¼ 100 kO;

C1 ¼ 159 nF; C2 ¼ 159 pF; RL ¼ 5 kO:

(a) Assume the op amp is ideal. Obtain an expression

for the voltage transfer function Hv ¼ ~Vo

�
~VS.

Express the transfer function in standard form

and express the dc gain and corner frequencies in

terms of the circuit parameters. Employ reason-

able approximations to simplify the expression.

Construct an asymptotic plot of voltage gain in

dB versus frequency for 1Hz � f � 1MHz.

(b) Simulate the circuit after modifying the default

(virtual) op-amp parameters as indicated by

Fig. P 17.9. Set the rms amplitude of the sinusoi-

dal input to 1 mV. Obtain the voltage gain for

f ¼ 10 Hz; 100 Hz;1 kHz;10 kHz;100 kHz;1MHz

and plot the values (in dB) on the graph obtained

in part (a). Explain any differences between the

gains obtained in part (a) and those obtained from

the simulation. In particular, explore whether the

limited slew rate of the op amp comes into play at

1 MHz or below.

P 17.28 Is the model in Fig. P 17.4 a complete

model for an op amp? Justify your answer.

P 17.29 The gain-bandwidth product and slew rate of

an op amp to be used in a certain inverting amplifier are

2.5 MHz and 800 kV s�1, respectively. The op amp is

rail-to-rail and the power supply voltages are 
 15V.

(a) What is the maximum voltage gain achievable by

the amplifier if the bandwidth must be 50 kHz?

(b) What is the limit imposed by output swing on the

peak amplitude of an input if the amplifier must

remain linear?

(c) If the bandwidth is 50 kHz, what is the limit

imposed by slew rate on the peak amplitude of a

25 kHz sinusoidal input if the output must be

sinusoidal (if the amplifier must remain linear)?

P 17.30 The gain-bandwidth product and slew rate of

an op amp to be used in a certain non-inverting amplifier

are 5 MHz and 2Vms�1, respectively. The op amp is

rail-to-rail and the power supply voltages are 
 20V.

(a) What is the maximum gain achievable by the

amplifier if the bandwidth must be 25 kHz?

(b) What is the bandwidth of the amplifier if the dc

voltage gain is 100?

(c) If the dc voltage gain is100, what is the limit

imposed by output swing on the peak amplitude

of an input if the amplifier must remain linear?

(d) If the voltage gain and bandwidth are as given in

part (b), what is the limit imposed by slew rate on

the peak amplitude of a 5 kHz sinusoidal input if

the output must be sinusoidal (if the amplifier

must remain linear)?

P 17.31 In a certain application, a voltage follower

must operate linearly for sinusoidal inputs having fre-

quencies up to 200 kHz and peak amplitudes up to 2 V.

Specify acceptable values for the op-amp gain-band-

width product and slew rate.

P 17.32 The text gives the following expression for

the input impedance of an inverting amplifier:

Zin ffi 1þ j f=Wð Þ
1þ j f=fTð Þ R1; m Zij j � R2;

Zij j � Ro; RL � Ro

+
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–

Fig. P 17.14 See Problem P 17.27
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(a) Design an inverting amplifier having dc voltage

gain Av0 ¼ 150, using an op amp having gain-

bandwidth product 1.5 MHz, and use the expres-

sion above to calculate the magnitude of the input

impedance for f ¼ 0; 100Hz;1 kHz;10 kHz; 100

kHz; 1MHz.

(b) Simulate the circuit, using an op amp having

the parameter values shown in Fig. P 17.15. Use

the simulation to measure the magnitude of the

input impedance for f ¼ 0; 100Hz;1 kHz;10 kHz;

100 kHz; 1MHz. Explain any significant differ-

ences between the measured values obtained

from the simulation and the theoretical values

obtained in part (a).

(c) Verify that the amplifier is linear for each

simulation.

P 17.33 For each op amp described in Table P 17.1:

(a) Specify the parameters of an inverting amplifier

whose input resistance is no smaller than 10 kO in

the amplifier passband and whose gain is as large

as possible, subject to the constraints that the

feedback resistance R2 must not exceed 2MO

and the amplifier 3 dB bandwidth must be at

least 20 kHz.

(b) Find the maximum output resistance in the pass-

band and the maximum output swing, assuming

rail-to-rail operation.

(c) Find whether the slew rate is adequate, assuming

the maximum amplitude allowed by the output

swing limit for any input within the amplifier

passband.

P 17.34 The input impedance of an inverting ampli-

fier is given by

Zin ¼ Z1 þ ZS þ ZiD

mþ 1ð ÞZL þ Ro½ 	Zi þ D

where

D ¼ RoZL þ Z2ZL þ Z2Ro:

The expression is exact if the ac linear model for

the op amp is exact. The circuit and op-amp para-

meters of a certain inverting amplifier are:

R1 ¼ 10 kO; R2 ¼ 1MO; RS ¼ 50O; RL ¼ 5 kO

Ri ¼ 4MO; Ro ¼ 75O; m0 ¼ 2� 105; fT ¼ 2MHz:

(a) Use the expression above to calculate the input

impedance at the passband edge.

(b) A capacitor having capacitance C2 ¼ 159 pF is

connected in parallel with the feedback resistor

R2. Predict whether the input impedance will

increase, decrease, or remain the same. Again

calculate the input impedance at the passband

edge to check your prediction.

(c) Use simulations to check your calculations in

parts (a) and (b). Be sure the op amp operates

linearly; e.g., don’t exceed the output-swing or

slew-rate limits.

Fig. P 17.15 See Problem P 17.32

Table P 17.1 See Problem P 17.33

Op amp SR

ðVms�1Þ
fT

ðMHzÞ
Rin

ðOÞ
Rout

ðOÞ
VCCmax

ðVÞ
(a) 15 4 2� 106 75 18

(b) 2 2 4� 106 100 18

(c) 330 300 1011 50 10

(d) 3.5 1 1012 75 18

(e) 15 2 1013 200 45

(f) 10 5 1011 100 35
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P 17.35 Repeat Problem P 17.34, except in part

(b), connect the 159 pF capacitor in parallel with the

input resistor R1.

P 17.36 Figure P 17.16 shows a follower using an

AD549L op amp. The supply voltages are 
 15V. An

AD549L has a slew rate of 3Vms�1, a gain-bandwidth

product of 1 MHz, and allows a maximum symmetric

supply voltage of 
 18V. The output can swing to

within 1 V of either supply voltage. Which of slew rate

and bandwidth limit the bandwidth of the follower?

Section 17.6 is prerequisite for the following

problems.

P 17.37 In Fig. P 17.17, the wipers on the variable

resistors are connected mechanically, such that the

product of the feedback resistances is fixed and equal

to R2
2, and 0:1 � k< 1. The gain-bandwidth product

of each op amp is 2 MHz.

(a) Which of the two stages limits the bandwidth of

the cascade?

(b) Obtain a standard-form expression for the voltage

transfer function.

(c) Obtain an expression for the half-power frequency

of the cascade.

(d) If 0:1 � k � 1, what are the minimum and maxi-

mum half-power bandwidths of the cascade?

P 17.38 Show that the bandwidth of a cascade of n

inverting or non-inverting amplifiers, or a cascade of a

mix of such amplifiers, each having bandwidth W, is

given by

Wn ¼ W
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
21=n � 1

p

P 17.39 Two identical inverting amplifiers, each

having dc voltage gain Av0 ¼ 100, are connected

in cascade. The op-amp parameters are Ri ¼ 3MO,
Ro ¼ 75O, fT ¼ 1:5MHz, m0 ¼ 2� 105, and SR ¼
500Vms�1. The circuit parameters are RS ¼ 50O,
R1 ¼ 1 kO, R2 ¼ 100 kO, and RL ¼ 5 kO.

(a) What are the half-power bandwidths of each

amplifier and what is the half-power bandwidth

W2 of the cascade?

(b) What is the rms amplitude of the largest input having

frequencyW2 for which the slew rate is adequate?

(c) What must the slew rate be if the input can be a

sinusoid having rms amplitude 1 mV and any

frequency up to fT ¼ 1:5MHz?

(d) Use a simulation to check your answers to parts

(a) and (b).

P 17.40 Two non-inverting amplifiers, each having

dc voltage gain Av0 ¼ 100 and bandwidth

W ¼ 15 kHz, are connected in cascade. What is the

gain-bandwidth product of the cascade?

P 17.41 Two non-inverting amplifiers having band-

widths 10 and 15 kHz and the same dc voltage gain

Av0 ¼ 100, are connected in cascade. What is the gain-

bandwidth product of the cascade?

P 17.42 Two identical inverting amplifiers, each

having dc voltage gain 150 and bandwidth 20 kHz,

are connected in cascade. The feedback resistance in

one of the amplifiers is doubled. What is the new

bandwidth of the cascade?

P 17.43 You might need a cut-and-try approach to

solving parts of this problem. Refer to Fig. P 17.18,

where RS ¼ 100O. The op amps are identical, having

input resistance Ri ¼ 1MO, intrinsic dc voltage gain

m0 ¼ 2� 105, unity-gain frequency fT ¼ 4MHz, out-

put resistance Ro ¼ 200O, slew rate SR ¼ 1MVs�1,

output voltage swing 
 20V, and output current limit
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Fig. P 17.16 See Problem P 17.36
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Fig. P 17.17 See Problem P 17.37
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250 mA. The input bias currents and dc input voltage

offset are negligible.

(a) If R3 ¼ 10 kO, what is the smallest value of R1 for

which input loading reduces the dc voltage gain of

the cascade by no more than 1%?

(b) If R1 has the value found in part (a), what is the

smallest value of R3 for which interstage loading

reduces the dc voltage gain of the cascade by no

more than 1%?

(c) If R1; R3 have the values found in parts (a) and (b),

what is the smallest value of RL for which output

loading reduces the dc voltage gain of the cascade

by no more than 1%?

(d) If R1; R3; RL have the values found in parts (a),

(b) and (c), what is the largest dc input for which

the amplifier is linear? What is the limiting

parameter?

(e) If R1; R3; RL have the values found in parts (a), (b)

and (c), and if the input is a sinusoid whose fre-

quency equals the half-power bandwidth of the

cascade, what is the largest peak amplitude of

the input for which the cascade is linear? You

might need to refer to the solution to Problem

P 17.39(a).

Sections 17.7 and 17.8 are prerequisite for

the following problems.

P 17.44 A voltage to be amplified in a certain

application consists of a desirable sinusoidal com-

ponent whose frequency is confined to the band

30Hz � f � 20 kHz, plus an undesirable dc compo-

nent. The rms amplitude of the sinusoidal component

does not exceed 150 mV, and the source resistance is

no larger than 50O. The voltage gain for the desirable

component must be 100 or larger.

(a) Draw a circuit diagram showing the amplifier,

source, and coupling capacitor.

(b) Specify the coupling capacitor and the resistances

external to the op amp in an inverting amplifier for

this application, including input-bias-current com-

pensation.

(c) Specify the minimum acceptable unity-gain fre-

quency, intrinsic dc voltage gain, output swing,

and slew rate of an acceptable op amp. amplifier.

(d) Use simulation or analysis to check perfor-

mance and adjust your specifications as needed.

P 17.45 Repeat Problem P 17.44, using a non-

inverting amplifier.

P 17.46 Two identical cascaded inverting

amplifiers are capacitively coupled, as shown in

Fig. P 17.19, and driven by a sinusoidal source. The

maximum passband voltage gain of the cascade is to

be 104 and the half-power passband of the cascade is to

extend from 100 Hz to 20 kHz. The source and load

resistances are RS ¼ 30O and RL ¼ 5 kO, respec-

tively, and the rms amplitude of the available source

voltage does not exceed 1.4 mV. Specify the circuit

components and the relevant op-amp parameters. Use

simulation to check the design.

P 17.47 Two cascaded non-inverting amplifiers are

capacitively coupled, as shown in Fig. P 17.20, and

driven by a sinusoidal source whose rms amplitude

does not exceed 1.4 mV. The op amps are rail-to-rail,

powered by a symmetric supply 
 25V, and charac-

terized as follows:

Output swing: 
 22V

Unity-gain frequency: fT ¼ 3MHz

Slew rate: SR ¼ 2V ms�1

Intrinsic dc voltage gain: m0 ¼ 2� 105

Input resistance: Ri ¼ 2MO
Input capacitance: Ci ¼ 1:5 pF

Input impedance: Zi ¼ Ri

��� 1

joCi

�
:

Output resistance: Ro ¼ 75O

+
–

C R1

RX

R2

RLvL+
–

RS

vS

R1

R2

RX

v1 v2

+
–

Fig. P 17.19 See Problem P 17.46
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The passband of the cascade must extend down to

50 Hz. The source and load resistances are RS ¼ 50O
and RL ¼ 5 kO, respectively.

(a) What is the maximum voltage gain that can be

allowed if the passband must extend up to 25 kHz?

(b) What is the maximum bandwidth of the cascade if

the voltage gain must be 104?

(c) What is the maximum allowable rms amplitude of

the input if the cascade must have a gain of 104 in

a passband extending from 50 Hz to 25 kHz?

(d) If RY ¼ 10 kO, what is the highest frequency for

which interstage loading reduces the voltage gain

of the cascade by less than 1%?

Sections 17.9 and 17.10 are prerequisite for

the following problems.

P 17.48 In Fig. P 17.21, VCC ¼ 25V, RL ¼ 1 kO,
R1 ¼ 1 kO, and R2 ¼ 5 kO. Specify the power-

dissipation rating for the op amp assuming (a) sinu-

soidal excitation and (b) dc excitation.

P 17.49 In Fig. P 17.19, the source and load

resistances are RS ¼ 20O and RL ¼ 1 kO, respectively,
and the coupling capacitor C ¼ 200 nF. The input

is a 5 kHz sinusoid having peak amplitude 2 mV. The

resistors in the amplifier circuits are R1 ¼ RX ¼ 10 kO,
R2 ¼ 1MO. The op amps are rail-to-rail, powered by

a symmetric supply 
 25V, and may be assumed to

be ideal.

Calculate the total power delivered to the circuit,

the power dissipated by the op amps and the power

delivered to the load as functions of the rms amplitude

and frequency of a sinusoidal input, assuming linear

operation. Calculate the power-transfer efficiency of

the circuit.

P 17.50 In Fig. P 17.20, the op-amp and circuit

parameters are as given in Problem P 17.49. Calculate

the total power delivered to the circuit, the power

dissipated by the op amps and the power delivered to

the load as functions of the rms amplitude and fre-

quency of the input, assuming linear operation. Calcu-

late the power-transfer efficiency of the circuit.

P 17.51 The output swing and slew rate of the op

amp in a certain inverting amplifier are 
 16V and

500 kV s�1, respectively. The amplifier is powered by

a 
 20V supply. The op-amp short-circuit rms output

current is 25 mA, which can be delivered continuously

without damage, and the op amp can safely dissipate

100 mW in ambient air (in the open at room tempera-

ture). The op-amp unity-gain frequency is 1.5 MHz

and the op-amp intrinsic dc voltage gain is 2� 105.

The dc voltage gain of the inverting amplifier is 100.

The input is a 15-kHz sinusoidal voltage.

(a) The rms amplitude of the input is 18 mV. Draw

a graph of the power delivered to a resistive

load RL versus the resistance the load, for

1O � RL � 10 kO. Use logarithmic scales for

both the load power and the load resistance.

(b) Draw a graph of the power delivered to a 500O
resistive load versus the rms amplitude of the input,

for 100 mV � VS rms � 1V. Use logarithmic scales

for both the load power and the input voltage.

(c) What limits the output power in each case?

+

–

RL

vL+ –

R2R1

n

p

o

iL

i2

io
vS

Fig. P 17.21 See Problem P 17.48

+

–

C
RLvL

RY

+
+
– –

R1 R2

RX
RS

R3 R4

vS

v1 v2

Fig. P 17.20 See Problem

P 17.47
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P 17.52 An inverting amplifier built around a rail-

to-rail op amp is to drive a 1 kO resistive load. The

amplifier must have an input resistance of 10 kO and a

voltage gain of 100. The amplifier is to be powered by

a 
 15V supply.

(a) Specify the power-dissipation rating for the

op amp.

(b) Find the maximum power required of the supply

by the amplifier and load.

(c) Find the power-conversion efficiency of the ampli-

fier for a 50 mV dc input.

P 17.53 Refer to Fig. P 17.22, where the op amps

are powered by a symmetric supply 
 15V,

R1 ¼ 1 kO; R2 ¼ 1MO; RS ¼ 100O; RL ¼ 5 kO

and

vS ¼ VS cos 2pfS tð Þ; VS ¼ 1mV; fS ¼ 5 kHz:

(a) Find the average power dissipated by each circuit

component. Assume the op amps are ideal.

(b) Find the power-conversion efficiency of the

circuit.

P 17.54 Repeat Problem P 17.53 for the circuit in

Fig. P 17.23.

Section 17.11 is prerequisite for the follow-

ing problems.

Some problems in this section refer to Table 17.3 in

Section 17.11.

P 17.55 A non-inverting audio amplifier must

deliver 50 W to an 8O load. The bandwidth must be

at least 20 kHz and the dc gain must be at least 60 dB.

Assume a sinusoidal input and specify the power dis-

sipation, output current, supply voltage, slew rate, and

gain-bandwidth product for the op amp. If possible,

select an op amp from those in Table 17.3 that would

be adequate for this application.

P 17.56 An audio-frequency voltage v tð Þ has band-
width W ¼ 20 kHz, rms amplitude vrms ¼ 150mV,

and zero average value (no dc component). The voltage

is to be amplified using an inverting amplifier powered

by a symmetric supply 
 VCC ¼ 
30V. Assume the op

amp used is rail-to-rail.

(a) What is the maximum allowable gain if the output

swing is assumed to be 
 three times the rms

amplitude of the output?

(b) If that gain is achieved, what is the minimum

acceptable gain-bandwidth product for the op amp?

(c) If the source resistance is RS ¼ 20O, what values
would you specify for R1, R2, and the bias-current

compensating resistor RX?

(d) What slew rate is required?

P 17.57 Specify the parameters of the op amp

and external resistances (including tolerances on the

latter) for an inverting audio amplifier meeting the

following specifications:

Input resistance of 10kO or larger, dc voltage gain of

50 
 1dB, 3-dB bandwidthW greater than 10 kHz, load

resistance of 10 kO, and output swing of 
 12V. The

available supply voltage is 
 15V. The expected source

and load resistances are RS ffi 50O and RL ¼ 10 kO.

+

–

RLvL+

–+
– R1 R2

RS

R3 R4

vS

v1 v2

Fig. P 17.23 See Problem

P 17.54

+

–
R1

R2

RLvL
+

–
RS

vS

R1

R2

v1

+
–

Fig. P 17.22 See Problem

P 17.53
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The slew rate must be adequate for a sinusoidal input

having frequencyW and rms amplitude 20 mV.

Simulate the amplifier to verify that the specifica-

tions are met, even under worst-case variations of the

external resistors.

P 17.58 Determine which (if any) of the op amps in

Table 17.3 could be used in an inverting amplifier

subject to the following specifications:

Dc gain ¼ 20

Bandwidth ¼ 50 kHz

Output swing ¼ 
 25V:

P 17.59 Design a direct-coupled inverting audio

amplifier subject to the following specifications and

constraints:

Dc voltage gain ¼ 100
 10%

Input resistance > 5 kO
Bandwidth � 20 kHz

Available supply ¼ 
 15V

Load resistance � 15 kO
Source output resistance � 10O
Input amplitude VS rms � 120mV.

Which, if any, of the op amps in Table 17.3 could

be used in this application?

P 17.60 Refer to Fig. P 17.24. The specified dc

input resistance is Rin ¼ 10 kO, the supply voltage

is 
 VCC ¼ 
15V, and the maximum amplitude

of the input is 50mV. The amplitude of the out-

put is to be no larger than 70.7% of the amplitude

of the input for any sinusoidal input having fre-

quency greater than f1 ¼ 25 kHz. Specify R, Rf ,

and C.

C

Rf

+

–
R

vin
vout

R v1

Fig. P 17.24 See Problem P 17.60
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Chapter 18

Laplace Transformation and s-Domain Circuit Analysis

In the present context, a transformation establishes a

one-to-one relation between two sets of objects. Such

a relation exists between sinusoidal functions of

time and the corresponding phasor representations,

provided a specification of the frequency of the sinu-

soid accompanies the phasor representation (to make

the relation one-to-one). We indicate such a relation

using a double-headed arrow; e.g.,

V cos o0 tþ yð Þ $ Vffy; o ¼ o0:

A transformation establishes not only a relation

between two sets of items, but also a relation between

operations on one set and corresponding operations on

the other set. For example, transforming sinusoids to

phasors also transforms differentiation with respect to

time to multiplication by jo; that is,

d

dt
V cos o0 tþ yð Þ½ � $ joVffy; o ¼ o0:

We may view a transformation as a relation

between two domains. For example, sinusoidal func-

tions of time reside in the time domain and associated

phasors reside in the frequency domain. Representing

currents and voltages as functions of time, expressing

Kirchhoff’s laws as differential equations, and solving

such equations by classical (or numerical) methods is

called time-domain analysis. Representing sinusoidal

currents and voltages as phasors, expressing Kirchhoff’s

laws as algebraic equations, and solving such equations

is called frequency-domain analysis. The Laplace

transformation transforms currents and voltages and

operations on currents and voltages to the complex-

frequency domain. In the time domain, the indepen-

dent variable is time, denoted by t. In the frequency

domain, the independent variable is frequency,

denoted by f , or angular frequency, denoted by o. In
the complex-frequency domain, the independent vari-

able is called complex frequency, and is denoted

by s. Henceforth, for economy, we often refer to the

complex-frequency domain as the s domain.

This chapter introduces circuit analysis in the

s domain. We begin by defining the Laplace transfor-

mation, which connects the time domain to the

s domain.

18.1 Definition of the Laplace
Transformation

As used in circuit analysis, the Laplace transformation

is defined by the (forward) Laplace transformation

FðsÞ ¼
ð1
�1

f ðtÞ e�s t dt (18.1)

and the inverse Laplace transformation
1

f ðtÞ ¼ 1

j 2 p

ðcþj1

c�j1
FðsÞ es t ds; t> 0; (18.2)

where t is time, s is a complex variable called complex

frequency, and c is a real constant that is independent
of s. In all applications involving realistic circuit and

1The integral in (18.2) is an example of a line integral, so called
because the path of integration is along a line defined by s ¼ c
that is not necessarily coincident with one of the axes. You need

not be alarmed by this integral because we never need to use it.

T.H. Glisson, Introduction to Circuit Analysis and Design,
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signal models,2 (18.1) and (18.2) exist and comprise a

one-to-one transformation.

From (18.1), the dimension of a Laplace transform

F sð Þis that of the associated function f ðtÞmultiplied by
time; for example, if f ðtÞ is a voltage the SI unit of FðsÞ
is volt-seconds (V s).

Equation (18.1) defines the transformation of a

function f ðtÞ from the time domain to another func-

tion FðsÞ in the s domain. The function FðsÞ given by

(18.1) is called the Laplace transform of the function

f ðtÞ. The function f ðtÞ given by (18.2) is called the

inverse Laplace transform of the function FðsÞ and
the integral in (18.2) is called the inversion integral.
Together, the functions f ðtÞ and FðsÞ in (18.1)

and (18.2) comprise a Laplace transform pair. This

relationship is denoted by

f ðtÞ $ FðsÞ: (18.3)

This notation is analogous to denoting the relationship

between a sinusoidal voltage and the phasor represen-

tation of the voltage by

V cos o tþ yð Þ $ Vffy:

The unit of complex frequency is s�1. Here again is

an opportunity for confusing a variable (italic s) and a

unit (roman s), so in written work you should under-

line the unit s. To avoid such conflicts, some disci-

plines use p for complex frequency, but unfortunately,

s has won out in electrical engineering.

The real and imaginary parts of complex frequency

are denoted by s and o, respectively. Thus

s ¼ sþ jo: (18.4)

The meaning of frequency f and angular frequency

o ¼ 2pf is clear. They are the frequency and angular

frequency of a sinusoidal current or voltage. Themean-

ing of complex frequency s might be made a little

more clear by the following heuristic interpretation:

Recall that the complex representation of a sinusoi-

dal voltage having angular frequencyo is ~v tð Þ ¼ ~Vejo t,

where ~V is the phasor for the voltage and o is angular

frequency. If we apply (mathematically) such a voltage

to a capacitor, then the complex representation of the

current entering the positive terminal of the capacitor is

given by

~i tð Þ ¼ C
d~v tð Þ
dt

¼ joC ~Vejot:

and we are led by analogy with Ohm’s law to define

the impedance is of a capacitor as

ZC ¼ ~v tð Þ
~i tð Þ ¼

1

joC
:

We may generalize, and define (by analogy) the

complex representation of an exponentially damped

sinusoidal voltage as v̂ tð Þ ¼ V̂est, where s ¼ sþ jo
is complex frequency. If we apply (mathematically)

such a voltage to a capacitor, then the complex repre-

sentation of the current entering the positive terminal

of the capacitor is given by

î tð Þ ¼ C
dv̂ tð Þ
dt

¼ sCV̂est ¼ sCv̂ tð Þ:

and we are led by analogy with Ohm’s law to define

the generalized impedance is of a capacitor as

ZC ¼ v̂ tð Þ
î tð Þ ¼

1

sC
:

A real frequency o refers to the angular frequency

of the complex representation of a constant-amplitude

sinusoid. A complex frequency s ¼ sþ jo refers

to both the damping of the exponential factor and

the angular frequency of the sinusoidal factor in the

complex representation of an exponentially damped

sinusoid.

The Laplace transform of a current or voltage is a

non-physical complex function of a complex variable.

The Laplace transform of a current (or voltage) is not

a current (or voltage) and indeed does not even have

the unit of a current (or voltage). However, Laplace
transforms of currents and voltages in a circuit satisfy

Kirchhoff’s laws just as phasors do, and in that context
it is conventional and economical to refer to Laplace

transforms of currents and voltages as currents and

voltages, just as it is conventional to refer to phasor2In this book, signal means current or voltage.
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currents and voltages as currents and voltages. For

economy, we follow that convention; for example,

we might say that the sum of the currents leaving a

node equals zero, when we actually mean the sum of

the Laplace transforms of the currents equals zero. But
in this book, where you are asked to find or obtain an

expression for a particular current or voltage, you
should present a real function of time, not a Laplace

transform (or phasor).

18.2 Convergence and Uniqueness

To avoid too much prestidigitation in subsequent

developments, we discuss conditions under which the

right side of (18.1) converges (exists) and conditions

under which associated functions f tð Þ and F sð Þ are in

one-to-one correspondence and comprise a unique

transform pair.

Consider the function

f1 tð Þ ¼ ea tu tð Þ; (18.5)

where a< 0. Equation (18.1) gives

F1ðsÞ ¼
ð0
�1

0 e�s t dtþ
ð1
0

eat e�s t dt ¼
ð1
0

e� s�að Þt dt

¼ � e� s�að Þt

s� að Þ
����
t!1

t¼0

¼ � lim
t!1

e� s�að Þt

s� að Þ
� �

þ 1

s� að Þ :

(18.6)

The limit exists only if Re s� að Þ> 0; i.e., only if

Re sð Þ> a, in which case the limit vanishes and

F1 sð Þ ¼ 1

s� a
; Re sð Þ> a: (18.7)

For f1 tð Þ defined by (18.5), the integral on the right of
(18.1) converges (exists) only for values of s whose real

parts exceed a. The region defined by Re sð Þ> a is

called the region of convergence for the Laplace trans-

form of the function defined by (18.5). See Fig. 18.1.

Now consider the function

f2 tð Þ ¼ �eatu �tð Þ: (18.8)

where a> 0. For this function, (18.1) yields

F2ðsÞ ¼ �
ð0
�1

eat e�s t dtþ
ð1
0

0e�s t dt

¼ �
ð0
�1

e� s�að Þt dt ¼ e� s�að Þt

s� að Þ
����
t¼0

t!�1

¼ 1

s� að Þ � lim
t!�1

e� s�að Þt

s� að Þ
� �

¼ 1

s� að Þ � lim
t!1

e s�að Þt

s� að Þ
� �

:

(18.9)

The limit vanishes if Re s� að Þ< 0 or Re sð Þ< a. Thus

the Laplace transform and the associated region of

convergence for the function defined by (18.8) are

F2 sð Þ ¼ 1

s� a
; Re sð Þ< a: (18.10)

See Fig. 18.2.

For F sð Þ ¼ s� að Þ�1
, the inversion integral (18.2)

yields the function f1 tð Þ ¼ ea tu tð Þ if the path of inte-

gration lies to the right of the line s ¼ a (if c> a) and
yields the function f2 tð Þ ¼ �eatu �tð Þ if the path of

integration lies to the left of s ¼ a (if c< a).3 In

other words, the Laplace transform F sð Þ ¼ s� að Þ�1

is the transform of two different functions, which one

depending upon which of Re sð Þ> a and Re sð Þ< a is

taken as the associated region of convergence.

For present purposes, an important point of the

discussion above is that F sð Þ ¼ s� að Þ�1
is the

exp (at)u (t)

to

Re (s)

Im (s)

a o

Fig. 18.1 Graphs of the function f1 tð Þ ¼ ea tu tð Þ and the asso-

ciated region of convergence for the Laplace transform F1 sð Þ.
See (18.7)

3You will see this proved if you take a course in complex

variables.
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Laplace transform of either f1 tð Þ ¼ ea tu tð Þ, which is

non-zero only for t> 0 and is said to be right-sided, or
of f2 tð Þ ¼ �eatu �tð Þ, which is non-zero only for t< 0

and is said to be left-sided. Keep this point in mind as

you read on.

A function of time can be right-sided, left-sided,

or two sided. A function of time is right-sided if we

can choose a time origin t ¼ 0 such that the function

equals zero for all times less than zero. A function of

time is left-sided if we can choose a time origin

such that the function equals zero for all times

greater than zero. A function of time is two-sided

if it is neither left-sided nor right sided; that is, if the

function has non-zero values both to the left and to

the right of any particular time. A function of time

that is non-zero over only some finite interval is

both left-sided and right sided. We consider such

functions to be right-sided. Figure 18.3 illustrates

these definitions.

In general, the inversion integral (18.2) can return a

right-sided function, a left-sided function, or a two-

sided function, depending upon the function F sð Þ and
the path of integration (the assumed region of conver-

gence). However, any particular function F sð Þ will
yield at most one right-sided function of time. If a

function of time f tð Þ is known to be right-sided,

(18.1) alone establishes a one-to-one correspondence

between the function f tð Þ and the associated Laplace

transform F sð Þ. If we limit application of the Laplace

transformation to only right-sided functions, we are

assured that a function F sð Þ obtained using (18.1) is

uniquely associated with the right-sided function f tð Þ
in the integrand. Thus, if we limit application of the

Laplace transformation to only right-sided functions,

we may use only (18.1) to construct a table of trans-

forms. We do not need to use (18.2) and we need not

be concerned about regions of convergence.

Exercise 18.1 Obtain the Laplace transform

and associated region of convergence for the

function f tð Þ ¼ exp �a tj jð Þ, where a> 0. Is this

function right-sided, left-sided, or two-sided?

Exercise 18.2 Classify each of the following

functions as right-sided, left-sided, or two-

sided. (a) cos 2pf tð Þ, (b) cos 2pf tð Þu t� t0ð Þ,
(c) u t� t1ð Þ � u t� t2ð Þ, (d) exp t=tð Þu �tð Þ:

t → ∞

t → ∞

−∞ ← t

−∞ ← t

0 0

t1 t2
t

(a) right-sided (b) left-sided

(c) two-sided (d) both left-and right-sided

f (t) f (t)

f (t)f (t)

Fig. 18.3 Illustrations of the

definitions of right-sided, left-

sided, and two sided functions

of time

t o

ao

−exp (at)u (−t)

Re (s)

Im (s)

Fig. 18.2 Graphs of the function f2 tð Þ ¼ �eatu �tð Þ and the

associated region of convergence for the Laplace transform

F2 sð Þ. See (18.10)
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18.3 One-Sided Laplace Transforms

We limit our attention to right-sided functions –

functions that equal zero for t< 0.4 Consequently,

(18.1) becomes

FðsÞ ¼
ð1
0�

f ðtÞ e�s t dt: (18.11)

The function F sð Þ is the one-sided Laplace trans-

form of the function f tð Þ. Recall from calculus that a

lower limit of integration is not included in the range

of integration. For example, in

ðb
a

f tð Þdt

the range of integration a< t � b excludes the point

t ¼ a. For reasons given in the sequel, we wish to

include t ¼ 0 in the defining integral for the one-

sided Laplace transform, which is why the lower

limit in (18.11) is t ¼ 0� and not t ¼ 0.

Henceforth, we use only the one-sided Laplace

transform and Laplace transform means one-sided

Laplace transform.

If a function f tð Þ is to have a Laplace transform, the

integral in (18.11) must exist for at least some values

of s. Existence of the Laplace transform of a function

f tð Þ is guaranteed if there are at least some finite values

of s for which5

lim
t!1 f ðtÞ e�s t½ � ¼ 0 (18.12)

such a function is said to be of exponential order. All

functions of time that represent physical quantities

(such as current and voltage) are of exponential

order. For example, the function

f tð Þ ¼ eatu tð Þ
is of exponential order, because

lim
t!1 eat e�s t½ � ¼ lim

t!1 e� s�að Þ t
h i

¼ 0 for Re s� að Þ> 0

For any finite value of a, there are finite values of s for

which Re s� að Þ> 0. On the other hand, the function

f tð Þ ¼ e atð Þ2u tð Þ
is not of exponential order because there are no values

of s for which (18.12) holds.

Exercise 18.3 Which of the following func-

tions are of exponential order?

(a) eat cos o tð Þu tð Þ; a> 0; (b) tneatu tð Þ;
a< 0; n> 0; (c) cos o0tð Þ:

18.4 Shorthand Notation

The operation defined by (18.11) is denoted by the

symbolL. With this shorthand, we may write (18.11) as

FðsÞ ¼ L f ðtÞf g (18.13)

The right side of (18.13) is an abbreviation for the

right side of (18.11), just as ln xð Þ is an abbreviation

for the infinite series that defines the natural logarithm.

The right side of (18.13) means multiply the function
f ðtÞ by the exponential e�s t and integrate the product

from t ¼ 0� to t ! 1.

Similarly, the inverse Laplace transform of a func-

tion FðsÞ is denoted

f ðtÞ ¼ L�1 FðsÞf g (18.14)

For our purposes, this notation is simply convenient

shorthand that simplifies discussion and use of Laplace

transforms.

In the next section, we digress a bit to introduce a

generalized function that is useful in subsequent

developments.

18.5 The Delta Function (Unit Impulse)

In many physical circuits, currents and voltages fre-

quently change abruptly from one value to another. In a

physical circuit, such changes cannot be instantaneous

4In physical problems, we are free to choose a time origin. We

could generalize by treating right-sided functions that equal zero

for t< t0, but that would clutter the development without

providing any useful increase in generality.
5This requirement is somewhat stronger than necessary, but is

easily tested and completely satisfactory in all practical applica-

tions.
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because of capacitance and inductance, which are

present to some degree in every physical circuit. None-

theless, it often is useful to use a discontinuous mathe-

matical model such as a step function for an applied

current or voltage. Because analysis sometimes entails

differentiation of such models, we need a formal defi-

nition of the derivative of a function at a jump discon-

tinuity.What follows is a heuristic justification for such

a definition.6

Assume that the derivative of a unit step function

u tð Þ exists and let d tð Þ denote the derivative. Thus

d tð Þ ¼ du tð Þ
dt

: (18.15)

The entity d tð Þ defined by (18.15) is called the Dirac

delta,7 the delta function, or, if it represents a current

or voltage, the unit impulse. Below, we examine the

properties of the delta function.

The derivative of u tð Þmust be zero for t< 0 and for

t> 0, because u tð Þ is independent of time in both of

those intervals; i.e.,

d tð Þ ¼ 0; t 6¼ 0: (18.16)

The converse of (18.15) is

ðt
�1

d t0ð Þdt0 ¼ u tð Þ; (18.17)

which, in view of (18.16) implies

ð0þ
0�

d tð Þdt ¼ 1; (18.18)

so the area bounded by d tð Þ and the t axis equals unity.
Finally, the dimension of the delta function d tð Þ is

time�1.8 Thus

SI d tð Þ½ � ¼ SI t�1
� � ¼ s�1; (18.19)

which is implied by (18.15), (18.17), and (18.18). The

delta function is unusual not only because it takes a

dimensioned argument (time) but also because d tð Þ
itself is dimensioned. Keep (18.19) in mind when

checking expressions for dimensional consistency.

Equations (18.16), (18.18), and (18.19) express the

three essential properties of the delta function d tð Þ
defined by (18.15).

Ordinarily, where a function of time is multiplied

by a constant, the constant affects the amplitude of the
function; for example, a u tð Þ is a step having ampli-

tude a. But from (18.18),

ð0þ
0�

ad tð Þdt ¼ a

ð0þ
0�

d tð Þdt ¼ a;

so the constant a in a d tð Þ is the area bounded by the

function ad tð Þ and the time axis. The amplitude of d tð Þ
is undefined (remains infinite) at t ¼ 0. To emphasize

this distinction, we call a the strength (not the ampli-

tude) of ad tð Þ.
Intuitively, you may imagine that d tð Þ, being the

slope of a unit step function, equals zero everywhere

except at t ¼ 0, where d tð Þ is exceedingly large, such

that its area is unity. It is usually harmless and some-

times helpful to think of d tð Þ that way. But the only
physically meaningful properties of a unit delta func-

tion are those given by or derived from (18.16) and

(18.18).

The property (18.16) implies that

f tð Þd tð Þ ¼ f 0ð Þd tð Þ; (18.20)

provided f tð Þ is defined at t ¼ 0. Also from (18.16),

d t� t0ð Þ ¼ 0; t 6¼ t0: (18.21)

It follows from (18.20) and (18.21) that

f tð Þd t� t0ð Þ ¼ f t0ð Þd t� t0ð Þ; (18.22)

provided f tð Þ is defined at t ¼ t0. If f ðtÞ is undefined at
t ¼ t0, then the left sides of (18.22) and (18.23) are

undefined.9
6Please accept on faith that the result is consistent with that of a

rigorous development, such as provided by the theory of

generalized functions (or distribution theory).
7After Paul Dirac (1902–1984), a British physicist credited with

introducing the delta function.
8In general, the dimension of a delta function is the reciprocal of

the dimension of the argument.

9The left sides of the referenced relations can be defined in a

self-consistent manner, but we do not need those more general

relations in this book.
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Exercise 18.4 Show that cos o0 tð Þd tð Þ ¼ d tð Þ
and that sin o0 tð Þd tð Þ ¼ 0.

Exercise 18.5 Show thatð1
�1

f ðtÞdðt� t0Þdt ¼ f ðt0Þ (18.23)

provided f tð Þ is defined at t ¼ t0.

From (18.23), the Laplace transform of the delta

function is

L d tð Þf g ¼
ð1
0�
d tð Þe�stdt ¼ e0

ð1
0�

d tð Þdt ¼ e0 ¼ 1:

Thus we have the important transform pair

d tð Þ $ 1 (18.24)

which we use in the next section.

18.6 Tables of Operational Properties
and Transform Pairs

Operational properties of the Laplace transforma-

tion describe how certain operations on a function

of time are transformed to other operations on the

Laplace transform of the function. In other words,

how operations in the time domain are transformed

to other operations in the s domain, and vice-versa.

Table 18.1 gives the operational properties of the

Laplace transformation that are used in this book.

Table 18.2 gives a few useful Laplace-transform

pairs which are also the only transform pairs used in

this book. In examples that follow, we derive a few of

the entries in each table and call for derivations of

others in end-of-chapter problems. We note that all

of the entries in Table 18.2 can be derived from the

first entry in Table 18.2 and the operational properties

of the Laplace transformation given in Table 18.1.

Example 18.1 We can derive the differentia-

tion property in Table 18.1 as follows: By

definition,

L df ðtÞ
dt

� �
¼
ð1
0�

df ðtÞ
dt

e�stdt ¼
ð1
t¼0�

e�stdf ðtÞ:

Integration by parts yields

ð1
t¼0�

e�stdf ðtÞ ¼ e�stf tð Þ
���t!1

t¼0�

þ s

ð1
t¼0�

f tð Þe�stdt;

so

L df ðtÞ
dt

� �
¼ lim

t!1 e�stf tð Þ � f 0�ð Þ

þs

ð1
t¼0�

f tð Þe�stdðtÞ:

There are values of s for which the first term on

the right vanishes. The integral in the last term

is the Laplace transform of f tð Þ. Thus

L df tð Þ
dt

� �
¼ sF sð Þ � f 0�ð Þ: (18.25)

Table 18.1 Selected operational properties of the Laplace transformation

Number Name f ðtÞ ¼ L�1 F sð Þf g FðsÞ ¼ L f tð Þf g
1 Linearity f1 tð Þ þ f2 tð Þ þ � � � F1 sð Þ þ F2 sð Þ þ � � �
2 Frequency translation e�a t f ðtÞ Fðsþ aÞ
3 Time translation f t� t0ð Þ; t0 � 0 e�st0F sð Þ
4 Differentiation df ðtÞ

dt

s F sð Þ � f 0�ð Þ

5 d2f ðtÞ
dt2

s2 F sð Þ � s f 0�ð Þ � df tð Þ
dt

����
t¼0�

6 dnf ðtÞ
dtn

sn F sð Þ �Pn
k¼1

sn�k d
n�kf tð Þ
dtn�k

����
t¼0�

7 Integration
R t
0� f ðt0Þ dt0 1

s FðsÞ
8 Multiplication by time tn f tð Þ �1ð Þnd

nF sð Þ
dsn
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Example 18.2 We can use the transform of

the unit delta and the differentiation property

to obtain the transform of the unit step. By

definition,

d tð Þ ¼ du tð Þ
dt

:

From the differentiation property (18.25)

L d tð Þf g ¼ L du tð Þ
dt

� �
¼ sL u tð Þf g � u 0�ð Þ

¼ sL u tð Þf g:
Thus,

L u tð Þf g ¼ 1

s
L d tð Þf g ¼ 1

s
:

Exercise 18.6 Use the integration property in

Table 18.1 to show that

L u tð Þf g ¼ 1

s
:

Example 18.3 The frequency translation

property in Table 18.1 is obtained as follows:

L e�a t f ðtÞf g ¼
ð1
0�

e�a t f ðtÞ e�s t dt

¼
ð1
0�

f ðtÞ e� sþað Þ t dt

¼ L f ðtÞf gjs!sþa

¼ Fðsþ aÞ (18.26)

Multiplying a function by an exponential

in the time domain is equivalent to translating

the Laplace transform of the function in the

s domain.

Example 18.4 Find the Laplace transform of

e�a t uðtÞ.
Solution:From the frequency-translation property,

L e�a t uðtÞf g ¼ L uðtÞf gjs!sþa¼
1

sþ a
(18.27)

Example 18.5 Show that

L cos o tð Þ uðtÞf g ¼ s

s2 þ o2
: (18.28)

Table 18.2 Selected Laplace-transform pairs10

Number f ðtÞ FðsÞ
1 d tð Þ 1

2 uðtÞ 1

s
3 e�a t uðtÞ 1

sþ a
4 1� e�atð Þu tð Þ 1

s
� 1

sþa
¼ a

s sþað Þ
5 tn e�a t uðtÞ n!

sþ að Þnþ1

6 cos o0 tð Þ uðtÞ s

s2 þ o0
2

7 sin o0 tð Þ uðtÞ o0

s2 þ o0
2

8 e�a t cos o0 tð Þ uðtÞ sþ a

sþ að Þ2þo0
2

9 e�a t sin o0 tð Þ uðtÞ o0

sþ að Þ2þo0
2

10 e�a t cos o0 tþ yð Þ uðtÞ ðsþaÞcos yð Þ�o0 sin yð Þ
sþað Þ2þo0

2

1111 2 Aj je�t=tcos o0 tþ∡Að Þu tð Þ A

s� p
þ A�

s� p�
;

p ¼ � 1
t þ jo0

12 Ce�qt=2 cos o0 tþyð Þu tð Þ
o0¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r� q=2ð Þ2

q
C¼o�1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rA2þB2�qAB

p
y¼Tan�1 Ao0;

Aq

2
�B

� �

Asþ B

s2 þ qsþ r

13 o0 b
�1e�ao0 t sin bo0 tð Þu tð Þ

b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

p
o0

2

s2 þ 2ao0 sþ o0
2

10Entries 11–13 are useful mainly for obtaining inverse Laplace

transforms.
11Note that A is associated with p, which has a positive imagi-

nary part and A* is associated with p*.
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Solution:We first use Euler’s identity to express

the sinusoidal function as:

cos o tð Þ uðtÞ ¼ 1

2
ejo t uðtÞ þ 1

2
e�jo t uðtÞ:

From the linearity property of the Laplace trans-

formation,

L cos o tð Þ uðtÞf g

¼ L 1

2
ejo t uðtÞ þ 1

2
e�jo t uðtÞ

� �

¼ 1

2
L ejo t uðtÞ
 �þ L e�jo t uðtÞ
 �� �

: (18.29)

From the frequency translation property,

1

2
L ejo t uðtÞ
 �þ L e�jo t uðtÞ
 �� �
¼ 1

2
L u tð Þf gjs!s�joþL u tð Þf gjs!sþjo

h i

¼ 1

2

1

s

����
s!s�jo

þ1

s

����
s!sþjo

 !

¼ 1

2

1

s� jo
þ 1

sþ jo

� 
: (18.30)

Equation (18.28) follows.

Exercise 18.7 Show that

L sin o tð Þ uðtÞf g ¼ o
s2 þ o2

: (18.31)

We wish to derive the time-translation property.

But a couple of subtleties are involved, so the follow-

ing preamble might be helpful.

Time translationmeans shifting a function of time

left or right on the time axis, as illustrated in Fig. 18.4.

Time translation of a function f tð Þ is accomplished

(mathematically) by replacing time t with t� t0,

where t0 is a constant having the dimension of time.

If t0> 0, the function is translated to the right. If t0< 0,

the function is translated to the left.

Shifting a function left makes any particular feature

of the function occur at an earlier time and is called

an advance. Shifting a function right makes any par-

ticular feature of the function occur at a later time and

is called a delay. Conversely, advancing a function

means translating the function to the left on the time

axis and delaying a function means translating the

function to the right on the time axis.

Two aspects of an advance are relevant to this

discussion. First, advancing a physical quantity (e.g.,

a current or voltage in a physical circuit) in real time is

impossible, because such an advance requires perfect

knowledge of the future.12 For example, advancing the

Dow-Jones industrial average implies perfect predic-

tion of future values of that index, and you know what

that would mean. Second, if the advance is such that

any nonzero part of the function is shifted to the left of

the chosen time origin, the one-sided Laplace trans-

form of the advanced function can be quite different

from the one-sided Laplace transform of the original

function. For example, the one-sided transform of

f tþ t0ð Þ in Fig. 18.4 is identically zero, whereas the

one-sided transform of f tð Þ is not.
With that preamble, we can tackle the mathematics.

The time-translation property of the one-sided Laplace

transform can be derived as follows. From (18.11),

L f t� t0ð Þf g ¼
ð1
0�

f ðt� t0Þ e�s t dt: (18.32)

f (t + t0) f (t) f (t − t0)

t1t1− t0 t1+ t0
t

0

original delayed
(occurs later)

advanced
(occurs earlier)

Fig. 18.4 Illustrating time translation (delay and advance),

where t0 > 0

12Recorded data or signals can be advanced relative to the time

at which they were recorded, but that is not a true advance

because it must be preceded by a delay (the recording time)

sufficient to allow the advance.
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Changing the variable of integration from t to

t0 ¼ t� t0 givesð1
0�
f ðt� t0Þe�s t dt¼

ð1
�t0

f ðt0Þe�s t0þt0ð Þ dt0

¼ e�st0

ð1
�t0

f ðt0Þe�st0 dt0

¼ e�st0

ð0�
�t0

f ðt0Þe�st0 dt0

þ e�st0

ð1
0�
f ðt0Þe�st0 dt0

¼ e�st0

ð0�
�t0

f ðt0Þe�st0 dt0

þ e�st0F sð Þ (18.33)

We assume f tð Þ is right-sided. If t0 > 0,

e�st0

ð0�
�t0

f ðt0Þ e�st0 dt0 ¼ 0; (18.34)

because the integration is over times for which

f t0ð Þ ¼ 0. It follows (for t0> 0) that

Lf f t� t0ð Þg ¼ exp ð�st0Þ F sð Þ; t0> 0: (18.35)

But if t0 � 0, f ðtÞ is translated to the left. If any non-

zero part of f tð Þ is translated to the left of the time

origin, then f t� t0ð Þ is not zero for all t< 0. In that

case, the integral in (18.34) is not zero and (18.35)

fails to hold

For example, let f tð Þ ¼ u tð Þ and refer to Fig. 18.5.

For t0 > 0 (translation to the right),

L u t� t0ð Þf g ¼
ðt0
0�

0ð Þ e�s t dt

þ
ð1
t0

1ð Þ e�s t dt

¼
ð1
t0

e�s t dt ¼ e�st0

s
; (18.36)

consistent with (18.35). But for t0 < 0 (translation to

the left),

L u t� t0ð Þf g ¼
ð1
0�

u t� t0ð Þ e�s t dt

¼
ð1
0�

1ð Þ e�s t dt ¼ 1

s
6¼ e�st0

s
; (18.37)

so (18.35) does not apply.

The discussion above shows that the time-transla-

tion property (18.35) holds (in general) only for

t0 � 0, as indicated in Table 18.1. This constraint is

not much of a limitation on the practical utility of the

time-translation property, because an advance is phys-

ically impossible. In some theoretical studies or where

one is analyzing recorded data, it is convenient to

allow t0< 0, in which case one would use the two-

sided Laplace transform, given by (18.1). For the two-

sided transform, (18.35) holds for both positive

and negative values of t0. But we do not need that

generalization.

Example 18.6 Obtain the Laplace transform

of the rectangular pulse v tð Þ defined graphi-

cally in Fig. 18.6.

Solution: The pulse can be expressed as

v tð Þ ¼ V0 u tð Þ � V0 u t� tð Þ. From Table 18.2,

the Laplace transform of u tð Þ is 1=s. By the

linearity and time-translation properties in

Table 18.1,

V sð Þ ¼ V0

s
� V0e

�st

s
¼ V0

s
1� e�stð Þ:

t t

u (t − t0) u ( t − t0)

(a) t0 > 0 (b) t0 < 0

0 0t0t0

Fig. 18.5 (a) Delayed and (b) advanced unit step function τ

v (t)

o

V0

t
Fig. 18.6 See Example 18.6
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Example 18.7 By obtaining and transforming

the derivative, show that

L d

dt
cos o tð Þu tð Þ½ �

� �
¼ sL cos o tð Þu tð Þf g

Solution:

d

dt
cos o tð Þu tð Þ½ �¼�o sin o tð Þu tð Þþcos o tð Þd tð Þ

¼�o sin o tð Þu tð Þþd tð Þ;
where we have used

cos o tð Þd tð Þ ¼ cos 0ð Þd tð Þ ¼ d tð Þ:
Thus

L d

dt
cos o tð Þu tð Þ½ �

� �
¼L �osin o tð Þu tð Þþd tð Þf g

¼� o2

s2þo2
þ1¼ s2

s2þo2

¼ sL cos o tð Þu tð Þf g;

in agreement with the differentiation property.

Exercise 18.8 For the pulse v tð Þ defined in

Fig. 18.6, let V0 ¼ 5V and t ¼ 50 ms.
(a) Sketch neatly and label fully a graph of

v t� t0ð Þ, where t0 ¼ 75 ms, and obtain an

expression for the one-sided Laplace trans-

form of v t� t0ð Þ.
(b) Repeat part (a) for t0 ¼ �25 ms:

18.7 Inverse Transforms Using Partial-
Fraction Expansions

Using the Laplace transformation to find the response

of a linear circuit to any particular excitation almost

invariably requires finding the inverse Laplace trans-

form of an expression of the form

FðsÞ ¼ K
sm þ bm�1s

m�1 þ � � � þ b1sþ b0
sn þ an�1sn�1 þ � � � þ a1sþ a0

; (18.38)

where the coefficients a0; a1; � � � ; an�1f g and b0; b1;f
� � � ; bm�1g are real. For subsequent reference, we note
that the SI unit of each term in the numerator is s�m,

and the SI unit of each term in the denominator is s�n.

It follows that

SI K½ � ¼ SI F sð Þ½ �sm�n: (18.39)

For example, if F sð Þ is the Laplace transform of a

voltage, m ¼ 2, and n ¼ 4, then SI F sð Þ½ � ¼ Vs and

SI K½ � ¼ Vsð Þ s2�4ð Þ ¼ Vs�1.

Exercise 18.9 In (18.38), let m ¼ 4; n ¼ 3.

What is the SI unit of b3? Of a2?

Exercise 18.10 In (18.38), m ¼ 3, n ¼ 5, and

F sð Þ is the Laplace transform of a current.

What is the SI unit of K?

There is an infinite number of functions of the form

given in (18.38), and the number we can tabulate is

finite. Fortunately, a function of the form given in

(18.38) can be expressed as a linear combination of

the s-domain entries in Table 18.2, after which the

inverse transform can be expressed as a linear combi-

nation of the corresponding time-domain entries. This

section describes how that is done.

We may write (18.38) in factored form as

F sð Þ ¼ K
s� z1ð Þ s� z2ð Þ � � � s� zmð Þ
s� p1ð Þ s� p2ð Þ � � � s� pnð Þ : (18.40)

The zeros z1; z2; � � � ; zmf g of the numerator

are called the zeros of F sð Þ and the zeros p1;f
p2; � � � ; png of the denominator are called the poles

of F sð Þ. Because the coefficients a1; a2; � � � ;f
an�1; b0; b1; � � � ; bm�1g are real, the zeros and poles

of F sð Þ either are real or occur in conjugate pairs. The

parameter K is real, constant, and independent of s. In

most applications, m< n. We treat that case first.

An expression of the form given in (18.38) with

n>m can be expanded in partial fractions. The form

of the partial-fraction expansion depends upon the

nature of the poles.
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18.7.1 Distinct Poles

If the poles p1; p2; � � � ; pn are distinct (if all are

different), we may write (18.38) as

FðsÞ ¼ A1

s� p1
þ A2

s� p2
þ � � � þ An

s� pn
: (18.41)

The partial-fraction coefficients A1; A2; � � � ; An

can be found using a method introduced by Heavi-

side.13 Multiplying both sides of (18.41) by the factor

ðs� p1Þ gives

FðsÞ s� p1ð Þ ¼ A1 þ A2 s� p1ð Þ
s� p2

þ � � � þ An s� p1ð Þ
s� pn

:

(18.42)

We let s ! p1 in (18.42) and obtain

A1 ¼ lim
s!p1

FðsÞ s� p1ð Þ½ � ;

where the limiting operation is necessary because the

denominator of FðsÞ contains a factor s� p1ð Þ. In

general, the partial-fraction coefficients for a function

of the form (18.38) having distinct poles are given by

Ak ¼ lim
s!pk

FðsÞ s� pkð Þ½ � ; k ¼ 1; 2; � � � ; n: (18.43)

In (18.40), we expressed both the numerator and the

denominator in factored form in order to define the

poles and zeros of a function. But it is unnecessary

to factor the numerator to obtain a partial-fraction

expansion.

Example 18.8 (distinct real poles) Obtain the

inverse Laplace transform of

VðsÞ ¼ p2p3 V0

s s� p2ð Þ s� p3ð Þ ;

where p2 ¼ �103 s�1; p3 ¼ �2	 103 s�1.

Solution: The poles p1 ¼ 0; p2 ¼ 103 s�1;

p3 ¼ 2	 103 s�1 are distinct, so we can expand

the function VðsÞ in partial fractions as

VðsÞ ¼ V1

s
þ V2

s� p2
þ V3

s� p3
:

We obtain the partial-fraction coefficients

using (18.43):

V1¼ lim
s!0

sVðsÞ½ �¼ p2p3V0

0�p2ð Þ 0�p3ð Þ¼V0;

V2¼ lim
s!p2

s�p2ð ÞVðsÞ½ �¼ p2p3V0

p2 p2�p3ð Þ¼�2V0;

V3¼ lim
s!p3

s�p3ð ÞVðsÞ½ �¼ p2p3V0

p3 p3�p2ð Þ¼ V0:

Thus

vðtÞ¼L�1 VðsÞf g¼L�1 V0

s
� 2V0

s�p2
þ V0

s�p3

� �

¼V0 1�2ep2 tþ ep3t½ �uðtÞ:

We almost never encounter cases where m> n in

(18.38),14 but occasionally, we encounter cases where

m ¼ n. If m ¼ n, long division yields

F sð Þ ¼ K
sn þ bn�1s

n�1 þ � � � þ b1sþ b0
sn þ an�1sn�1 þ � � � þ a1sþ a0

¼ K 1þ bn�1 � an�1ð Þsn�1 þ bn�2 � an�2ð Þsn�2 þ � � � þ b1 � a1ð Þsþ b0 � a0ð Þ
sn þ an�1sn�1 þ � � � þ a1sþ a0

� �
;

13After the British physicist Oliver Heaviside (1850–1925), who

contributed much to electrical engineering.

14The ideal differentiator described in Chapter 8 is rarely (if

ever) used in practice.

664 18 Laplace Transformation and s-Domain Circuit Analysis



which can be written

F sð Þ ¼ K

þ K0 s
n�1 þ b0n�2s

n�2 þ � � � þ b01sþ b00
sn þ an�1sn�1 þ � � � þ a1sþ a0

;

(18.44)

where

K0 ¼ K bn�1 � an�1ð Þ; b0i ¼
bi � ai

bn�1 � an�1

: (18.45)

Example 18.9 Obtain an expression for the

inverse Laplace transform of

Y sð Þ ¼ Ks

s� p
;

where p< 0.

Solution: By long division,

Y sð Þ ¼ K 1þ p

s� p

� 
:

Thus

y tð Þ ¼ Kd tð Þ þ Kpeptu tð Þ:

Exercise 18.11 The Laplace transform of a

current i tð Þ is

I sð Þ ¼ K
s4 þ b3s

3 þ b2s
2 þ b1sþ b0

s4 þ a3s3 þ a2s2 þ a1sþ a0
;

where b0 ¼ a0 ¼ 1; b1¼ 2s; b2 ¼ 3s2; b3 ¼ 1s3;

a1 ¼ 4s; a2¼ 2s2; a3¼ 6s3 and K¼50mAs.

Use long division to express I sð Þ in the form

given in (18.44). Give the values and units of

all of the parameters.

The fraction on the right of (18.44) has the form

given in (18.38), with m< n. The inverse transform of

F sð Þ in (18.44) is given by

f tð Þ ¼ Kd tð Þ

þ K0L�1 sn�1 þ b0n�2s
n�2 þ � � � þ b01sþ b00

sn þ an�1sn�1 þ � � � a1sþ a0

� �
:

(18.46)

In (18.46), m< n so the indicated inverse transform

can be obtained by factoring and expanding in partial

fractions as described above.

Exercise 18.12 Use the differentiation prop-

erty of the Laplace transformation to obtain the

inverse Laplace transform of the function Y sð Þ
in Example 18.9.

18.7.2 Complex-Conjugate Poles

Usually, it is easiest to treat complex-conjugate poles

in the same manner as distinct real poles. We may take

advantage of the fact that the partial-fraction coeffi-

cients for a pair of complex-conjugate poles must

themselves be complex conjugates, because the asso-

ciated inverse transform must be real.

Example 18.10 The Laplace transform of a

voltage is given by

VðsÞ ¼ K s� z1ð Þ s� z2ð Þ
s s� p1ð Þ s2 þ o0

2ð Þ ;

with

K ¼ 5 Vs�1; z1 ¼ 1 s�1; z2 ¼ 2 s�1;

p1 ¼ �3 s�1; o0 ¼ 1 s�1:

Obtain the inverse Laplace transform.

Solution: The partial-fraction expansion of

V sð Þ is
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VðsÞ ¼ K s� z1ð Þ s� z2ð Þ
s s� p1ð Þ s� jo0ð Þ sþ jo0ð Þ
¼ V1

s
þ V2

s� p1
þ V3

s� jo0

þ V3
�

sþ jo0

;

where

V1 ¼ K s� z1ð Þ s� z2ð Þ
s� p1ð Þ sþ jo0ð Þ s� jo0ð Þ

����
s¼0

¼ K �z1ð Þ �z2ð Þ
�p1ð Þ jo0ð Þ �jo0ð Þ

¼ 5V s�1ð Þ �1 s�1ð Þ �2 s�1ð Þ
3 s�1ð Þ 1 s�1ð Þ2 ¼ 10

3
V;

V2 ¼ K s� z1ð Þ s� z2ð Þ
s sþ jo0ð Þ s� jo0ð Þ

����
s¼p1

¼ 5V s�1ð Þ �4 s�1ð Þ �5 s�1ð Þ
�3 s�1ð Þ �3þ jð Þ s�1½ � �3� jð Þ s�1½ �

¼ 100V

�3ð Þ 9þ 1ð Þ ¼ � 10

3
V;

V3 ¼ K s� z1ð Þ s� z2ð Þ
s s� p1ð Þ sþ jo0ð Þ

����
s¼jo0

¼ 5V s�1 j� 1ð Þ s�1½ � j� 2ð Þ s�1½ �
j s�1ð Þ jþ 3ð Þ s�1½ � jþ jð Þ s�1½ �

¼ 5� j 15

�6� j 2
V ¼ j

5

2
V:

:

Referring to Table 18.2, we find

vðtÞ¼L�1 V1

s

� �
þL�1 V2

s�p1

� �

þL�1 V3

s�jo0

þ V�
3

sþjo0

� �
¼ V1þV2 e

p1tð Þu tð Þ
þ2 V3j jcos o0 tþ∡V3ð Þu tð Þ

¼ V1þV2e
p1tð Þu tð Þþ2 V3j jcos o0tþp

2

� �
u tð Þ

¼ V1þV2e
p1tð Þu tð Þ�2 V3j jsin o0 tð Þu tð Þ

¼ 10

3
1�ep1 tð Þ�5sinðo0tÞ

� �
uðtÞV;

p1¼�3s�1;o0¼1s�1

Example 18.11 The Laplace transform of a

voltage is given by

V sð Þ ¼ Ko0
2 s� z1ð Þ

s� p1ð Þ s2 þ 2ao0sþ o0
2ð Þ ;

with

K ¼ 5 Vs; z1 ¼ 1 s�1; p1 ¼ �2 s�1;

o0 ¼ 2 s�1; a ¼ 0:4:

Obtain the inverse Laplace transform.

Solution: We first obtain the zeros of the

quadratic factor:

p0 ¼
�2ao0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ao0ð Þ2�4o0

2

q
2

¼ o0 �aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 1

p� �
¼ �0:80þ j1:83ð Þ s�1:

Then write

V sð Þ ¼ Ko0
2 s� z1ð Þ

s� p1ð Þ s� p0ð Þ s� p0�ð Þ
¼ V1

s� p1
þ V0

s� p0
þ V0

�

s� p0�
:

We find

V1 ¼ Ko0
2 p1 � z1ð Þ

p1 � p0ð Þ p1 � p�0
� � ¼ �12:5V;

V0 ¼ Ko0
2 p0 � z1ð Þ

p0 � p1ð Þ p0 � p0�ð Þ ¼ 6:25� j1:36ð ÞV

¼ 6:40ff � 0:22ð ÞV:

Define

t1 ¼ � 1

Re p1ð Þ ¼ 0:50 s; t ¼ � 1

Re p0ð Þ
¼ 1:25 s;o ¼ Im p0ð Þ ¼ 1:83 s�1:

Thus

v tð Þ¼L�1 V1

s�p1

� �
þL�1 V0

s�p0
þ V0

�

s�p0�

� �
¼�V1e

�t=t1 þ2 V0j je�t=tcos otþ∡V0ð Þ�u tð Þ
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18.7.3 Repeated Poles

There are several ways of obtaining a partial-fraction

expansion of a transform having repeated poles, as

illustrated by the following example.

Example 18.12 (repeated real pole) Obtain the

inverse Laplace transform of

IðsÞ ¼ K ðs� z1Þ
s� p1ð Þ s� p2ð Þ2 ;

with

K ¼ 5 mA s�1; z1 ¼ 1 s�1;

p1 ¼ �1 s�1; p2 ¼ �2 s�1:

First Solution: The expansion is

K ðs�z1Þ
s�p1ð Þ s�p2ð Þ2¼

I1
s�p1

þ I2
s�p2

þ I3

s�p2ð Þ2

We multiply both sides of the expansion by

s� p1ð Þ and let s ¼ p1 to obtain I1. We multiply

both sides by s� p2ð Þ2 and let s ¼ p2 to obtain

I2. Thus

I1 ¼ K ðp1 � z1Þ
p1 � p2ð Þ2 ¼ �10mA;

I3 ¼ K ðp2 � z1Þ
p2 � p1ð Þ ¼ 15mA s�1

We again multiply both sides of the expansion

by s� p2ð Þ2 to obtain

K ðs� z1Þ
s� p1ð Þ ¼ I1 s� p2ð Þ2

s� p1
þ I2 s� p2ð Þ þ I3

To obtain I2, we differentiate this expression

with respect to s. This gives

K z1 � p1ð Þ
s� p1ð Þ2 ¼ d

ds

I1 s� p2ð Þ2
s� p1

" #
þ I2

We set s ¼ p2. The first term on the right

vanishes because the derivative has a factor

s� p2ð Þ. We do not need to carry out that dif-

ferentiation. Thus

I2 ¼ K z1 � p1ð Þ
p2 � p1ð Þ2 ¼ 10mA

The inverse transform is

iðtÞ ¼ ½I1 expðp1tÞ þ I2 expðp2tÞ
þ I3t expðp2tÞ�uðtÞ; (18.47)

with

I1 ¼ �I2 ¼ �10mA; I3 ¼ 15mA s�1;

p1 ¼ �1 s�1; p2 ¼ �2 s�1:

Second Solution: We factor out one of the

repeated factors to obtain

IðsÞ ¼ K

s� p2ð Þ
ðs� z1Þ

s� p1ð Þ s� p2ð Þ
� �

:

We expand the bracketed quantity in partial

fractions. This gives

IðsÞ ¼ K

s� p2ð Þ
B2

s� p2ð Þ þ
B1

s� p1ð Þ
� �

;

where

B1 ¼ p1 � z1
p1 � p2

¼ �2; B2 ¼ p2 � z1
p2 � p1

¼ 3:

Thus

I sð Þ ¼ K B2

s� p2ð Þ2 þ
K B1

s� p1ð Þ s� p2ð Þ :

We expand the last term. This gives

IðsÞ¼ KB2

s�p2ð Þ2

þKB1

D1

s�p1ð Þþ
D2

s�p2ð Þ
� �

;

(18.48)
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where

D1 ¼ 1

p1�p2
¼ 1 s�1; D2¼ 1

p2�p1
¼�1 s�1:

Thus

I sð Þ ¼ K B2

s� p2ð Þ2 �
K B1D1

s� p1ð Þ �
K B1D2

s� p2ð Þ

¼ I3

s� p2ð Þ2 þ
I1

s� p1ð Þ þ
I2

s� p2ð Þ ;

with

I1 ¼ KB1D1 ¼ �10mA; I2 ¼ KB1D2

¼ 10mA; I3 ¼ KB2 ¼ 15mA s�1

as obtained in the first solution above.

Third Solution: We obtain the coefficients I1; I3
as in the first solution above. Thus

I1 ¼�10mA; I3 ¼ 15mAs�1

We then rationalize the expression

K ðs� z1Þ
s�p1ð Þ s�p2ð Þ2 ¼

I1
s�p1

þ I2
s�p2

þ I3

s�p2ð Þ2

to obtain

K ðs� z1Þ ¼ I1 s� p2ð Þ2þI2 s� p1ð Þ s� p2ð Þ
þ I3 s� p1ð Þ

¼ I2 þ I1ð Þs2
þ I3 � 2I1p2 � I2p1 � I2p2ð Þs
þ I1p

2
2 þ I2p1p2 � I3p1

where coefficients of like powers of s must be

equal. Thus

I2 þ I1ð Þs2 ¼ 0 ) I2 ¼ �I1 ¼ 10mA

There are still other ways to obtain a partial-fraction

expansion. For example, if we write

K ðs� z1Þ
s� p1ð Þ s� p2ð Þ2 ¼

I1
s� p1

þ I2
s� p2

þ I3

s� p2ð Þ2
(18.49)

for three different values of s (other than the pole

values), we obtain three linear equations in the three

unknowns I1; I2; I3 which can be solved by standard

methods. When solving problems, use whatever

method you think easiest.

When done, always check your work, both dimen-

sionally and by evaluating the original function and

your expansion for a couple of values of s. In Example

18.12, we see from (18.47) that the unit of I1 and I2
must be A, and that the unit of I3 must be A s�1. So

the values obtained are dimensionally consistent. If we

evaluate (18.49) for a value of s (other than the pole

values), the two sides of the equation should agree. For

example, for s ¼ 0, we obtain

K ð�z1Þ
�p1ð Þ �p2ð Þ2 ¼

5mA s�1ð Þ �1 s�1ð Þ
1 s�1ð Þ 2 s�1ð Þ2 ¼ �1:25mA s

and

I1
�p1

þ I2
�p2

þ I3

�p2ð Þ2 ¼
�10mA

1 s�1
þ 10mA

2 s�1

þ 15mA s�1

4 s�2
¼ �1:25mA s

so the two sides agree.

In frequency-domain analysis, we transform a cir-

cuit under consideration from the time domain to the

frequency domain by replacing elements by their

impedances or admittances and currents and voltages

by their phasor representation. The transformed circuit

is effectively a dc resistive circuit comprised of com-

plex resistances and complex dc sources. The

corresponding complex-frequency-domain procedure

is essentially the same. We replace elements by their

generalized impedances (defined below) and currents

and voltages by their Laplace transforms. The trans-

formed circuit is effectively a dc resistive circuit com-

prised of complex resistances and complex dc sources

that are functions of complex frequency s.

The next section defines generalized impedance

and admittance and describes how a circuit is trans-

formed from the time domain to the s domain.
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18.8 Terminal Characteristics
and Equivalent Circuits

We obtain the s-domain terminal characteristic of a

linear element by taking the Laplace transform of the

time-domain terminal characteristic. For example, the

s-domain terminal characteristic of a capacitor is

obtained as follows:

L i tð Þ ¼ C
dv tð Þ
dt

� �
) I sð Þ

¼ sCV sð Þ � Cv 0�ð Þ: (18.50)

Table 18.3 gives the time-domain, frequency-

domain, and complex-frequency-domain terminal

characteristics for resistors, capacitors, and inductors.

The generalized impedance of a two-terminal linear

element is denoted by Z and defined by

Z sð Þ ¼ V sð Þ
I sð Þ ; (18.51)

where V sð Þ and I sð Þ are the Laplace transforms of the

terminal current and voltage, with initial values set to

zero; i.e., v 0�ð Þ ¼ 0 and i 0�ð Þ ¼ 0. From Table 18.3,

with v 0�ð Þ ¼ 0, the generalized impedance of a
capacitor is given by

V sð Þ
I sð Þ ¼ 1

sC
: (18.52)

From Table 18.3, with i 0�ð Þ ¼ 0, the generalized
impedance of an inductor is given by

V sð Þ
I sð Þ ¼ sL: (18.53)

and the generalized impedance of a resistor is given by

V sð Þ
I sð Þ ¼ R: (18.54)

The generalized admittance of a linear two-termi-

nal element or circuit is denoted by Y and defined as

Y sð Þ ¼ I sð Þ
V sð Þ ¼

1

Z sð Þ ; (18.55)

where V sð Þ and I sð Þ are the Laplace transforms of the

terminal current and voltage, with initial values set to

zero and Z sð Þ is the generalized impedance of the

element or circuit.

The generalized impedance (admittance) of a two-
terminal linear element is just the frequency-domain

impedance (admittance) of the element, with jo
replaced by complex frequency s.

Recall that we defined frequency-domain imped-

ance as a function of jo, rather than f . We did that in

anticipation of the definition of generalized imped-

ance, and in order to have a consistent notation for

impedance as a function of complex frequency, as a

function of angular frequency, and as a function of

frequency (Hz). Thus, for example, for an inductor

Z sð Þ ¼ sL; Z joð Þ ¼ joL; Z j2pfð Þ ¼ j 2p f L:

Furthermore, as we show below, everything you

have learned about finding equivalent circuits in the

Table 18.3 Terminal characteristics of linear elements

Element Time-domain Complex-frequency-domain Frequency-domain

Current as dependent variable

Resistor
i tð Þ ¼ v tð Þ

R
I sð Þ ¼ V sð Þ

R
~I ¼

~V

R

Capacitor i tð Þ ¼ C
dv

dt
I sð Þ ¼ s CV sð Þ � Cv 0�ð Þ ~I ¼ joC ~V

Inductor i tð Þ ¼ i 0�ð Þ þ 1
L

R t
0� v t0ð Þ dt0 I sð Þ ¼ V sð Þ

s L
þ i 0�ð Þ

s
~I ¼

~V

jo L

Voltage as dependent variable

Resistor v tð Þ ¼ R i tð Þ V sð Þ ¼ R I sð Þ ~V ¼ R ~I

Capacitor v tð Þ ¼ v 0�ð Þ þ 1
C

R t
0� i t

0ð Þ dt0 V sð Þ ¼ I sð Þ
s C

þ v 0�ð Þ
s

~V ¼
~I

joC

Inductor v tð Þ ¼ L
di

dt
V sð Þ ¼ s L I sð Þ � L i 0�ð Þ ~V ¼ jo L ~I

18.8 Terminal Characteristics and Equivalent Circuits 669



frequency domain you can apply in the s domain,

except s replaces jo. Generalized impedances in series

and parallel reduce to single, equivalent generalized

impedances just like frequency-domain impedances

do. All of the proofs or derivations are identical, except

that s replaces jo. Thus we give without proof the

results summarized in Fig. 18.7 and stated as follows:

Generalized impedances in series are additive.

Generalized admittances in parallel are additive.
The equivalent impedance of a parallel connection of

two impedances is as given in Fig. 18.7. Voltage

sources in series are additive and current sources in
parallel are additive.

Source transformations are done in the s domain

exactly as in the frequency domain, as illustrated by

Fig. 18.8. Thévenin and Norton equivalent circuits are

found using the same techniques one would use in the

frequency domain.

A principal difference between frequency-domain

(steady-state sinusoidal) analysis and complex-fre-

quency-domain analysis is that complex-frequency-

domain analysis can handle any Laplace-transformable

excitations, not just sinusoidal excitations. Another is

that complex-frequency-domain analysis can yield a

complete response (transient and steady-state), not just

steady-state response to sinusoidal or dc excitation.

Prices paid for this additional generality include a

slight increase in the complexity of transformed cir-

cuits (if the initial state is non-zero) and a somewhat

more difficult transformation of a response from the

s domain back to the time domain.15

18.9 Circuit Analysis in the s Domain

Frequency-domain circuit analysis usually begins by

transforming a circuit under study to the frequency

domain, where elements are represented by impe-

dances and currents and voltages are represented by

phasors. Similarly, s-domain circuit analysis usually

begins by transforming a circuit under study to the

s domain.

Unless initial voltages across capacitors and initial

currents through inductors are all zero, transforming a

circuit to the s domain can be slightly more complicated

than transforming the same circuit to the frequency

domain. For one thing, capacitors and inductors are repre-

sented in the s domain by generalized impedances and
associated initial-condition sources (see Table 18.3),

Vs (s)

Vs (s) =  Z (s) Is (s)

Is (s)
Z (s)

Z (s)

Vs (s)
Is (s) =

Z (s)

+
↔–

Fig. 18.8 Thévenin and Norton source models in the s domain

Z1(s)

V1(s)

V2(s)

Z1(s)

I1(s) I2 (s)
I (s)

Z2(s)

Z2 (s)

Z(s)

V (s)

Z(s)

Z (s) = Z1(s) + Z2 (s)

V (s) = V1(s) + V2 (s) I (s) = I1(s) + I2 (s)

⇒ ⇒

⇒ ⇒

Z1(s)Z2(s)

Z1(s) + Z2 (s)
Z (s) = 

+ –

+–

+
–Fig. 18.7 Illustrating how

impedances and voltage

sources in series and parallel

are reduced to equivalent

single impedances or sources

15In truth, frequency-domain analysis can be generalized

through the Fourier transformation, and resulting properties

and methods allow analysis of virtually any linear circuit and

transformable excitation, not just sinusoids. You will learn

about the Fourier transformation if you take a subsequent course

in signal processing or communication systems, where it is

favored over the Laplace transformation.
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and it is not always easy to determine the required

initial conditions. Also, capacitors and inductors can

each be represented in either of two ways, depending

upon whether the dependent variable is terminal volt-

age, as in mesh analysis, or terminal current, as in node

analysis. Table 18.4 gives the transformations one

would normally use, depending upon whether nodal or

mesh method are intended for subsequent analysis.

Usually (but not always), a generalized impedance in

series with a voltage source is most convenient for

mesh or loop analysis, and a generalized impedance

in parallel with a current source is most convenient for

node analysis, as suggested by Table 18.4. However,

the s-domain representations in each row are equiva-

lent, so you may use whichever you prefer.

Once a circuit has been transformed to the s domain,

analysis proceeds essentially as if the circuit were a

resistive circuit, where the resistances are functions of

complex frequency, and where currents and voltages

are represented by their Laplace transforms, and are

treated as if they were complex dc currents and vol-

tages that are functions of complex frequency.

Example 18.13 In Fig. 18.9(a), R1 ¼ 200O,
C ¼ 200 nF, R2 ¼ 10O, L ¼ 100mH, and

vS tð Þ ¼ V0 u tð Þ, with V0 ¼ 5V. Obtain an

expression for the voltage vC tð Þ.
Solution: Figure 18.9(b) shows the transformed

circuit, where the circuit elements have been

transformed according to Table 18.4.

Because vS tð Þ ¼ 0 for t< 0, no energy has

been delivered to the circuit before t ¼ 0. Thus,

vC 0�ð Þ ¼ 0; iL 0�ð Þ ¼ 0:

Applying Kirchhoff’s current law to the trans-

formed circuit gives

VC sð Þ � V0=s

R1

þ sCVC sð Þ þ VC sð Þ
R2 þ sL

¼ 0;

which yields

Table 18.4 Transformations for circuit analysis in the complex-frequency domain

Time domain Complex-frequency domain

Node transformations: current

is the dependent variable

Loop or mesh transformations: voltage

is the dependent variable

i (t)

v(t)

+

–

R RV (s)

+

–

I (s)

RV (s)

+

–

I (s)

i(t)

v (t)

+

–

C V (s)

I (s)
+

–

Cv (0–)
1

sC

v(0–)
s

1
sC

V (s)

I (s)
+

–

+
–

v (t)

i(t)
+

–

L V (s)

I (s)
+

–

sL
i(0–)

s
V(s)

I(s)
+

–

Li (0–)

sL

–
+
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VC sð Þ ¼ R2 þ sLð ÞV0

s R1LCs2 þ R1R2Cþ Lð Þsþ R1 þ R2½ � :

(18.56)

The voltage vC tð Þ is the inverse Laplace

transform of VC sð Þ. Before finding the inverse

transform, we determine whether the quadratic

factor in the denominator has real or complex-

conjugate roots. We write the quadratic factor as

R1LCs
2 þ R1R2Cþ Lð Þsþ R1 þ R2

¼ as2 þ bsþ c;

where

a ¼ R1LC; b ¼ R1R2Cþ L; c ¼ R1 þ R2:

We calculate

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

p
ffi 81:98mH;

which shows that the roots are real and distinct.

We find

s1; s2 ¼ �b� D

2a
) s1 ffi �2:30	 103 s�1;

s2 ffi �2:28	 104 s�1:

Thus (18.56) becomes

VC sð Þ ¼ K R2 þ sLð Þ
s s� s1ð Þ s� s2ð Þ ; K ¼ V0

R1LC

ffi 1:25	 106 A s�2;

which expands in partial fractions as

VC sð Þ ¼ V1

s
þ V2

s� s1
þ V3

s� s2
;

with

V1 ¼ KR2

s1s2
ffi 0:24V;

V2 ¼ K R2 þ s1Lð Þ
s1 s1 � s2ð Þ ffi 5:83V;

V3 ¼ K R2 þ s2Lð Þ
s2 s2 � s1ð Þ ffi �6:07V:

Thus,

vC tð Þ ¼ V1 þ V2e
�t=t1 þ V3e

�t=t2
� �

u tð Þ;
t1 ¼ � 1

s1
ffi 434 ms; t2 ¼ � 1

s2
ffi 43:9 ms:

Example 18.14 In Fig. 18.10(a), the op amp is

ideal, R ¼ 10 kO, C ¼ 100 pF, and k ¼ 0:586.

Find the response vout tð Þ to a step input

vin tð Þ ¼ V0 u tð Þ, with V0 ¼ 5V.

Solution: Figure 18.10(b) shows the transformed

circuit, where the Laplace transforms of voltages

are denoted by capital letters. Because the op

amp is ideal, Vp ¼ Vn. Because the excitation

equals zero for t< 0, the voltages across the

capacitors are both zero for t ¼ 0�. Replacing
the capacitors with their generalized impedances

and applying Kirchhoff’s current law to nodes 1

and p gives

sC V1�Vinð ÞþsC V1�Vp

� �þV1�Vout

R
¼0;

sC Vp�V1

� �þVp

R
¼0:

We eliminate V1 and use Vp ¼ Vn to obtain

st Vin þ Vp

� �þ Vout

2stþ 1
¼ stþ 1

st
Vp )

Vp ¼ st stVin þ Voutð Þ
s2t2 þ 3stþ 1

¼ Vn:

R1 R2 R1 R2

vS C L

vC VC (s)

iL

1
sC

sLV0

s

+
–

+
–

(a) (b)Fig. 18.9 See Example 18.13
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By voltage division,

Vn ¼ Vout

k þ 1
:

Thus,

st stVinþVoutð Þ
s2t2þ3stþ1

¼ Vout

kþ1

)Vout¼ kþ1ð Þs2t2
s2t2þ 2�kð Þstþ1

Vin:

The Laplace transform of the input voltage is

Vin ¼ L V0 u tð Þf g ¼ V0

s
;

so the Laplace transform of the output is

Vout ¼ V0 k þ 1ð Þs2t2
s s2t2 þ 2� kð Þstþ 1½ � :

The zeros of the quadratic factor are

s0; s
�
0 ¼

� 2� kð Þt�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� kð Þ2t2� 4t2

q
2t2

ffi �0:707� j0:707ð Þ	 106 s�1;

so we expand Vout sð Þ in partial fractions as

Vout ¼ V0 k þ 1ð Þs2t2
st2 s� s0ð Þ s� s0�ð Þ

¼ V0 k þ 1ð Þs
s� s0ð Þ s� s0�ð Þ ¼

V1

s� s0
þ V�

1

s� s0�
;

where we find that

V1 ¼ V0 k þ 1ð Þs0
s0 � s0�ð Þ ffi 3:96 1þ jð ÞV:

Thus the response is given by

vout tð Þ ¼ 2 V1j je�t=t0 cos o0 tþ yð Þu tð Þ;
where

2 V1j j ffi 11:21V; y ¼ ∡V1 ffi 0:785;

t0 ¼ � 1

Re s0ð Þ ffi 1:414 ms; o0 ¼ Im s0ð Þ

ffi 7:072	 105 s�1:

Figure 18.11 shows a graph of the output

versus time. As quick checks on the reasonable-

ness of the solution, we observe that the output

approaches zero as t ! 1, which is consistent

with the capacitive coupling to the source (dc

voltage gain ¼ 0). Also, at t ¼ 0, the output

jumps instantaneously to the peak value

k þ 1ð ÞV0, as is consistent with the fact that the

voltages across the capacitors cannot change

instantaneously (and vn ¼ vp).

+
–C C

R

R

R kR

v1

p

n

+

–

vin

Vin

vout

Vout
V1

p

nR

R kR

R

1
sC

1

(a)

(b)

sC

Fig. 18.10 See Example 18.14

0 1 2 3 4 5 6
–2

0

2

4

6

8

vout (t)(V)

t (μs)

Fig. 18.11 See Example 18.14
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Example 18.15 In Fig. 18.12, V0 ¼ 5V,

V1 ¼ 10V, R ¼ 1 kO, L ¼ 150mH, and

C ¼ 200 nF. The switch is moved from a to b

at t ¼ 0, having been at a for t< 0. Obtain an

expression for the voltage v tð Þ.
Solution: Before the switch is moved, the cir-

cuit is in dc steady state, the capacitor is an

open circuit, the inductor is a short circuit, the

circuit is a resistive voltage divider, and

v tð Þ ¼ RV0

2R
¼ V0

2
¼ 2:5V; t< 0:

Also, before the switch is moved, the cur-

rent i tð Þ is given by

i tð Þ ¼ V0

2R
¼ 2:5mA:

Therefore, the initial conditions are

vC 0�ð Þ ¼ V0 � vð0�Þ ¼ 2:5V ¼ vð0�Þ;
i 0�ð Þ ¼ 2:5mA:

Figure 18.13 shows the transformed circuit

for t > 0 , where we have used the node for-

mulations because we intend to use node anal-

ysis (Kirchhoff’s current law).

Let V¼V sð Þ¼L v tð Þf g and

VL ¼VL sð Þ¼ L vL tð Þf g. Kirchhoff’s current law
gives

1

R
V � V1

s

� 
þ sC V � V1

s

� 

þCv 0�ð Þ þ V � VL

R
¼ 0

and

VL � V

R
þ VL

sL
þ i 0�ð Þ

s
¼ 0:

Eliminating VL yields

where

b0 ¼ RV1 ¼ 1:00	 104 VO;

b1 ¼ CR2V1 þ LV1 � i 0�ð ÞRL
� CR2v 0�ð Þ ffi 2:63VO s;

b2 ¼ CRL V1 � v 0�ð Þ½ �
ffi 2:25	 10�4VO s2;

a0 ¼ 2R ¼ 2 kO;

a1 ¼ Lþ CR2 ¼ 0:35O s;

a2 ¼ CRL ¼ 3:00	 10�5 O s2:

The zeros of the quadratic factor in the denom-

inator are

+

+

–

–

V1

R

R

sL

V

I
s

s

(sC )–1

Cvc (0–) = Cv (0–)

i (0–)

VL

Vc

Fig. 18.13 See Example 18.15

V1 V0

vc R

R

L

C
v

a

b

i

+

+

–

–

+

–

Fig. 18.12 See Example 18.15

V sð Þ ¼ CRL V1 � v 0�ð Þ½ �s2 þ CR2V1 þ LV1 � i 0�ð ÞRL� CR2v 0�ð Þ½ �sþ RV1

s CRLs2 þ Lþ CR2ð Þsþ 2R½ �
¼ b2s

2 þ b1sþ b0
s a2s2 þ a1sþ a0ð Þ ;
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p; p� ¼ �a1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21 � 4a2a0

p
2a2

ffi 5:83� j5:71ð Þ 	 103 s�1:

Thus

V sð Þ ¼ b2s
2 þ b1sþ b0

a2s s� pð Þ s� p�ð Þ
¼ A1

s
þ A2

s� p
þ A2

�

s� p�

with

A1 ¼ b0
a2 �pð Þ �p�ð Þ ¼ 5V;

A2 ¼ b2p
2 þ b1pþ b0

a2p p� p�ð Þ ffi 1:25� j1:28ð ÞV:

Therefore

vðtÞ ¼
V0=2 ¼ 2:5V; t< 0

A1 þ 2
��A2

�� exp ��t=t
�

	cosðo0 tþ∡A2Þ; t> 0;

8><
>:

with

V0 ¼ 5V; A1 ¼ 5V;

2 A2j j ffi 3:57V;∡A2 ffi �0:80;

t ¼ � 1

Re pð Þ ffi 171 ms;

o0 ¼ Im pð Þ ffi 5:71	 103 s�1:

18.10 Checking Your Work

A thorough way to check a solution to a problem is to

work the problem a second time, using another

approach; for example, if you used node analysis

first, work the problem again using mesh or loop

analysis. Such thorough checks can be performed on

homework or later, in practice, but are impractical on

exams. Quick checks that can be used on exams are

checks on dimensional consistency and on agreement

with initial and final values (limit checks). You

should cultivate the habits of checking intermediate

results for dimensional consistency as you work

through a problem and of performing one or two

simple limit checks where possible. Space constraints

prohibit our showing such checks in every example,

but below, we give one example to illustrate the

process.

Example 18.16 Refer to Fig. 18.14(a), where

V1 ¼ 5V, V2 ¼ 10V, R ¼ 10 kO, L ¼ 10mH,

and C ¼ 50 nF. The switch is moved from V1

to V2 at t ¼ 0. Obtain an expression for the

voltage v tð Þ.
Solution: Figure 18.14(b) shows the transformed

circuit for t > 0.

At t ¼ 0�;

iL 0�ð Þ ¼ V1

R
; v 0�ð Þ ¼ 0:

For t> 0, vS tð Þ ¼ V2:

Kirchhoff’s current law gives

V sð Þ � VS sð Þ
R

þ V sð Þ
sL

þ iL 0�ð Þ
s

þ sCV sð Þ ¼ 0;

which yields

+

–

R

L CV1

+

–
V2

v (t)

iL +

–

V(s)

+

–

vS (t)

+

–

iL(0–)

s

1
sC

sL

R

Vs(s) =
V2

s
+
–

(a)

(b)

Fig. 18.14 See Example 18.16
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V sð Þ ¼ L sVS sð Þ � iL 0�ð ÞR½ �
RLCs2 þ Lsþ R

¼ L V2 � iL 0�ð ÞR½ �
RLCs2 þ Lsþ R

:

Because V sð Þ is the Laplace transform of a

voltage, the SI unit of V sð Þmust be V s. We find

SI V sð Þ½ � ¼SI L V2� iL 0�ð ÞR½ �½ �
SI RLCs2þLsþR½ � ;

SI L V2� iL 0�ð ÞR½ �½ � ¼ Vs

A

� 
V�A

V

A

� 

¼ V2 s

A
;

SI RLCs2
� �¼ V

A

� 
Vs

A

� 
As

V

� 
s�2

¼ V

A
; SI Ls½ � ¼ Vs

A

� 
s�1

¼ V

A
; SI R½ � ¼ O¼ V

A
;

SI RLCs2þLsþR
� �¼ V

A
;

SI V sð Þ½ � ¼ V2 s

A

V

A

� �1

¼ Vs:

Our expression for V sð Þ is dimensionally consis-

tent.

The roots of the denominator are a complex-

conjugate pair s0; s0
�, given by

s0; s0
� ¼ �b�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

p

2a
;

where

a ¼ RLC ¼ 5ms;

b ¼ L ¼ 10mH;

c ¼ R ¼ 10 kO:

For dimensional consistency, we must have

SI s0½ � ¼ SI
�b�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

p

2a

" #
¼ s�1:

We find

SI ac½ �¼SI R2LC
� �

¼ V

A

� 2
Vs

A

� 
As

V

� 

¼ Vs

A

� 2

¼ H2¼SI b2
� �

;

)SI
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2�4ac

ph i
¼SI b½ �;

SI
�b

2a

� �
¼SI

L

RLC

� �
¼ 1

OF
¼ V

A

As

V

� �1

¼ s�1:

:

So the expression for the roots is dimensionally

consistent.

We calculate

a ¼ RLC ¼ 5	 10�6 O s2;

b ¼ L ¼ 10mH ¼ 10�2 O s;

c ¼ R ¼ 10 kO

and

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

p
ffi j 447mH;

so

s0 ¼ �bþ D

2a

ffi �1þ j 44:7ð Þ 	 103 s�1

and

V sð Þ ¼ L V2 � iL 0�ð ÞR½ �
RLCs2 þ Lsþ R

¼ 1

RC

V2 � iL 0�ð ÞR
s� s0ð Þ s� s0�ð Þ

¼ V0

s� s0
þ V0

�

s� s0�
;

with

V0 ¼ 1

RC

V2 � iL 0�ð ÞR
s0 � s0�ð Þ ffi �j112mV:

We note that SI V sð Þ½ � ¼ V s requires

SI V0½ � ¼ V. We find
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SI V0½ � ¼ SI
1

RC

V2 � iL 0�ð ÞR
s0 � s�0
� �

" #

¼ V

A

As

V

� �1
V

s�1

� 

¼ s�1 V

s�1

� 
¼ V:

so our expression for the partial-fraction coeffi-

cient V0 is dimensionally consistent. From Table

18.2,

v tð Þ ¼ 2 V0j je�t=t cos o0 tþ∡V0ð Þu tð Þ;

with

2 V0j j ffi 224mV;

∡V0 ¼ �p
2
ffi �1:57;

t ¼ � 1

Re s0ð Þ ffi 1ms;

o0 ¼ Im s0ð Þ ffi 44:71	 103 s�1:

We note that SI v tð Þ½ � ¼ SI V0½ � ¼ V, as it

should be. As a final check, we compute the

initial and final values of the voltage. Both

should be zero. We find

v 0þð Þ ¼ 2 V0j j cos ∡V0ð Þ ¼ 2 V0j j cos p
2

� �
¼ 0;

v t ! 1ð Þ ¼ 0 because lim
t!1 e�t=t� � ¼ 0

There are two errors that are common in complex-

frequency-domain circuit analysis. One is made early,

when transforming a circuit to the s domain. The other

is made later, when expressing a current or voltage in

the time domain.

The early error is to define the transformed voltage

across or current through a capacitor or inductor as

only the voltage across or current through the asso-

ciated generalized impedance. Refer to Table 18.4 and

keep in mind that the initial-condition sources are part

of the transformed element. The late error is to write

the time-domain expression for a current or voltage as

if the current or voltage were zero for t< 0 even if that

is not the case. Keep in mind that an inverse transform

obtained using Table 18.2 is only the right half of a

function whose left half might be non-zero. In many

initial-value or switched-circuit problems, a current or

voltage of interest is two-sided, and an inverse trans-

form from Table 18.2 gives only the right half of the

result. We must supply the left half, either as an initial

value or as the result of analysis in the previous time

interval. The next example illustrates these remarks.

Example 18.17 Refer to Fig. 18.15(a), where

the switch is open for t< 0 and closed at t ¼ 0.

(a) Obtain an expression for the current iL tð Þ. (b)
Use that result to obtain an expression for the

voltage vL tð Þ across the inductor.
Solution: For t< 0, the circuit is in dc steady

state, and

iL 0�ð Þ ¼ 2V0

2R
¼ V0

R
:

To solve for the current for t> 0, we first

transform the circuit (with the switch closed) to

the complex frequency domain. Figure 18.15(b)

shows the transformed circuit. Note that the
transformed voltage VL sð Þ appears across both

the generalized impedance of the inductor and

the initial-condition source. Applying Kirchh-

off’s voltage law to the transformed circuit gives

Rþ sLð ÞIL sð Þ ¼ V0

s
þ LiL 0�ð Þ

¼ V0

s
þ LV0

R
; (18.57)

+

–

+–

V0
V0

R R
L

iL

vL VL(s)

IL(s)

sL

LiL(0–)
R

V0

s

+

–

+
+
–

–

+–

(a) (b)
Fig. 18.15 See Example

18.17
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so

IL sð Þ ¼ V0

s Rþ sLð Þ þ
LV0

R Rþ sLð Þ ;

which we may write as

IL sð Þ ¼ V0

Ls s� s1ð Þ þ
V0

R s� s1ð Þ ; s1 ¼ �R

L
:

Expanding the first term on the right in partial

fractions gives

IL sð Þ ¼ � V0

Ls1s
þ V0

Ls1 s� s1ð Þ þ
V0

R s� s1ð Þ :

From Table 18.2, the inverse transform is

iL tð Þ¼ � V0

Ls1
þ V0

Ls1
þV0

R

� 
exp � t

t

� �� �
u tð Þ;

t¼ L

R
: (18.58)

According to this expression, the current iL tð Þ is
zero for t< 0. But we know that

iL tð Þ ¼ V0

R
; t � 0:

Thus the correct expression for the current is

iL tð Þ¼
V0

R
; t�0;

� V0

Ls1
þ V0

Ls1
þV0

R

� 
exp � t

t

� �� �
; t>0:

8>><
>>:

(18.59)

(b) Although both (18.58) and (18.59) are cor-

rect for t> 0, the expression in (18.58) has a

jump discontinuity at t ¼ 0, whereas the expres-

sion in (18.59) is continuous. If we use (18.58)

in

vL tð Þ ¼ L
diL tð Þ
dt

to find the voltage vL tð Þ, we obtain an incorrect

result. The discontinuity at t ¼ 0 would give

rise to an impulse in the derivative of (18.58).

But the correct expression (18.59) is continu-

ous, and the correct expression for the voltage

across the inductor is

vL tð Þ ¼ L
diL
dt

¼ � 1

t
V0

Ls1
þ V0

R

� 
exp � t

t

� �
u tð Þ:

It might also be tempting to write

VL sð Þ¼ sLIL sð Þ

¼ sL � V0

Ls1s
þ V0

Ls1 s� s1ð Þþ
V0

R s�s1ð Þ
� �

:

But this is also incorrect, as it ignores the initial-

condition source, which must be included in the

s domain terminal characteristic for the induc-

tor. The correct expression is

VL sð Þ¼ sLIL sð Þ�LiL 0�ð Þ

¼ sL � V0

Ls1s
þ V0

Ls1 s� s1ð Þþ
V0

R s� s1ð Þ
� �

�LV0

R
:

18.11 s-Domain Transfer Functions

Figure 18.16 shows s-domain representations of a

two-port circuit driven by either of equivalent Théve-
nin and Norton source models. The circuit can be

described by four s-domain transfer functions, defi-

ned as follows:

Voltage Transfer Function

Hv sð Þ ¼ VL sð Þ
VS sð Þ : (18.60)

Current Transfer Function

Hi sð Þ ¼ IL sð Þ
IS sð Þ ¼

ZS sð Þ
ZL sð ÞHv sð Þ: (18.61)
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Transimpedance Transfer Function

Hz sð Þ ¼ VL sð Þ
IS sð Þ ¼ ZS sð ÞHv sð Þ: (18.62)

Transadmittance Transfer Function

Hy sð Þ ¼ IL sð Þ
VS sð Þ ¼

HvðsÞ
ZLðsÞ : (18.63)

In each definition above, VS and IS are the Laplace

transforms of the available input voltage and current,

respectively. An s-domain transfer function is deter-

mined with a source and load attached to the circuit

and depends in general upon the source and load
impedances.

If all initial conditions of a circuit, including those

of the associated source and load, are zero, the trans-
form Y sð Þ of the complete response of the circuit to an

excitation (current or voltage) X sð Þ is given by

Y sð Þ ¼ H sð ÞX sð Þ (18.64)

where H sð Þ is the appropriate s-domain transfer func-

tion for the circuit; e.g., if X and Y both represent

voltages, the appropriate transfer function is the volt-

age transfer function.

Extending transfer-function representations to

cases where initial conditions are non-zero is essen-

tially an application of superposition, where a transfer

function is defined for each initial-condition source,

and the complete response is then the sum of the

responses to the excitation and the initial-condition

sources. We do not pursue that generalization.

The definitions above of s-domain transfer func-

tions are essentially identical to those given in Chapter

15 for frequency-domain transfer functions, except

that phasor representations of the input and output

are replaced by Laplace transforms of the input and

output. In practice and in this book, both frequency-

domain and s-domain transfer functions are referred to

as transfer functions. Usually, which is meant is clear

from context or from whether frequency f or complex

frequency s is the independent variable. Where neces-

sary to avoid confusion, we specify explicitly one or

the other of frequency-domain or s-domain.

In general, the four transfer functions defined by

(18.60–18.63) exhibit different dependencies on com-

plex frequency s because of the various ways they

depend upon the source and load impedances. But if

the source and load impedances are resistive (real), the

four transfer functions differ from each other only by

real constant multipliers that are independent of s. For
example, if ZS ¼ RS and ZL ¼ RL, the current transfer

function Hi sð Þ and the voltage transfer function Hv sð Þ
are related as

Hi sð Þ ¼ IL sð Þ
IS sð Þ ¼

VL sð Þ=RL

VS sð Þ=RS
¼ RS

RL
Hv sð Þ; (18.65)

where the factor RS=RL is real, constant, and indepen-

dent of s.

Under certain conditions, a transfer function can

be practically independent of source and load impe-

dances. For example, the s-domain voltage transfer

function for a circuit having input impedance Zin and

output impedance Zout is practically independent of the
source impedance ZS and the load impedance ZL if

Zinj j � ZSj j and Zoutj j  ZLj j. Such independence

usually is desirable for reasons discussed in Chapter

15 in connection with f-domain transfer functions.

For economy, we often omit explicit dependence

on s when writing symbols for impedances, trans-

forms, and transfer functions. For example, we may

linear 
two-port
circuit

ZS IS ZS ZLVS

+

–

IL
IL

ZL VL

+

–

VL

linear 
two-port
circuit

← VS = ZS IS

IS = →
VS

ZS
(b) Norton source model(a) Thevenin source model

+
–

Fig. 18.16 Definitions of terms in (18.60–18.63)
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write Hy implying Hy sð Þ, IL implying IL sð Þ, and

so on.

The dimension of a transfer function is determined

by the dimensions of the associated input and output.

Voltage and current transfer functions are dimension-

less, but transadmittance and transimpedance transfer

functions have the dimensions of admittance (sie-

mens) and impedance (ohms), respectively:

SI Hv½ � ¼ 1; SI Hi½ � ¼ 1;

SI Hy

� � ¼ S;SI Hz½ � ¼ O: (18.66)

We omit the subscripts v; i; y; z in developments

that apply equally to all of the four transfer functions

defined above.

Example 18.18 Find the transadmittance trans-

fer function for the circuit in Fig. 18.17.

Solution: The transadmittance transfer function

is given by (18.63). We need to express the

(transformed) load current IL in terms of the

(transformed) source voltage VS. For t ¼ 0þ,
the current through the inductor and the voltage

across the capacitor are both zero because no

energy is provided to the circuit before t ¼ 0.

Figure 18.18 shows the transformed circuit.

Kirchhoff’s current law gives

VC � VS

RS
þ sCVC þ VC

RL þ sL
¼ 0;

which yields

VC ¼ RL þ sLð ÞVS

RSLCs2 þ ðRSRLCþ LÞsþ RL þ RS
:

By Ohm’s law

IL ¼ VC

RL þ sLð Þ

¼ VS

RSLCs2 þ ðRSRLCþ LÞsþ RL þ RS
:

Thus

Hy ¼ IL
VS

¼ 1

RSLCs2 þ RSRLCþ Lð Þsþ RS þ RL
:

(18.67)

Exercise 18.13 Use mesh analysis (Kirchhoff’s

voltage law) to find the transadmittance

transfer function for the circuit in Fig. 18.17

Exercise 18.14 Find the current transfer func-

tion, the voltage transfer function, and the

transimpedance transfer function for the circuit

in Fig. 18.17

Example 18.19 Obtain all four transfer func-

tions (see (18.60–18.63)) for the circuit shown

in Fig. 18.19. Assume the op amp is ideal.

vS

RS
RL

iL

vLC
L +

–

+
–

Fig. 18.17 See Example 18.18

VS

RS

VC

RL

IL

1

sC

sL
+
–

Fig. 18.18 See Example 18.18

+
–

R2

R1

vS

RS
vL

RL

C

n

p
o

+
–

Fig. 18.19 See Example 18.19

680 18 Laplace Transformation and s-Domain Circuit Analysis



Solution: The circuit is essentially a non-invert-

ing amplifier having voltage transfer function

Hv ¼ 1þ Z2
R1

; Z2 ¼ R2

1

sC
¼ R2

1þ sR2C
;

����
which gives

Hv¼1þ R2

R1 1þsR2Cð Þ¼
R1 1þsR2Cð ÞþR2

R1 1þ sR2Cð Þ
¼R1þR2þsR1R2C

R1 1þsR2Cð Þ ¼ R1þR2

R1

� 
1þsR0Cð Þ
1þsR2Cð Þ

¼ R2

R0

� 
1þsR0Cð Þ
1þsR2Cð Þ ; R

0 ¼R1 R2k :

From (18.65),

Hi¼RS

RL
Hv¼RSR2

RLR0
1þsR0C
1þsR2C

� 
; R0 ¼R1 R2k :

Similarly,

Hz ¼ VL

IS
¼ VL

VS=RS
¼ RSHv

¼ RSR2

R0
1þ sR0C
1þ sR2C

� 
; R0 ¼ R1 R2k

and

Hy¼ IL
VS

¼VL=RL

VS
¼Hv

RL
¼ R2

RLR0
1þsR0C
1þsR2C

� 
;

R0 ¼R1 R2k :

Exercise 18.15 For the circuit considered in

Example 18.19, show that HiHv ¼ HzHy. Is

this relation true in general?

Exercise 18.16 The available voltage at the

terminals of a certain source is given by

vS tð Þ ¼ V0 u tð Þ. The source is connected to

the input terminals of a certain circuit. The

resulting voltage across the load on the circuit

is given by vL tð Þ ¼ V0 1� exp �t=tð Þ½ �u tð Þ.
(a) Find the voltage transfer function for

the circuit. (b) The source impedance is

ZS sð Þ ¼ RS and the load impedance is ZL ¼
RL þ sL. Obtain expressions for the current,

transadmittance, and transimpedance transfer

functions.

Example 18.20 Refer to Fig. 18.20, where

R1 ¼ 15 kO, C1 ¼ 330 nF, R2 ¼ 180 kO, C2 ¼
110 nF, and vin tð Þ ¼ V0 exp �a tð Þu tð Þ, with

V0 ¼ 5V and a ¼ 100 s�1. Assume the op amp

is ideal and obtain an expression for the output

voltage vout tð Þ.
Solution: Because the input equals zero (is

shorted) for all t � 0, the capacitors are initially

uncharged. We transform the circuit to the com-

plex frequency domain to obtain the circuit

shown in Fig. 18.21, where

Z1 ¼ R1 þ 1

sC1

¼ 1þ sR1C1

sC1

; Z2 ¼ R2

1þ sR2C2

:

Because the initial conditions are zero, we

may use the voltage transfer function to obtain

the transform of the output. Thus

+

–

C1 R1

R2

C2

vin

vout

+
–

Fig. 18.20 See Example 18.20

Z1

Z2

Vin

Vout

+
–

+

–

Fig. 18.21 See Example 18.20
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Hv ¼ Vout

Vin
¼ � Z2

Z1

¼ � sR2C1

1þ sR2C2ð Þ 1þ sR1C1ð Þ

¼ Ks

s� p1ð Þ s� p2ð Þ ; (18.68)

where

K ¼ � 1

R1C2

ffi �606 s�1; p1 ¼ � 1

R1C1

ffi �202 s�1; p2 ¼ � 1

R2C2

¼ �50:5 s�1:

The Laplace transform of the input is

Vin ¼ V0

s� p3
;

where V0 ¼ 5V and p3 ¼ �a ¼ �100 s�1.

From (18.68), the Laplace transform of the

output is

Vout ¼ HvVin ¼ KV0s

s� p1ð Þ s� p2ð Þ s� p3ð Þ :

The partial-fraction expansion is

Vout ¼ KV0s

s� p1ð Þ s� p2ð Þ s� p3ð Þ

¼ V1

s� p1
þ V2

s� p2
þ V3

s� p3
;

where

V1 ¼ KV0p1
p1 � p2ð Þ p1 � p3ð Þ ffi 39:6V;

V2 ¼ KV0p2
p2 � p1ð Þ p2 � p3ð Þ ffi 20:4V;

and

V3 ¼ KV0p3
p3 � p1ð Þ p3 � p2ð Þ ffi �60:0V:

The output is given by

vout tð Þ ¼ V1e
p1t þ V2e

p2t þ V3e
p3t½ �u tð Þ

¼ 39:6ep1t þ 20:4ep2t � 60:0ep3t½ �u tð ÞV

where p1 ¼ �202 s�1, p2 ¼ �50:5 s�1, and

p3 ¼ �100 s�1:

Transfer-function representations are appropriate

for a circuit that can be represented as a linear time-

invariant circuit driven by a current or voltage source.

For example, consider the circuit in Fig. 18.22(a),

where the switch is moved from a to b at t ¼ 0, having

been at a for t< 0. We can deduce that all initial

conditions are zero because no energy is supplied to

the circuit before t ¼ 0. The source can be represented

by a step function and the circuit can be described by a

transfer function, as shown in Fig. 18.22(b). On the

other hand, the switched source driving the circuit in

Fig. 18.22(c) cannot be modeled as a voltage source

because the internal impedance of the switched source

is infinite for t< 0. As a result, we might be unable to

deduce the required initial conditions, in which case

linear time-
invariant 

circuit
load

(a) (b)

(c)

V0

V0

load

linear time-
invariant
circuit

load

a

b

+

–

+

–

+
–V0u(t) H (s)

Fig. 18.22 The switched

source in (a) can be modeled

as an independent voltage

source, as shown in (b). The

switched source in (c) cannot

be so modeled
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we must be given that information by some higher

authority (usually, a professor). And if any initial

condition is non-zero, using methods described in

this section might be awkward.

Analyses based upon transfer-function representa-

tions are most appropriate for linear, time-invariant

circuits initially at rest (where all initial conditions

are zero). As a rule, circuits having switched compo-

nents or non-zero initial conditions are best treated

using methods described in Chapter 10 or Section

18.9 in this chapter. For example, in Fig. 18.23,

where the switch is periodically moved from one posi-

tion to the other, the circuit is only piecewise linear.

The transfer function relating vC to vS depends upon

the switch position and the voltage vC immediately

after a switching is not necessarily zero.

18.12 Forced Response and Unforced
Response

Each term in the partial-fraction expansion for a

response can be attributed to either the transfer func-

tion or the excitation. Thus, if Y sð Þ denotes the

response of a transfer having transfer function H sð Þ
to an excitation X sð Þ and if the initial state of the

associate circuit equals zero, we may write

Y sð Þ ¼ H sð Þ X sð Þ ¼ terms due to poles of H sð Þ½ �
þ terms due to poles of X sð Þ½ �:

(18.69)

Response terms that arise from the poles of the

transfer function comprise the unforced response

and terms that arise from the poles of the excitation

comprise the forced response. Thus

L�1 terms due to poles of H sð Þ½ �
¼ Unforced response (18.70)

and

L�1 terms due to poles of X sð Þ½ �
¼ Forced response: (18.71)

Example 18.21 A circuit having a voltage

transfer function of the form

HvðsÞ ¼ K s� z1ð Þ
s� p1ð Þ s� p2ð Þ (18.72)

is initially at rest and driven by the excitation

vin tð Þ ¼ V0 cos o0 tð Þu tð Þ:

Obtain expressions for the unforced response

and the forced response.

Solution: The Laplace transform of the excita-

tion is

Vin sð Þ ¼ L V0 cos o0 tð Þu tð Þf g
¼ V0s

s2 þ o0
2
:

The Laplace transform of the response is

Vout sð Þ¼Hv sð ÞVin sð Þ

¼ K s�z1ð Þ
s�p1ð Þ s�p2ð Þ

V0s

s2þo0
2ð Þ : (18.73)

Expanding the right side in partial fractions

gives

Vout sð Þ ¼ A1

s� p1
þ A2

s� p2|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
Unforced�response terms

þ A3

sþ jo0

þ A3
�

s� jo0|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Forced�response terms

; (18.74)

where the unforced terms arise from the poles

p1; p2 of the transfer function and the forced

terms arise from the poles � jo0 of the input.

The complete (time-domain) response has the

form

vS

R1 R2

C vC
+
–

+

–

Fig. 18.23 A piecewise-linear circuit
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vout tð Þ ¼ A1e
p1t þ A2e

p2tð Þu tð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Unforced response

þ 2 A3j j cos o0tþ∡A3ð Þu tð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Forced response

: (18.75)

The partial-fraction coefficients are given by

A1¼K p1� z1ð Þ
p1�p2ð Þ

V0p1
p12þo0

2ð Þ ;

A2¼K p2� z1ð Þ
p2�p1ð Þ

V0p2
p22þo0

2ð Þ ;

A3¼ K �jo0�z1ð Þ
�jo0�p1ð Þ �jo0�p2ð Þ

V0 �jo0ð Þ
�jo0� jo0ð Þ

¼ �K jo0þz1ð ÞV0

2 jo0þp1ð Þ jo0þp2ð Þ : (18.76)

18.13 Impulse Response and Step
Response

By definition, the impulse response of a linear circuit

model is the response to a unit impulse excitation d tð Þ
and the step response is the response to a unit step
excitation u tð Þ. Conventionally, a step response is

denoted by g tð Þ and an impulse response by h tð Þ.
Figure 18.24 illustrates these definitions.

A step u tð Þ is dimensionless and a unit impulse d tð Þ
has the dimension of timeð Þ�1

. Neither the excitations

d tð Þ; u tð Þ nor the corresponding responses h tð Þ; g tð Þ are
physical. Nonetheless, a unit impulse or a unit step may

be applied mathematically to a circuit model as if each

were a current or a voltage. The response of a circuit to an

impulse current or voltage is proportional to the impulse

response and the response of a circuit to a step current or

voltage excitation is proportional to the step response.

A physical current or voltage cannot be infinite –

even for an instant. An impulse (a delta function) is an

idealization of a pulse or spike whose duration is much

shorter than any time constant in a circuit at hand. The

impulse response of a circuit indicates how the circuit

responds to such an excitation.

A physical current or voltage cannot change instan-

taneously, because of ubiquitous stray capacitance and

inductance. A step is an idealization of a current or

voltage that changes from one value to another in a

time much shorter than any time constant in a circuit at

hand. The step response of a circuit indicates how the

circuit responds to such an excitation.

Recall that

L d tð Þf g ¼ 1; L u tð Þf g ¼ 1

s
:

It follows that the Laplace transforms of the

impulse response and step response corresponding to

a transfer function H sð Þ are given by

h tð Þ ¼ L�1 H sð Þf g; g tð Þ ¼ L�1 H sð Þ
s

� �
(18.77)

A circuit can be described by any of four transfer

functions, so a circuit can have any of four step

responses and any of four impulse responses, depend-

ing upon which of current or voltage is taken as the

input and which of current or voltage is taken as the

output. Formally, we may define the four impulse

responses as

hv tð Þ ¼ L�1 Hv sð Þf g; hi tð Þ ¼ L�1 Hi sð Þf g;
hz tð Þ ¼ L�1 Hz sð Þf g; hy tð Þ ¼ L�1 Hy sð Þ
 �

; (18.78)

and the four step responses as

gv tð Þ ¼ L�1 Hv sð Þ
s

� �
; gi tð Þ ¼ L�1 Hi sð Þ

s

� �
;

gz tð Þ ¼ L�1 Hz sð Þ
s

� �
; gy tð Þ ¼ L�1 Hy sð Þ

s

� �
:

(18.79)

The forms of the four impulse responses and the

forms of the four step responses depend upon the

linear time-
invariant
circuit

linear time-
invariant
circuitexcitation response

(a) (b)

responseexcitation

u (t) g (t) h (t)d (t)

Fig. 18.24 Definitions of (a)

step response and (b) impulse

response
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nature of the source impedance and load impedance. If

the source impedance and load impedance are both

resistive, then the four impulse responses differ by

only a constant, frequency-independent factor, as do

the four step responses.

Example 18.22 The sources in Fig. 18.25(a)

are equivalent; i.e., iS ¼ vS=RS. Obtain expres-

sions for each of the four impulse responses

and the four step responses.

Solution: We transform the circuits to the s
domain, as shown in Fig. 18.25(b). The four

transfer functions are

Hv sð Þ ¼ RL

RSð1þ sRLCÞ þ RL
;

¼ 1

RS

RLRS

RS þ RL þ sRSRLC

¼ R

RS

1

1þ st
; R ¼ RSjjRL;

t ¼ RC; HiðsÞ ¼ RS

RL
HvðsÞ

Hz sð Þ ¼ RSHv sð Þ; Hy sð Þ ¼ 1

RL
Hv sð Þ:

From (18.78), the corresponding impulse

responses are

hv tð Þ ¼ R

RS

1

t
expð�t=tÞu tð Þ;

hi tð Þ ¼ RS

RL
hvðtÞ;

hz tð Þ ¼ RShvðtÞ;
hy tð Þ ¼ 1

RL
hvðtÞ:

The transforms of the four step responses

are

Gv sð Þ ¼ Hv sð Þ
s

¼ R

RS

1

s 1þ stð Þ ;

Gi sð Þ ¼ RS

RL
Gv sð Þ;

Gz sð Þ ¼ RSGv sð Þ;
Gy sð Þ ¼ 1

RL
Gv sð Þ:

The corresponding step responses are

given by

gvðtÞ ¼ R

RS
½1� expð�t=tÞ�uðtÞ;

giðtÞ ¼ RS

RL
gvðtÞ;

gzðtÞ ¼ RSgvðtÞ;
gyðtÞ ¼ 1

RL
gvðtÞ;

In this example, the source and load impe-

dances are resistive, so the four impulse

responses differ by only constant factors that are

independent of s, as do the four step responses.

In any particular application, only one of the four

possible input-output relations is of primary interest.

Often, the impulse response and step response of a

circuit are defined assuming (implicitly or explicitly)

that the input and output are both voltages. But that is

not always the case. There is almost always a preferred

description for a circuit, whether it be voltage transfer,

current transfer, transadmittance, or transimpedance.

RS

RSvS

VS

C RL

RL

vL

iL

RS iL

iL

RL

IL

RL

CiS

RSIS
1
sC

1
sC

+
–

+
–

+

–

VL

+

–

vL

+

–

VL

+

–

(b)

(a)

Fig. 18.25 See Example

18.22
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In practice, the preferred description is determined by

the specified function of the circuit. In textbook pro-

blems, the preferred description is implied by the man-

ner in which a problem is presented, as illustrated by

Fig. 18.26. For example, if it is given that the excitation

is a current and the response is a voltage, it is implied

that the preferred description is a transimpedance.

When we refer to the impulse response or the step

response of a circuit, we mean the impulse response or

step response corresponding to the preferred descrip-

tion. Thus, for example, the impulse response of a

voltage amplifier is given by hv tð Þ ¼ L�1 Hv sð Þf g,
where Hv sð Þ is the voltage transfer function for the

amplifier, and the impulse response of a current ampli-

fier is hi tð Þ ¼ L�1 Hi sð Þf g, where Hi sð Þ is the current

transfer function for the amplifier.

It is helpful to know the SI units of impulse and step

responses so we can check expressions for dimensional

consistency as we work our way through a problem.

The SI units of the four transfer functions are

SI Hv½ � ¼ 1; SI Hi½ � ¼ 1;

SI Hy

� � ¼ S; SI Hz½ � ¼ O: (18.80)

In general, the SI unit of the Laplace transform of a

function x tð Þ is given by

SI L x tð Þf g½ � ¼ SI x½ �SI t½ �: (18.81)

For example, if x tð Þ is a voltage, then SI X sð Þ½ � ¼V s. It

follows from H sð Þ ¼ L h tð Þf g that

SI H sð Þ½ � ¼ SI L h tð Þf g½ � ¼ SI h tð Þ½ �SI t½ �;

and thus that the SI unit of an impulse response is

given by

SI h tð Þ½ � ¼ SI H sð Þ½ �
SI t½ � : (18.82)

The Laplace transform of a unit step is 1=s, so the

SI unit of the Laplace transform of a step response is

given by

SI G sð Þ½ � ¼ SI
H sð Þ
s

� �
¼ SI H sð Þ½ �SI t½ �: (18.83)

From (18.81) and (18.83), the SI unit of a step

response is given by

SI g tð Þ½ � ¼ SI H sð Þ½ �: (18.84)

If the excitation and response have the same dimen-

sion, the transfer function is dimensionless, so the step

response is dimensionless and the dimension of the

impulse response is timeð Þ�1
.

Example 18.23 For the circuit in Fig. 18.27

(a), the excitation is defined as the available

current iS and the response of interest is the

voltage vC. Obtain expressions for the step

response and impulse response. Show that

your answers are dimensionally consistent.

Solution: The input–output relation is that of

a transimpedance. We redefine the excitation

and response as shown in Fig. 18.27(b). For

load load

linear
circuit 

linear
circuit 

load vL loadvS

vS

iS

iS

iL iL

linear
circuit 

linear
circuit 

+
–

+
–

+

–

vL

+

–

Hv, hv, gv Hz, hz, gz

Hi, hi, giHy, hy, gy

Fig. 18.26 The preferred

descriptions of a circuit

depend upon the dimensions

of the specified input and

output

686 18 Laplace Transformation and s-Domain Circuit Analysis



iS tð Þ ¼ u tð Þ, the current source is effectively an
open circuit for t< 0, so the initial charge on

the capacitor must be zero; i.e., vC 0�ð Þ ¼ 0.

Thus the transformed circuit is as shown in

Fig. 18.27(c). A source transformation yields

the simpler circuit in Fig. 18.27(d). By voltage

division,

Gz sð Þ ¼ 1= sCð Þ
Rþ RS þ 1= sCð Þ

RS

s
¼ RS

s 1þ stð Þ ;

t ¼ Rþ RSð ÞC:

As a quick check, we find

SI Gz sð Þ½ � ¼ SI
RS

s 1þ stð Þ
� �

¼ V s

A
;

in agreement with (18.83), which gives us con-

fidence in this intermediate result.

We expand Gz sð Þ in partial fractions and

take the inverse Laplace transform to obtain

Gz sð Þ ¼ RS

s 1þ stð Þ ¼
RS=t

s sþ 1=tð Þ
¼ RS

s
� RS

sþ 1=t

) gz tð Þ ¼ RS 1� e�t=t� �
u tð Þ;

t¼ RþRSð ÞC:

As a quick check, we find

SI gz tð Þ½ � ¼ SI RS 1� e�t=t� �
u tð Þ� �

¼ SI RS½ � ¼ V

A
;

in agreement with (18.84).

To obtain the impulse response, we replace

the source RS=s in Fig. 18.27(c) with RS. Thus

Hz sð Þ ¼ RS

1þ stð Þ ¼
RS

t
1

sþ 1=t
) hz tð Þ

¼ RS

t
e�t=tu tð Þ; t ¼ Rþ RSð ÞC:

As a quick check, we find

SI hz tð Þ½ � ¼ SI
RS

t
e�t=tu tð Þ

� �
¼ SI RS½ �

SI t½ � ¼ V

A s

¼ SI response½ �
SI excitation½ �SI t½ � ;

in agreement with (18.82).

Exercise 18.17 Obtain expressions for the

step response and impulse response of the cir-

cuit in Fig. 18.28, where the excitation is the

available voltage vS tð Þ and the response is the

load voltage vL tð Þ. Show that the expressions

are dimensionally consistent.

iS C
R

RS RS

RS

C
R

1
s

RS
s

1

sC

1

sC

R

vL

+

–

+

–

+

–

+
–G (s)

+

–

G (s)

u(t) g(t)

R + RS

(a) (b)

(c) (d)
Fig. 18.27 See Example

18.23

RLvS

C
vL

+
–

+

–
Fig. 18.28 See Exercise

18.17
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Example 18.24 Obtain the impulse response

and the step response corresponding to the volt-

age transfer function

Hv sð Þ ¼ k þ 1ð Þs2t2
s2t2 þ 2� kð Þstþ 1

; (18.85)

where t ¼ 1 ms and k ¼ 0:586.

Solution: The impulse response is given

by hv tð Þ ¼ L�1 Hv sð Þf g. The numerator and

denominator of the transfer function have the

same order, so we use long division to obtain

Hv sð Þ ¼ k þ 1ð Þ 1� 2� kð Þstþ 1

s2t2 þ 2� kð Þstþ 1

� �

The poles of the transfer function are

s0; s0
� ¼

� 2� kð Þt�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� kð Þ2t2 � 4t2

q
2t2

ffi �707� j707ð Þ 	 103 s�1;

so the partial-fraction expansion is

Hv sð Þ ¼ k þ 1ð Þ 1� 2� kð Þstþ 1

t2 s� s0ð Þ s� s0�ð Þ
� �

¼ k þ 1ð Þ 1� A1

s� s0
þ A1

�

s� s0�

� � �
;

where

A1 ¼ 2� kð Þs0tþ 1

t2 s0� s0�ð Þ ffi 707� j0:214ð Þ	 103 s�1:

Thus

hv tð Þ ¼ L�1 Hv sð Þf g ¼ kþ 1ð Þ

	
"
dðtÞ� 2 A1j jexp

�
� t

t0


cos o0 tþ y1ð Þu tð Þ

#
;

where

k þ 1 ¼ 1:586; A1j j ffi 707	 103 s�1;

y1 ¼ ∡A1 ffi �3:02	 10�4 ffi 0;

t0 ¼ � 1

Re s0ð Þ ffi 1:414 ms;

o0 ¼ Im s0ð Þ ffi 7:072	 105 s�1:

:

The SI unit of the impulse response is s�1, as

it should be (because the excitation and

response have the same dimension).

The Laplace transform of the step response is

given by

Gv sð Þ ¼ Hv sð Þ
s

¼ k þ 1ð Þs2t2
s s2t2 þ 2� kð Þstþ 1½ �

¼ k þ 1ð Þst2
s2t2 þ 2� kð Þstþ 1

¼ A2

s� s0
þ A2

�

s� s0�

where

A2 ¼ k þ 1ð Þs0
s0 � s0�

¼ 0:793þ j 0:793:

Thus

gv tð Þ ¼ L�1 Gv sð Þf g

¼ 2 A2j j exp � t

t0

� 
cos o0 tþ y2ð Þu tð Þ;

where

2 A2j j ffi 2:243; y2 ¼ ∡A2 ffi 0:785;

and

t0 ¼ � 1

Re s0ð Þ ffi 1:414 ms;

o0 ¼ Im s0ð Þ ffi 7:072	 105 s�1:

The step response is dimensionless, as it

should be (because the excitation and response

have the same dimension).

Impulse response, in particular, has important

applications in more advanced work. For example,

given the impulse response of a circuit, one can calcu-

late the response to any other excitation in the time

domain by a process called convolution, but such

topics are beyond our scope.
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18.14 Relation of s-Domain to
Frequency-Domain Transfer
Functions

An s-domain transfer function is the corresponding

frequency-domain transfer function with jo ¼ j2pf
replaced by s. For example,

H joð Þ ¼ K
1þ j f=f0
1þ j f=f1

¼ K
1þ jo=o0

1þ jo=o1

) H sð Þ ¼ K
1þ s=o0

1þ s=o1

¼ K
o1

o0

sþ o0

sþ o1

� 
:

Conversely, an frequency-domain transfer function

for a circuit can be obtained from the corresponding

s-domain transfer function by replacing s with

jo ¼ j2pf . For example,

H sð Þ ¼ K

1þ st
) H j2p fð Þ ¼ K

1þ j2p f t

¼ K

1þ j f=ft
; ft ¼ 1

2p t
:

It is largely for this reason that we chose to define

f-domain transfer functions as functions of jo or j2pf ,
rather than o or f .

Example 18.25 The f-domain transadmittance

transfer function for a certain circuit is

Hy j2pfð Þ¼ Ky 1þjf=f0ð Þ
1þjf=f1ð Þ 1þ2ajf

.
f2� f=f2ð Þ2

h i;

where the quadratic factor cannot be expressed as

a product of linear factors. Obtain the s-domain

transadmittance transfer function.

Solution: Because o ¼ 2pf , we may write the

f-domain transadmittance transfer function as

Hy joð Þ¼ Ky 1þjo=o0ð Þ
1þjo=o1ð Þ 1þ2ajo=o2þ jo=o2ð Þ2

h i:
We replace jo with s to obtain the s-domain

transadmittance transfer function

Hy sð Þ¼ Ky 1þs=o0ð Þ
1þs=o1ð Þ 1þ2a s

.
o2þ s=o2ð Þ2

h i

¼ K0
y sþo0ð Þ

sþo1ð Þ s2þ2ao2sþo2
2ð Þ ;

where

K0
y ¼

o1o2
2

o0

Ky

Exercise 18.18 Obtain the f-domain transfer

function corresponding to each s-domain trans-

fer function in Example 18.19.

18.15 s-Domain Models for Op Amps
and Basic Op-Amp Circuits

Using the frequency-domain description of an op amp,

we can find the responses of op-amp circuits to sinu-

soidal excitations or (by superposition) to excitations

composed of several sinusoids. Using s-domain mod-

els described in this section, we can find the response

of an op-amp circuit to any Laplace transformable

excitation.

From Chapter 17, the intrinsic frequency-domain

voltage transfer function for an op amp is of the form

m j2p fð Þ ¼ m0
1þ j f=f0

) m joð Þ ¼ m0
1þ jo=o0

:
(18.86)

where f0 is the intrinsic half-power bandwidth of the

op amp. It follows that the intrinsic s-domain voltage

transfer function for an op amp is of the form

m sð Þ ¼ m0
1þ s=o0

¼ o0m0
sþ o0

; o0 ¼ 2p f0:

But m0f0 ¼ fT , so the intrinsic voltage transfer function
for a non-ideal op amp is given by

m sð Þ ¼ oT

sþ o0

; o0 ¼ 2p f0; oT ¼ 2p fT : (18.87)
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Also from Chapter 17, the frequency-domain volt-

age transfer functions for an inverting amplifier, a non-

inverting amplifier, and a voltage follower are all of

the form

Hv j 2p fð Þ ffi Hv 0ð Þ
1þ j f=W

; W ffi fT
Hv 0ð Þj j ¼

fT
Av0

;

where Hv 0ð Þ ¼ �R2=R1 for an inverting amplifier,

Hv 0ð Þ ¼ 1þ R2=R1 for a non-inverting amplifier, and

Hv 0ð Þ ¼ 1 for a voltage follower. The corresponding

s-domain transfer functions are all of the form

Hv sð Þ ¼ Hv 0ð Þ
1þ s=oW

¼ Hv 0ð ÞoW

sþ oW
; oW ¼ 2pW:

But Hv 0ð Þj j ¼ Av0 and Av0oW ¼ oT , so

Hv sð Þ ¼

�oT

sþ oW
; inverting amplifier

oT

sþ oW
; non-inverting amplifier

oT

sþ oT
; voltage follower

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
;

oW ¼ 2pW; oT ¼ 2pfT : (18.88)

These expressions assume no loading; i.e., that the
source impedance is a negligible fraction of the ampli-

fier input impedance and the amplifier output imped-

ance is a negligible fraction of the load impedance.

These conditions are met in virtually all practical

applications.

Example 18.26 The dc voltage gain of a

certain op-amp based inverting amplifier is

Av 0 ¼ 100. The op amp is rail-to-rail and

the supply voltages are � 15V. The op-amp

slew rate and gain-bandwidth product are

SR ¼ 1V ms�1 and fT ¼ 1MHz, Respectively.

If linear operation is required, which of output

swing and slew rate limits the maximum

amplitude of a step input?

Solution: Denote the step input by

vin tð Þ ¼ V0 u tð Þ. Then

Vin sð Þ ¼ V0

s
:

The transfer function of the amplifier is

given by (18.88). If the amplifier operates lin-

early, the Laplace transform of the response is

Vout sð Þ ¼ Hv sð ÞVin sð Þ ¼ �oTV0

s sþ oWð Þ
¼ �Av0V0

s
þ Av0V0

sþ oW
;

which yields

vout ¼ �Av0V0 1� exp �oWtð Þ½ �u tð Þ
¼ �100V0 1� exp �oWtð Þ½ �u tð Þ:

The maximum output is � 100V0. For

linear operation, the output swing must be

confined to � 15V. Thus, for linear operation,

the maximum allowable amplitude of a step

input is

max V0j j ¼ 15V

100
¼ 150mV:

The derivative with respect to time (the rate

of change) of the response is

dvout
dt

¼ �oW Av0 V0 exp �oW tð Þu tð Þ
� Av0 V0 1� exp �oW tð Þ½ �d tð Þ

¼ �oW Av0 V0 exp �oW tð Þu tð Þ:
:

The maximum magnitude of the rate of

change occurs for t ¼ 0 and is given by

dvout
dt

����
����
max

¼ oW Av0 V0j j ¼ oT V0j j:

If the slew rate is not to limit the speed

of response (the rate of change of the output

voltage), it is necessary that

SR>oT V0j j ) V0j j< SR

oT
:

For the given parameter values, the maxi-

mum allowable amplitude of a step input is
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max V0j j ¼ SR

2p fT
¼ 1V ms�1

2p	 106s�1

¼ 106 Vs�1

2p	 106s�1
ffi 159mV:

Thus output swing limits the amplitude of a

step input (for linear operation).

18.16 Circuits in Cascade

Analysis in the s domain of two-port circuits in cas-

cade proceeds exactly as in the frequency domain,

only with frequency-domain impedances and transfer

functions replaced by their s-domain counterparts.

Exercise 18.19 Show that the voltage transfer

function for the circuit in Fig. 18.29 is

Hv ¼ VL

VS
¼ ZL

ZL þ Z4

� 
Z2

Z2 þ Z3

� 

	 Z1
Z1 þ ZS

� 
m1m2:

(18.89)

Then show that if both circuits are designed for

efficient voltage transfer, such that

ZLj j � Z4j j, Z2j j � Z3j j, and Z1j j � ZSj j, then
the overall voltage transfer function is (to a

good approximation)

Hv ffi m1m2: (18.90)

A product of transfer functions can be performed

in any order; e.g., H1H2 ¼ H2H1. But this mathe-

matical commutativity does not necessarily imply

that the associated physical circuits can be cascaded

in either order. For example, although the transfer

functions for linear models of a motor and an

amplifier driving the motor commute, the physical

motor and the physical amplifier do not. The motor

has a mechanical output and cannot drive an elec-

tronic amplifier.

Linear two ports might commute physically,
provided they are both described by either current

transfer functions or voltage transfer functions and

provided loading is negligible. But a cascade might

not live up to design specifications if the order of

circuits is changed. For example, if the passband

gain of one circuit is much different from that of the

other, reversing the order of the circuits might cause

one to exceed its allowable output swing or exceed its

output limit or slew rate. Linear two ports of different

kinds most likely do not commute; for example, a

current amplifier (current in, current out) can be fol-

lowed by a transimpedance amplifier (current in, volt-

age out), but not the other way ‘round, because a

current amplifier is not designed for efficient voltage

transfer at its input port.

In any event, there is rarely, if ever, any reason to

reverse the order of two physical circuits. If an appli-

cation requires a cascade of circuits, we would simply

design the circuits such that they provide the desired

transfer function when cascaded in the indicated

order.

Exercise 18.20 Show that the transfer func-

tion of the circuit in Fig. 18.30 equals m1 m2,
regardless of the order in which the (ideal)

voltage amplifiers are cascaded.

Exercise 18.21 Draw a circuit diagram, simi-

lar to that in Fig. 18.30, for two ideal current

amplifiers in cascade and give the transfer

function for the cascade. Would the transfer

function change if the order of the circuits

were reversed?

V1Z1

Z3 Z4
Z2

ZS
VS

+
– +

–
+
–

+

–

V2

+

–

VLZL

+

–
m1V1 m2V2Fig. 18.29 Voltage

amplifiers in cascade. See

(18.89) and (18.90)
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Exercise 18.22 Show that if loading is negli-
gible, the transadmittance transfer function of

the circuit in Fig. 18.31 is

Hy ffi m g:

Would the transfer function change if the

order of the circuits were reversed?

18.17 Poles, Zeros, and Pole-Zero Plots

The general form of a transfer function for an RLC

circuit is

H sð Þ ¼ Y sð Þ
X sð Þ ¼

bms
m þ bm�1s

m�1 þ � � � þ b1sþ b0
ansn þ an�1sn�1 þ � � � þ a1sþ a0

:

We limit our discussion to cases for which m � n.
A transfer function can be expressed in factored

form as

H sð Þ ¼ K
s� z1ð Þ s� z2ð Þ � � � s� zmð Þ
s� p1ð Þ s� p2ð Þ � � � s� pnð Þ ; (18.91)

where p1; p2; � � � ; pn are the finite poles of the transfer
function and z1; z2; � � � ; zm are the finite zeros. Poles

and zeros, if complex, occur in conjugate pairs.

A transfer function can also have poles or zeros at

infinity. For example,

H sð Þ ¼ K
s� z1ð Þ

s� p1ð Þ s� p2ð Þ

has one finite zero, two finite poles and one zero at

infinity, because

lim
s!1H sð Þ ¼ 0:

It can be shown that the total number of poles equals

the total number of zeros if poles or zeros at infinity

are counted. Henceforth, for economy, pole means

finite pole and zero means finite zero.
The poles and zeros of a transfer function can be

displayed as points on a complex plane called the

s plane. Such a display is called a pole-zero plot.

The abscissa for each point is the real part of the

associated pole or zero and the ordinate is the imagi-

nary part. Conventionally, a zero is represented by a

circle (○) and a pole by a cross (	). Multiplicities

greater than one are written in parentheses next to the

associated circle or cross.

Example 18.27 Draw a pole-zero plot for the

transfer function

V1

ZS

VS
+
–

+
–

+
–

+

–

V2

+

–

VL
ZL

+

–
m1V1 m2V2

Fig. 18.30 Ideal voltage

amplifiers in cascade

ZLZ4Z3

Z2
Z1

gV2

voltage amplifier transadmittance amplifier

IL

V1

ZS

VS
+
–

+
–

+

–

V2

+

–mV1

Fig. 18.31 A voltage

amplifier and transadmittance

amplifier in cascade
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H sð Þ ¼ Ks s� z1ð Þ
s� p1ð Þ2 s� p2ð Þ s� p2�ð Þ ;

where z1 ¼ 4 s�1, p1 ¼ �6 s�1, and p2 ¼
�3þ j 4 s�1.

Solution: There are two real zeros: z0 ¼ 0 and

z1 ¼ 4 s�1. There is one real pole p1 ¼ �6 s�1

having multiplicity 2. There is a complex-

conjugate pair of poles p2; p2
� ¼ �3� j4 s�1.

Figure 18.32 shows the pole-zero plot, where

the scale on each axis is 1 s�1 per division. The

constant K is independent of s and has no effect
on the pole-zero plot.

A pole-zero plot alone does not tell us what kind of

transfer function (e.g., voltage, current, transimpedance,

or transadmittance) it represents. That information, if

relevant, must be conveyed separately, possibly by spe-

cifying the value of the transfer function for a particular

value of s or by a statement such as “Fig. 18.32 shows

a pole-zero plot for the transadmittance of a certain

circuit.”

In discussions of pole-zero plots, we often refer to

the s plane in halves or quadrants, without explicit

reference to s, as illustrated by Fig. 18.33. Similarly,

we refer to the Re sð Þ axis and the Im sð Þ axis as the real
axis and the imaginary axis, respectively, and to the

point s ¼ 0 as the origin, again without explicit refer-

ence to s. For example, in Fig. 18.32, the pole p2 lies in

the left half-plane, the upper half-plane, and the sec-

ond quadrant. The zero z1 lies on the positive real axis.

There is a zero z0 at the origin. The double pole p1 lies

on the negative real axis. The poles are all in the left

half-plane. The zero z1 is in the right half-plane. The

pole p2 is in the upper half-plane and in the second

quadrant and the pole p2
� is in the lower half-plane and

the third quadrant.

For economy, we often use LHP for left half-plane

and RHP for right half-plane.

Exercise 18.23 Sketch neatly and label fully a

pole-zero plot for the transimpedance transfer

function

p2

p2*

–3

–4

4–6

4

z0 z1

Im(s) (s–1)

Re (s) (s–1)
p1(2)

Fig. 18.32 See Example 18.27

left 
half-plane

right 
half-plane

upper half-plane

lower half-plane

first
quadrant

third
quadrant

second
quadrant

fourth
quadrant

Im(s)

Im(s) Im(s)

Re (s) Re (s) Re (s)

Re (s)

Re (s)

Im (s) Im (s)

Fig. 18.33 s-plane
terminology
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Hz sð Þ ¼ K s� z1ð Þ s� z2ð Þ
s� p1ð Þ s2 þ 2 ao0sþ o0

2ð Þ ;

where K¼100Os�1, z1¼103 s�1, z2¼�z1,

p1¼�2	103 s�1, a¼0:4, ando0¼2	103s�1

A pole-zero plot is a graphical representation of

the associated s-domain transfer function, just as a

Bode plot is a graphical representation of the asso-

ciated f-domain transfer function. A pole-zero plot

determines the associated transfer function to within

a frequency-independent factor (e.g., K in Exercise

18.23), just as a normalized Bode plot determines

the associated transfer function to within a fre-

quency-independent factor. A pole-zero plot is use-

ful as an aid in visualizing effects of parameter

changes (which change pole and zero locations),

for studying or describing the stability or relative

stability of an associated circuit, and as a guide (in

design) to specifying the poles and zeros (the trans-

fer function) of a circuit.

It is usually difficult or impossible to draw pole-

zero plots to scale because the poles and zeros of a

transfer function can differ from one another by

orders of magnitude. However, this is not a serious

limitation on the usefulness of pole-zero plots as

conceptual aids in circuit analysis and design. In

subsequent sections, we discuss how various impor-

tant attributes of a circuit are described in terms of or

deduced from a pole-zero plot for the appropriate

transfer function.

18.18 Stability

A circuit model is stable if and only if every bounded

input produces a bounded output.16

The product of a transfer function H sð Þ and the

transform X sð Þ of an excitation can be expanded in

partial fractions as

Y sð Þ ¼ H sð ÞX sð Þ
¼ A1

s� p1
þ A2

s� p2
þ � � � þ An

s� pn|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Unforced terms from poles of H sð Þ

þ B1

s� q1
þ B2

s� q2
þ � � � þ Bm

s� qm|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Forced terms from poles of X sð Þ

:

(18.92)

Equation (18.92) assumes all poles are distinct.

Including multiple poles would clutter this discussion

without adding any significant generality.

As indicated by (18.92), terms arising from the

poles of the input comprise the forced response and

terms arising from the poles of the transfer function

comprise the unforced response. In this section, we are

concerned with only the unforced response.

Each real pole of a response transform gives rise to

a response term of the form

L�1 A

s� p

� �
¼ A0 exp ptð Þu tð Þ: (18.93)

Each complex-conjugate pair of poles of a response

transform gives rise to a response term of the form

L�1 A

s� p
þ A�

s� p�

� �
¼ 2 Aj jexp stð Þ cos o tþ∡Að Þu tð Þ;

p ¼ sþ jo:

(18.94)

Figure 18.34 depicts (on the left) responses of the

form given by (18.93) for a real pole p. If p< 0, (if the

pole lies in the LHP) the response decreases exponen-

tially and eventually vanishes. If p ¼ 0 (if the pole lies

on the imaginary axis) the response is a constant (for

t> 0). If p> 0 (if the pole lies in the RHP) the

response grows exponentially (is unbounded), and

the circuit is unstable.

Figure 18.34 depicts (on the right) responses of the

form given by (18.94) for a complex-conjugate pair of

poles p; p� ¼ s� jo for which Re pð Þ ¼ s. If s< 0,

the poles lie in the LHP and the response decreases

exponentially and eventually vanishes. If s ¼ 0, the

16There are several definitions of stability. The one given here is

called the BIBO (bounded-input-bounded output) definition and

is an appropriate definition for linear circuit models. Note that

no physical circuit can actually produce an unbounded output.

Mathematical studies of stability necessarily deal with circuit

models and thus with mathematical models of currents and

voltages.
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poles lie on the imaginary axis and the response is a

sinusoid (for t> 0). If s> 0, the poles lie in the RHP,

the response grows exponentially (is unbounded), and

the circuit is unstable.

Figure 18.35 further illustrates effects of pole loca-

tion on the form of the associated unforced term (for

non-repeated poles). A pole in the LHP (one having

negative real part) gives rise to a stable (decaying)

response. A pole in the RHP (one having positive

real part) gives rise to an unstable (growing) response.

The rate of decay or growth increases as the pole is

moved away from the imaginary axis (horizontally).

For a complex pole, the frequency of oscillation

increases as the pole is moved away from the real

axis (vertically).

If any pole p of a circuit lies in the RHP (if

Re pð Þ> 0), the response arising from that pole will

grow without bound, no matter what input is applied to

the circuit, and the circuit is unstable.17 Of course, no

physical current or voltage can be unbounded. In a

physical circuit, the response increases until limited by

an inherent nonlinearity or until one or more compo-

nents self-destruct. For example, the output of an op

amp in an unstable circuit configuration might simply

lock up at the supply voltage, regardless of the input.

If a non-repeated pole lies on the imaginary axis (if

the real part of the pole p equals zero), the associated

term in the unforced response is (for t> 0) either a

constant (if p ¼ 0) or a sinusoid (if p ¼ jo0 6¼ 0).

Physically, it is virtually impossible for the real part

of a pole to become and remain exactly on the imagi-

nary axis because a pole is a function of imprecise

circuit parameters that change (however slightly) with

temperature and age. As a practical matter, we cannot

be assured that the pole will not drift into the RHP, in

which case the circuit would become unstable. In most

applications, a circuit having one or more poles on or

very near the imaginary axis would be regarded as

insufficiently stable.

A multiple pole on the imaginary axis having multi-

plicity k and imaginary parto0 gives rise to an unforced

response term of the form tk�1 cos o0 tð Þu tð Þ, which
increases without bound, even if the real part of the

pole is exactly zero. But again, in most applications, a

circuit having one or more poles in the LHP but very

near the imaginary axis would be regarded as insuffi-

ciently stable.

A passive circuit cannot be unstable because a

bounded input cannot produce an unbounded (mathe-

matically) branch current or node voltage in a passive

circuit. If in the course of analyzing a passive RLC

circuit (one containing no dependent sources) you

obtain a pole having a positive real part, you have

made an error.

To be unstable, a circuit must have access to a

source of power other than the input. In electronic

circuits, such access is provided by components such

as transistors and op amps, which are energized by

power supplies distinct from the input. Such active

components are represented using dependent sources

in circuit models.

Unstable circuits can be useful, but an unstable

physical circuit cannot be linear because the response

of such a circuit is not linearly related to the excitation.

If the transfer function for a linear circuit model con-

tains a pole having a positive real part, we know

immediately that the model is at best valid for only a

finite time after the circuit is energized. This does not

v

t

v

t

t

t

v

t

t

v

v

v

o

o

o

o

o

o

Re( p) < 0
Im( p) = 0

Re( p) < 0
Im( p) > 0

Re( p) = 0
Im( p) > 0

Re( p) = 0
Im( p) = 0

Re( p) > 0
Im( p) = 0

Re( p) > 0
Im( p) > 0

Fig. 18.34 Qualitative graphs of the right sides of (18.93) and

(18.94), illustrating the condition Re pð Þ< 0 for stability

17One can cook up excitations whose zeros cancel (mathemati-

cally) one or more poles of a transfer function, but in the real

world, such cancellation is imperfect and all unforced terms are

present, regardless of the form of the excitation.
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necessarily mean the circuit is not operating correctly.

Some circuits, such as oscillators, limiters, and com-

parators, if modeled and analyzed as linear circuits,

must be unstable to operate as intended.

Example 18.28 Determine whether the circuit

shown in Fig. 18.36(a) is stable. The op amp is

ideal.

Solution: Figure 18.36(b) shows the circuit

transformed to the s domain. Let

ZC ¼ 1

sC
; Z4 ¼ 2RZC

2Rþ ZC
¼ 2R

2RCsþ 1
:

By voltage division,

Vp ¼ RVL

Rþ Z4
¼ 2RCsþ 1

2RCsþ 3
VL: (18.95)

The op amp is ideal, so Vn ¼ Vp. Applying

Kirchhoff’s current law at node n gives

Vp�VS

R
þVp�VL

R
¼0)2Vp�VS�VL¼0:

We use the right side of (18.95) for Vp in this

equation and obtain

2
2RCsþ1

2RCsþ3
VL�VS�VL¼0;

which yields

VL ¼ 2RCsþ 3

2RCs� 1
VS ) Hv sð Þ ¼ 2RCsþ 3

2RCs� 1
:

The voltage transfer function has a pole p ¼
2RCð Þ�1

in the RHP, so the circuit is unstable.

Im (s) = w

Re (s) = s

stable response
for Re(p) < 0

unstable response
for Re(p) > 0

faster oscillation
(complex poles)

faster decay faster growth

Fig. 18.35 Illustrating how

the character of a first-order or

second-order unforced

response depends upon pole

location

+
–

C

R

R

R

2R

vL
RL

RLVL

vS
VS

+
–

ZC

R

R

R

2R
p

n

(a) (b)
Fig. 18.36 See Example

18.28
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18.19 Pole-Zero Cancellation

Mathematically, it appears that a circuit having a RHP

pole can be stabilized by cascading the circuit with a

stable circuit having a RHP zero equal to the RHP

pole. Unfortunately, such cancellation is impossible

because the precision required to achieve perfect can-

cellation cannot be achieved with physical circuit

components. But even if perfect cancellation were

possible, such cancellation could not stabilize an

unstable physical circuit. For example, refer to

Fig. 18.37, where

Hv1 sð Þ ¼ K1

s� p1ð Þ ; Hv2 sð Þ ¼ K2 s� p1ð Þ
s� p2ð Þ :

The pole p2 is in the LHP but p1 is in the RHP. The

transfer function for the cascade is

Hv sð Þ ¼ Hv1 sð ÞHv2 sð Þ ¼ K1K2

s� p2
;

so it would appear that the cascade is stable. But such

is not the case for physical circuits. If the unstable

circuit is placed first in the cascade connection, as

illustrated by Fig. 18.37(a), its output (the input to

the second circuit) will grow exponentially, regardless

of what the second circuit does. So even if the output

of the second circuit (the overall output) could some-

how remain bounded, the intermediate current or volt-

age produced by the first circuit would grow until

limited by nonlinearity (or until the circuit self-

destructs). If the unstable circuit is placed second in

the cascade connection, as illustrated by Fig. 18.37(b),

its output (the overall output) will be unbounded

(mathematically), no matter what its input might be.

An unstable physical circuit cannot be made stable by

cascading it with a circuit having zeros equal to the
RHP poles of the unstable circuit.

The fact that an unstable circuit cannot be stabilized

by cascade pole-zero cancellation does not mean that

an unstable circuit cannot be stabilized by any means.

Indeed, many inherently unstable circuits (op amps,

for example) can be stabilized by negative feedback,

as illustrated by circuits treated in Chapter 17. You

will learn more about this subject if you take

subsequent courses in electronic circuits and feedback

control systems.

Although cascade cancellation is imperfect, and

cannot stabilize an unstable circuit, such cancellation

can improve the response of a stable circuit. We

pursue that topic in the next section.

18.20 Dominant Poles

The unforced component of the step response of a

circuit is regarded as the transient response of the

circuit. This section describes how a pole-zero plot

conveys important features of the transient response

of the associated circuit and how the pole-zero plot can

suggest ways to improve the transient response. We

limit this discussion to stable circuits having at least as

many poles as zeros.

The voltage transfer function represented by the

pole-zero plot in Fig. 18.38 has the form

Hv ¼ K

s� p1ð Þ s� p2ð Þ ;

p1 ¼ �1 s�1; p2 ¼ �10 s�1:

(18.96)

+

–

ZS
VS ZL VL

+

–

ZL VL

ZS
VS

H1

H1

H2

H2

+
–

+
–

(a)

(b)

Fig. 18.37 Illustrating that

an unstable circuit cannot be

stabilized by another circuit in

cascade
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The transform of the step response is given by

Gv ¼ K

s s� p1ð Þ s� p2ð Þ ¼
A0

s|{z}
Forced

þ A1

s� p1
þ A2

s� p2|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
Unforced

where

A0 ¼ K

p1p2
¼ K

10
; A1 ¼ K

p1 p1 � p2ð Þ ¼ �K

9
;

A2 ¼ K

p2 p2 � p1ð Þ ¼
K

90
:

The transient response (the unforced component of

the step response) has the form

gu tð Þ ¼ A1 exp � t

t1

� 
þ A2 exp � t

t2

� � �
u tð Þ;
(18.97)

where

t1 ¼ � 1

p1
¼ 1 s; t2 ¼ � 1

p2
¼ 0:1 s:

Figure 18.39 shows graphs of the first 1 s of the

transient response gu tð Þ (solid line) and of the term

g1 tð Þ ¼ A1 exp � t

t1

� 
u tð Þ; (18.98)

(dashed line). After a few tenths of 1 s, the

transient response and the term g1 tð Þ are virtually

indistinguishable.

Focus your attention on two aspects of the transient

response given by (18.97) and shown graphically in

Fig. 18.39:

• The larger time constant t1 is associated with the

pole p1 nearest the origin and determines the dura-

tion of the transient response. In this example,

t1 ¼ 10t2, so the second term in (18.97) influences

only about the first one-tenth of the transient

response.

• The larger partial-fraction coefficient A1 ¼ �K=9
is also associated with the pole p1 nearest the

origin and is ten times larger than the other coeffi-

cient A2. Thus the first term in (18.97) is initially

ten times larger and persists ten times longer than

the second.

So in brief, the first term in (18.97), associated with

the pole nearest the origin, largely determines the form

and duration of the transient response. The pole p1 is

the dominant pole of the transfer function Hv (or of

the associated circuit).

In this example, the pole p2 is ten times farther from

the origin than p1. If p2 were moved closer to the

origin but kept to the left of p1, then p1 would be less

dominant, but would still determine the duration of the

transient.

If the transient response of a circuit is too sluggish,

we might be able to speed it up by cancelling (approx-

imately) the dominant pole(s), making one or more

original poles or added poles dominant, as illustrated

by the next example.

Im(s) (s–1)

Re(s) (s–1)
–10 –1

p2 p1

Fig. 18.38 Pole-zero plot for the voltage transfer function

given by (18.96)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
–0.12

–0.1

–0.08

–0.06

–0.04

–0.02

0

t (s)

gu (t) g1 (t)

Fig. 18.39 Graphs of the transient response given by (18.97)

and of the dominant term given by (18.98)
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Example 18.29 For the circuit in Fig. 18.40,

the op amps are ideal, R1¼10kO, R2¼100kO,
C1¼1nF, and C2¼10nF. These values cannot

be changed, but we have access to all the inter-

nal connection points (nodes). The source

impedance is negligible and the load impedance

is effectively infinite. Construct a pole-zero plot

for the circuit, identify the dominant pole (if

any), and suggest a modification to the circuit

(an additional component) that would speed up

the transient response by canceling the domi-

nant pole.

Solution: The excitation and response are both

voltages. The circuit is a cascade of inverting

amplifiers. The voltage transfer function for the

cascade is

Hv ¼ R2

R1

� 2 p1p2
s� p1ð Þ s� p2ð Þ ; p1 ¼ � 1

R2C1

¼ �104 s�1; p2 ¼ � 1

R2C2

¼ �103 s�1:

Figure 18.41 shows the pole-zero plot. The

pole p2 is dominant and determines the duration

of the transient response. The duration of the

transient is approximately

� 5

p2
¼ 5ms:

We can speed up (shorten the duration of) the

transient by adding a zero to cancel the pole p2
and make p1 dominant.

In this case, there are several ways to add a

zero. One of the simplest is to add a capacitor in

parallel with one of the input resistors (either

R1); e.g., as shown in Fig. 18.42. The voltage

transfer function for the modified circuit is

Hv ¼ �C0

C1

p1 s� zð Þ
s� p1ð Þ s� p2ð Þ ; z ¼ � 1

R1C0

:

To cancel the pole p2, we specify z ¼ p2, or

1

R1C0

¼ 1

R2C2

) C0 ¼ R2C2

R1

¼ 100 nF;

and the transfer function becomes

Hv ¼ �C0

C2

p1
s� p1ð Þ ¼

K

s� p1ð Þ ; p1 ¼ � 1

R2C1

¼ �104 s�1; K ¼ �C0p1
C2

¼ 105 s�1:

The transform of the modified step response is

Gv ¼ K

s s� p1ð Þ ¼ � K

p1s
þ K

p1 s� p1ð Þ ;

so the modified transient response is

gv tð Þ¼ K

p1
exp � t

t1

� 
u tð Þ; t1¼� 1

p1
¼100ms:

The duration of the transient is decreased by

a factor of ten – from 5 ms to 500 ms.
Modifying a circuit to improve transient

response or certain other aspects of perfor-

mance is called compensation. Thus the circuit+

–

+

–

R1

R2

C1

R1v1

C2

R2

vin vout

Fig. 18.40 Two-pole circuit. See Example 18.29

Im(s) (s–1)

Re (s) (s–1)
–104 –103

p1 p2

Fig. 18.41 Pole-zero plot for the circuit in Fig. 18.40

+

–

+

–

R1

R2

C1 C2
C0

R1v1

R2

vin vout

Fig. 18.42 Circuit of Fig. 18.40, compensated to speed up the

transient response
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in Fig. 18.42 is a compensated version of the

circuit in Fig. 18.40.

Figure 18.43 Shows the transient response

before gB tð Þ½ � and after gA tð Þ½ � compensation.

The transient response of the compensated cir-

cuit is essentially over before the transient

response of the uncompensated circuit gets

started.

Exercise 18.24 Repeat Example 18.29, but

put the compensating capacitor in parallel

with the first-stage input resistor.

Identifying the dominant pole(s) of a circuit being

designed helps identify critical circuit parameters and

can suggest how to compensate the associated circuit

to improve the transient response. But do not get

overly enthralled with pole cancellation as a means

of improving transient response. For example, it might

seem possible (mathematically) to use an electric cir-

cuit to cancel a sluggish pole of an electric motor and

thereby improve the acceleration of the motor. How-

ever, if acceleration is limited primarily by inductance

and mechanical inertia, attempting to overcome these

problems electrically could lead to large currents that

damage the motor.

18.21 Pole-Zero Plots and Bode Plots

If we replace s with jo in an s-domain transfer function

H sð Þ, we obtain the corresponding frequency-domain

transfer function H joð Þ. Thus the imaginary axis in

the s plane is called the frequency axis, and values of

H sð Þ above the frequency axis are values of H joð Þ ¼
H j2pfð Þ. With a little practice, you will be able to

visualize important features of the frequency response

of a circuit by inspecting a pole-zero plot for the circuit.

Consider the transfer function

H sð Þ ¼ K s� zð Þ
s� p

; (18.99)

having one pole p and one zero z< 0. The frequency-

domain transfer function has the form

H j2p fð Þ ¼ K j2p f � zð Þ
j2p f � p

¼ Kz

p

1þ j f=fz

1þ j f
�
fp
; (18.100)

where

fz ¼ � z

2p
; fp ¼ � p

2p
:

Figure 18.44 shows pole-zero plots and Bode gain

plots for two pole locations relative to the zero.

In Fig. 18.44(a), fz ¼ 1Hz and fp ¼ 10Hz. In

Fig. 18.44(b), fp ¼ 1Hz and fz ¼ 10Hz.

Because zj j ¼ 2pfz and pj j ¼ 2pfp, the pole p and

the angular frequency op ¼ 2pfp lie on one circle

centered on the origin and the zero z and the angular

frequency oz ¼ 2pfz lie on another such circle, as

illustrated by the pole-zero plots in Fig. 18.44. To

visualize the Bode gain plot from the associated

pole-zero plot, imagine calculating gain at each step

of the way as you travel from the origin up the imagi-

nary axis. Consider the case z< p, illustrated by

Fig. 18.44(a). Initially, before you reach either circle,

the (asymptotic) gain is independent of frequency. As

you continue on, you encounter the zero frequency oz

fzð Þ first, at which point the gain begins to increase at

20 dB/decade. Then you encounter the pole frequency

op fp
� �

, at which point the asymptotic gain again

becomes independent of frequency. If p< z, you

encounter the pole frequency first, and the gain plot

steps down instead of up, as illustrated by Fig. 18.44(b).

With a slight modification, the visualization illu-

strated by Fig. 18.44 extends to higher order transfer

functions (circuits). Refer to Fig. 18.45, which shows a

t (s)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

–100

–90

–80

–70

–60

–50

–40

–30

–20

–10

0

gA (t) gB (t)

Fig. 18.43 Transient responses of the compensated gA tð Þ½ � and
uncompensated gB tð Þ½ � circuits treated in Example 18.29
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pole-zero plot and the corresponding Bode gain plot.

There is a zero on the real axis and complex-conjugate

poles p; p� on a circle having radius op ¼ pj j ¼ 10oz,

with fz ¼ 1Hz. Beginning at the origin and moving up

the imaginary axis, we encounter the zero frequency

first, at which point the (asymptotic) gain plot begins

to rise at 20 dB/decade. As we continue up the axis, we

subsequently encounter the pole frequency, at which

point the slope of the asymptotic plot decreases by

40 dB/decade, because there are two poles on the

p z

pz

(a) p > z

(b) p < z

–30

–20

–10

0

10

–10

0

10

20

30

Re(s)

Im (s)

wz

wp

Re (s)

Im (s)

wp

wz

A (dB)

A (dB)

0.01 0.1 1 10 100 1.103

f
fz

0.01 0.1 1 10 100 1.103

f
fp

Fig. 18.44 Pole location and

frequency response for a first-

order circuit. See (18.100)

Re (s)

Im (s)

p

z

p*

wz

wp

0.01 0.1 1 10 100 1.103
–20

–10

0

10

20

A (dB)

f
fz

Fig. 18.45 Pole location and frequency response for a second-order circuit
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circle having radius op. The slope of the asymptotic

plot above the frequency fp is � 20 dB=decade.

Example 18.30 Figure 18.46 shows (not to

scale) the pole-zero plot for a certain transfer

function. Draw the corresponding asymptotic

Bode gain plot.

Solution: We calculate the radii of the circles

passing through the poles and zeros:

p1j j ¼ �10pþ j 4pð Þ 	 103
�� ��s�1

¼ 2p103
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
52 þ 22

p
s�1 ffi 2p	 5390 s�1

) f1 ¼ p1j j
2p

ffi 5:39 kHz

p2j j ¼ �4pþ j 6pð Þ 	 102
�� ��s�1

¼ 2p102
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
22 þ 32

p
s�1 ffi 2p	 361 s�1

) f2 ¼ p2j j
2p

ffi 361Hz

zj j ¼ �6pþ j2pð Þ 	 10j js�1

¼ 2p	 10
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32 þ 12

p
s�1 ffi 2p	 31:6 s�1

) fz ¼ zj j
2p

ffi 31:6Hz

We cannot show the pole-zero plot to scale

because the poles and zero differ by two orders

of magnitude. We cannot show the circles on

the pole-zero plot for the same reason. But we

can picture the circles and their intersections

with the imaginary (frequency) axis in our

mind’s eye. Moving up the imaginary axis

from the origin, we encounter the zero fre-

quency fz ¼ 31:6Hz first, at which point the

gain begins to increase by 40 dB=decade

(because there are two zeros on the associated

circle). Next, we encounter the pole frequency

fp1 ¼ 361Hz, and the slope of the asymptotic

plot decreases by 40 dB=decade, so the gain

becomes independent of frequency. Finally,

we encounter the pole frequency fp2 , and from

that point on, the gain decreases by

40 dB=decade. Figure 18.47 shows the asymp-

totic (dotted line) and actual (solid line) Bode

gain plots. The problem statement did not

specify the dc gain, so the Bode plots assume

a dc gain of unity (zero dB) and are correct to

within a frequency-independent scale factor.

The graphical method described and illustrated

above is essentially a shortcut equivalent to forming

H j2pfð Þ in standard form and constructing the asso-

ciated Bode plot in the usual way.

2
p

Re (s)

Im (s)

*

1
p

1
p

*

2
p

z

*z

( )
( )

( )

3 -1

1
2 -1

2
-1

10 4 10 s

4 6 10 s

6 2 10 s

p j

p j

z j

π π

π π

π π

= − + ×

= − + ×

= − + ×

Fig. 18.46 See Example 18.30
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Fig. 18.47 See Example 18.30
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18.22 Problems

Section 18.4 is prerequisite for the following

problems.

P 18.1 If i tð Þ represents a current, what is the SI unit of
L i tð Þf g?

P 18.2 Let V sð Þ denote the Laplace transform of a

voltage and use the defining integral to show that

SI L�1 V sð Þf g� � ¼ V.

P 18.3 If V sð Þ is the Laplace transform of voltage

and I sð Þ is the Laplace transform of a current, what is

the SI unit of V sð Þ=I sð Þ?
P 18.4 Which of the following functions have (one-

sided) Laplace transforms? Explain your answers.

(a) t
t

� �5
e�t=tu tð Þ; t> 0 (b) eo t�t0ð Þ2u tð Þ; o> 0

(c) cosh o tð Þu tð Þ; o<0 (d) sinh o tð Þu tð Þ; o<0

(e) cos o2t2ð Þu tð Þ (f) sin o2t2ð Þu tð Þ
(g) 103t=tu tð Þ; t>0

(h) eo tð Þ4u tð Þ; o> 0 (i) ðeo2t2Þ�3u tð Þ

Section 18.5 is prerequisite for the following

problems.

P 18.5 Use step functions and impulses to describe

each function in Fig. P 18.1. The strength of each

impulse is the product of 1 ms and the length of the

arrow representing the impulse.

P 18.6 Use a sketch to show that for Dt sufficiently
small,

u tð Þ � u t� Dtð Þ
Dt

ffi d tð Þ

Then use this approximation and another sketch to

show that d ktð Þ ¼ k�1d tð Þ.
P 18.7 Simplify each function to the extent possi-

ble. Assume t0 > 0

(a) aðtÞ ¼ e� t�t0ð Þ=t cos o tð Þ� sin o tð Þ½ � ad tð Þ� I0u tð Þ½ �
(b) b tð Þ ¼ Re 3� j4ð Þejotf g 2u tð Þ � bd t� t0ð Þ½ �
(c) c tð Þ ¼ 10 cos o tð Þ c1d tð Þ þ c2d t� t0ð Þþ½

c3d t� 2t0ð Þ þ c4d t� 3t0ð Þ�
o ¼ 2pf0; f0 ¼ 1 kHz; t0 ¼ 250 ms;

(d) d tð Þ¼ u tð Þ � u t� 5t0ð Þ½ � d t� t0ð Þ þ d t� 4t0ð Þ½
þd t� 6t0ð Þ�

(e) e tð Þ ¼ u 3t� 6t0ð Þd t� 3t0ð Þ
P 18.8 In Fig. P 18.2, the inductors are identical.

The switch is opened at t ¼ 0, having been closed for

t< 0. Obtain expressions for the voltages vI tð Þ; v1 tð Þ;
vR tð Þ; v2 tð Þ.

P 18.9 In Fig. P 18.3, the voltages v1 tð Þ; v2 tð Þ; v3 tð Þ
are all zero for t< 0. The switch is closed at t ¼ 0.

Obtain expressions for the current i tð Þ and the voltages
v1 tð Þ; v2 tð Þ; v3 tð Þ.

P 18.10 Complete the indicated operations.

(a)
d

dt
VS 1� cos o0tð Þ½ �u tð Þf g

(b)
d

dt
VS cos o0tð Þ cos o1tð Þu tð Þf g

(c)
d

dt
VS expð�t=tÞ cos o0tþ yð Þ u tð Þ � u t� t0ð Þ½ �f g

(d)
d

dt
u t� t1ð Þu t2 � tð Þ½ �; t2 > t1 > 0

(e)
d

dt
VS t=tð Þ2 expð�t=tÞ cos o0tþ yð Þu tð Þ
n o

(f)
d

dt

P3
n¼1 VnexpðsntÞcosðontÞuðtÞ

h i
(g)

Ð1
�1 VSexpð�t=tÞ cos o0tð Þd tð Þdt

(h)
Ð1
�1 VSexpð�t=tÞ sin o0tð Þd tð Þdt

(i)
Ð1
�1 VSexpð�t=tÞ cos o0tþ yð Þd tð Þdt

(j)
Ð1
�1 u t� t0ð Þ½ �u t� t2ð Þ�d t� t1ð Þdt; t2 > t1 > t0

(k)
Ð t
0
d t0 � t0ð Þdt0

(l)
Ð1
�1 VSexpð�t=tÞd t� t0ð Þdt

(m)
Ð1
�1 VSexpð�t=tÞ cos o tð Þd t� t0ð Þdt

Section 18.6 is prerequisite for the following

problems.

P 18.11 Show that if L f tð Þf g ¼ F sð Þ then

L t f tð Þf g ¼ � dF sð Þ
ds

P 18.12. Refer to Problem P 18.11. Show that

L tn f tð Þf g ¼ �1ð Þn d
nF sð Þ
dsn

P 18.13 Derive the integration property of the

Laplace transformation.
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P 18.14 Use the tables in the text to obtain each of

the following transforms, where L f tð Þf g ¼ F sð Þ:
(a) L Ð t�t0

0� f t0ð Þdt0
 �
(b) L e�at

Ð t
0� cos o t0ð Þdt0
 �

(c) L d

dt
t f tð Þ½ �

� �
(d) L Ð t

0� f t0�t0ð Þu t0�t0ð Þdt0
 �
(e) L cos o tþ yð Þ f tð Þf g (f) L t=tð Þ cos o tð Þu tð Þf g
(g) L d

dt
sin o tð Þ f tð Þ½ �

� �
(h) L cosh t=tð Þ f tð Þgf

(i) L t=tð Þexpð�t=tÞu tð Þf g
(j) L t� t0Þ=tð �exp½� t� t0ð Þ=t�u t� t0ð Þ½ gf
(k) L t=tð Þ cos otþ yð Þu t� t0ð Þf g
(l) L t=tð Þ2expð�t=tÞ cos otþ yð Þu tð Þ

n o
(m) L t=tð Þad t� t0ð Þf g
(n) L d

dt
t=tð Þexpð�t=tÞ cos otþ yð Þu tð Þ½ �f g

� �
P 18.15 Below, t is time; t; t0; t1 are positive con-

stants having the dimension of time; o 0 is a constant

having the dimension of timeð Þ�1
; and y is an angle

in radians. Obtain the Laplace transform of each func-

tion. Simplify each to the extent possible. Show that

each transform has the dimension of time.

(a) ðt=tÞ u tð Þ (b) o0 t cos o0tþ yð Þu tð Þ
(c) o0 t cos

2 o0 tþ yð Þu tð Þ (d) o0 t sin o0 tþ yð Þu tð Þ
(e) sin2 o0 tþ yð Þu tð Þ (f) sin o0 tþ yð Þt d tð Þ
(g) sinh t=tð Þu tð Þ (h) cosh t=tð Þu tð Þ
(i) t=tð Þ sinh t=tð Þu tð Þ
(j) t=tð Þ cosh t=tð Þu tð Þ (k) sinh2 t=tð Þu tð Þ
(l) cosh2 t=tð Þu tð Þ (m) cosh t�t0

t

� �
u t� t0ð Þ

(n)
d

dt
t sinh t=tð Þu tð Þ½ �

(o) t
d

dt
t=tð Þ cosh t=tð Þu tð Þ½ �

(p) ½ t� t0=tð Þ� cosh½ t� t0=tð Þ�u t� t0ð Þ
(q) t

d

dt
sin2 o0 tþ yð Þu tð Þ� �

(r) t
d

dt
½ t� t0=tð Þ� cosh½ t� t0=tð Þ�u t� t0ð Þ½ �

(s) t
d

dt
o0 t cos o0tþ yð Þu tð Þ½ �

(t) exp½� t� t0ð Þ=t� sin o0 tð Þu t� t1ð Þ
(u) 1

t

Ð t
0� cosh t0=tð Þdt0� �

u tð Þ
(v) dðtÞÐ t

0� sinh t0=tð Þdt0

(w)
d

dt
expð�t=tÞu tð Þ

ðt
0�

cos o0 t
0ð Þdt0

� �

(x)
d

dt
expð�t=tÞ cos o0 tð Þu tð Þ

ðt
0�

sin o0 t
0ð Þdt0

� �

(y)
d

dt
texpð�t=tÞsin o0tð Þu tð Þ

ðt
0�
cosh o0t

0ð Þd t0ð Þdt0
� �

Section 18.6 is prerequisite for the following

problems.

P 18.16 In the following transforms,

s1 ¼ �1 s�1; s2 ¼ �2 s�1; s3 ¼ �3 s�1;

K ¼ 1V s; o0 ¼ 1 s�1; a ¼ 0:5

Expand in partial fractions and obtain the inverse

transform.

(a)
Ko0

2 s� s1ð Þ
s s� s2ð Þ s� s3ð Þ (b)

Ko0
2

s s� s1ð Þ (c)
Ks s� s1ð Þ

s� s2ð Þ s� s3ð Þ
(d)

Ko0
3

s� s1ð Þ s� s2ð Þ s� s3ð Þ (e)
Ko0

3

s s2 þ 2ao0sþ o0
2ð Þ

(f)
Ko0 s�s1ð Þ s�s2ð Þ

s�s3ð Þ s2þ2ao0sþo0
2ð Þ (g)

Ko0 s�s1ð Þ2
s2þ2ao0sþo0

2ð Þs
(h)

Ko0
4

s2 s� s1ð Þ2 (i)
Ko0

3 s� s1ð Þ
s� s2ð Þ2 s� s3ð Þ2

(j)
Ko0

2 s� s1ð Þ2
s� s2ð Þ2 s2 þ 2ao0sþ o0

2ð Þ

P 18.17 In each function below, K ¼ 5V s,

sn ¼ �n s�1, o0 ¼ 1 s�1, and a ¼ 0:5. Obtain the

inverse Laplace transform.

(a)
Ko0

2 s� s1ð Þ s� s5ð Þ
s s� s3ð Þ s� s4ð Þ s� s2ð Þ

(b)
Ko0s

2

s� s1ð Þ s2 þ 2ao0sþ o0
2ð Þ

(c)
K s� s1ð Þ2

s� s1ð Þ2þ2ao0 s� s1ð Þ þ o0
2

(d)
Ks1

2 s2 þ 2ao0sþ o0
2ð Þ

s s� s1ð Þ2 s� s2ð Þ

(e)
Ks s� s1ð Þ s� s2ð Þ

s� s3ð Þ s� s4ð Þ s� s5ð Þ

(f)
Ks1o0

2 s2 þ 2ao0sþ o0
2ð Þ

s s� s1ð Þ2 s� s2ð Þ s� s3ð Þ

(g)
Ko0s

2 s� s2ð Þ
s� s1ð Þ2 s2 þ 2ao0sþ o0

2ð Þ

(h)
Ko0

2 s� s1ð Þ2 s� s5ð Þ2
s s� s3ð Þ2 s� s4ð Þ2 s� s2ð Þ

(i)
Ko0

2 s� s1ð Þ2 s� s2ð Þ2
s s� s3ð Þ s2 þ 2ao0sþ o0

2ð Þ2

(j)
Ko0 s� s1ð Þ2 s� s2ð Þ

s� s3ð Þ3 s� s4ð Þ
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P 18.18 Using partial fractions, obtain expressions

for the inverse Laplace transform of each of the fol-

lowing, where

t1 ¼ 1 ms; t2 ¼ 2 ms; q ¼ 2 ms�1; r ¼ 4 ms�2;

K ¼ 50 mV s; s1 ¼ �106 s�1; s2 ¼ 2s1; s3 ¼ 3s1;

s4 ¼ 4s1; o0 ¼ s1:

(a)
Ko0s 1þ st1ð Þ

s2 þ qsþ rð Þ st2 þ 1ð Þ (b)
Ko0 s2 þ qsþ rð Þ
s s� s1ð Þ s� s2ð Þ

(c)
Ko0 s� s1ð Þ2

s s� s2ð Þ s� s3ð Þ2 (d)
K s� s1ð Þ3
s� s2ð Þ3

(e)
K 1�s=s1ð Þ

1�s=s2ð Þ 1�s=s3ð Þ

(f)
K 1�s=s1ð Þ

2�s=s2ð Þ 3�s=s3ð Þ 4�s=s4ð Þ
(g)

Ks sþ qð Þ
s2 þ qsþ rð Þ 1þ st1ð Þ (h)

K 1þ st1ð Þ
1þ st2ð Þ2

(i)
K s� s1ð Þ2þ 2Ks s� s2ð Þ

s� s3ð Þ s� s4ð Þ

Section 18.9 is prerequisite for the following

problems.

P 18.19 Refer to Fig. P 18.4, where each circuit is

in steady state for t ¼ 0� and the switch is closed at

t ¼ 0. Obtain expressions for each indicated current

and voltage for t> 0.

P 18.20 In Fig. P 18.5, L ¼ 2:5mH; C ¼ 100 nF;

V0 ¼ 10V. The circuit is in steady state for t< 0 and

the switch is moved from a to b at t ¼ 0. Find

the resistance R ¼ R0 for which the response v tð Þ is

critically damped for t> 0. Obtain expressions for and

graphs of the voltage v tð Þ for t> 0 and for each of

R ¼ R0; R ¼ 2R0; R ¼ R0=2.

P 18.21 In Fig. P 18.6, R ¼ 10 kO, C ¼ 10 mF,
and V0 ¼ 10V. At t ¼ 0, the switch is moved from

1 to 2, having been at 1 for all previous time. Draw a

neat, fully-labeled graph of the voltage vab versus

time.

P 18.22 Obtain expressions for the indicated voltages

in Fig. P 18.7, where R ¼ 100O, L ¼ 20mH,

C ¼ 50 nF, and V0 ¼ 5V.

P 18.23 In Fig. P 18.8, R ¼ 100O and

vS sð Þ ¼ V0 u tð Þ þ td tð Þ½ �; m sð Þ ¼ m0
1þ st

with V0 ¼ 1mV, m0 ¼ 104, and t ¼ 1ms. Obtain an

expression for the voltage v tð Þ.
P 18.24 In Fig. P 18.9, R ¼ 10 kO, C ¼ 100 nF,

and vS tð Þ ¼ V0 u tð Þ with V0 ¼ 500mV. Obtain

expressions for the voltages v1 tð Þ; v2 tð Þ.
P 18.25 In Fig. P 18.10, RS ¼ 100O, L1 ¼ 1H,

L2 ¼ 4H, RL ¼ 10O, M ¼ 0:9
ffiffiffiffiffiffiffiffiffiffi
L1L1

p
, and vS tð Þ ¼

V0 cos o0 tð Þu tð Þ, with V0 ¼ 170V and o0 ¼
2p60 s�1. Obtain an expression for the voltage v2 tð Þ.

P 18.26 In Fig. P 18.11, vS tð Þ ¼ V0 u tð Þ; g ¼ �Kp=

ðs� pÞ. Obtain an expression for the voltage vL tð Þ.
P 18.27 In Fig. P 18.12, R ¼ 1 kO, L ¼ 10mH,

C ¼ 200 nF, and V0 ¼ 50V. The switch is open for

t< 0 and is closed at t ¼ 0. Obtain expressions for the

voltages v1 tð Þ; v2 tð Þ.
P 18.28 Each of 20 identical 250 nF capacitors

is charged to 100 kV. The charged capacitors are

connected in series, and then discharged through a

circuit consisting of a 260O resistor in series with a

200 mH inductor.

(a) Obtain an expression for the current through the

resistor and find the maximum value of the mag-

nitude of the current.

(b) Set the resistance R to the value required for criti-

cal damping and find the maximum value of the

magnitude of the current.

P 18.29 In Fig. P 18.13, R1 ¼ 3:16 kO, R2 ¼
17:8 kO;R3 ¼ 3:83 kO, RL ¼ 10 kO, C ¼ 100 nF,

and the op amp is ideal. Obtain an expression for

and then plot the response vout tð Þ to a step input

vS tð Þ ¼ V0 u tð Þ, with V0 ¼ 1V.

Section 18.11 is prerequisite for the follow-

ing problems.

P 18.30 The magnitudes of the voltage, transimpe-

dance, and transadmittance transfer functions at com-

plex frequency s0 for a certain circuit are

Hv s0ð Þj j ¼ 9:885	 10�4; Hz s0ð Þj j ¼ 0:099O;

Hy s0ð Þ�� �� ¼ 9:885	 10�9 S

(a) Find the magnitudes of the source and load impe-

dances.
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(b) What is the magnitude of the current transfer

function for s ¼ s0?
P 18.31 The voltage transfer function for a certain

circuit model is

Hv sð Þ ¼ Vout sð Þ
Vin sð Þ ¼ K

s� zð Þ
s� pð Þ ;

where z 6¼ 0, p< 0, and K 6¼ 0. Can vout tð Þ be the

voltage across a capacitor? Justify your answer.

P 18.32 In Fig. P 18.14, R1 ¼ 10 kO, R2 ¼ 51 kO,
C1 ¼ 100 pF, R3 ¼ 120 kO, C2 ¼ 27 pF, and vin ¼
V0 cos o0tð Þu tð Þ, with V0 ¼ 100mV and f0 ¼ 40 kHz.

The source impedance is negligible. Obtain an expres-

sion for the output vout tð Þ.
P 18.33 Obtain expressions for the voltage transfer

function, the current transfer function, the transad-

mittance, and the transimpedance of each circuit in

Fig. P 18.15. Unless otherwise specified, the dependent

source parameters g; m; b; rð Þ are independent of s.
P 18.34 In use, each circuit in Fig. P 18.16 will be

driven by a source attached from terminal a to ground

and will drive a load attached from terminal b to

ground. The source output impedance and the load

impedance are resistive, but are otherwise as yet

unspecified. Obtain an expression for the voltage

transfer function of each circuit. Express the transfer

function in factored form, where the numerator con-

sists of a constant, frequency-independent factor K
and factors of the form s� zð Þ and the denominator

consists of factors of the form s� pð Þ. Express the

poles, zeros, and the factor K in terms of the circuit

parameters. Give conditions (if any) under which the

voltage transfer function is approximately indepen-

dent of the source impedance.

P 18.35 Two first-order circuits have voltage trans-

fer functions

Hv1 sð Þ ¼ p1
s� p1

; Hv2 sð Þ ¼ p2
s� p2

:

Second-order circuits can be constructed by con-

necting the two first-order circuits in cascade (series)

+
–vS

R

20R

R/10

5R vL

+

–
mv1

v1

+

+
–

–

Fig. P 18.8 See Problem P 18.23
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Fig. P 18.9 See Problem

P 18.24
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R L 10R

5RV0 u (t)
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+
–

Fig. P 18.7 See Problem P 18.22
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gv1
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–

–
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Fig. P 18.11 See Problem P 18.26
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Fig. P 18.10 See Problem P 18.25
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or parallel, as illustrated in Fig. P 18.17. The source

resistance is RS ¼ 100O.

(a) Use ideal op amps in inverting configurations

to obtain circuits having the transfer functions

Hv1; Hv2. Specify the input resistances such that

the source resistance is negligible. Then redraw

the diagrams in Fig. P 18.17, replacing the boxes

with the circuits.

(b) Obtain the voltage transfer functions for the cas-

cade and parallel circuits. What are the essential

differences between the two?
P 18.36 Obtain expressions for the four transfer

functions for the circuit in Fig. P 18.18.

P 18.37 Obtain expressions for the four transfer

functions for the circuit in Fig. P 18.19.

P 18.38 Refer to Fig. P 18.20. Assume the output

impedance and the source impedance are negligible.

Show that the poles of the voltage transfer function are

a complex conjugate pair if C1 >C2.

P 18.39 The excitation vS and response vL of a

certain circuit are related by the differential equation

t
dvL
dt

þ vL ¼ vS; t ¼ 100 ms

Obtain and plot the response of the circuit to the

excitation defined in Fig. P 18.21.

v1 RoRivS
g v1

+

–
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vL

+

–
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i

v1 Ro
RivS

g v1

+

–
vL

+

–
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–
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–

–
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+

–

R

RL

RS

i

ib

bib
vS

RS

RBE

RB

RE vL

+

–i1

v1

+

–

b0p0(d) b =

(e) R >> RL >> Ro, m >> 1

(c) Ri >> RS, Ro >> RL

(b) Ri >> RS, Ro >> RLRi >> RS, Ro >> RL

+
–

mv1
vL

+

–
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+

–
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Section 18.12 is prerequisite for the following

problems.

P 18.40 A circuit having transfer function

H sð Þ ¼ Ks

s� pð Þ2

is driven by an excitation having Laplace transform

X sð Þ ¼ X0

s� p
:

Identify the forced and unforced terms in the Laplace

transform of the response.

P 18.41 The (voltage) transfer function for a certain

circuit is of the form

Hv sð Þ ¼ Ko0s

s2 þ 2ao0sþ o0
2
¼ Ko0s

s� pð Þ s� p�ð Þ ;

where the poles are complex conjugates. What is the

form of the unforced response?

P 18.42 What is the form of the unforced response

corresponding to the transfer function in Problem P

18.41 if the poles are real and distinct? If the poles are

real and equal?

Section 18.13 is prerequisite for the following

problems.

P 18.43 The step response of a certain circuit is

given by

g tð Þ ¼ e�t=t cos o0 tþ yð Þu tð Þ V=V;
t ¼ 500 ms; o0 ¼ 4p	 103 s�1; y ¼ �p

2
:

(a) Obtain an expression for the response to the exci-

tation defined in Fig. P 18.21.

(b) Plot the response obtained in part (a).

(c) Obtain the response to the excitation

vS tð Þ ¼ A cos 2o0 tð Þ þ cos 20o0 tð Þ½ �u tð Þ; A ¼ 10mV

(d) Plot the response obtained in part (c).

P 18.44 The voltage impulse response of a certain

circuit is given by

+
–

R R

R1 R2

RL
C

C

vLvS

RS <<R

+
–

Fig. P 18.18 See Problem P 18.36
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hv tð Þ ¼ t=tð Þ exp �t=tð Þu tð Þ; t ¼ 10 ms

Find and plot the response to each of the following

excitations.

(a) vS tð Þ ¼ V0 u tð Þ � u t� t0ð Þ½ �; V0 ¼ 1V; t0 ¼ 10ms
(b) vS tð Þ ¼ V0 u tð Þ � u t� t0ð Þ½ �; V0 ¼ 1V; t0 ¼ 50ms
(c) vS tð Þ¼V0 u tð Þ�u t� t0ð Þþ t0d t�2t0ð Þ½ �; V0¼1V;

t0¼30ms
(d) vS tð Þ ¼ V0 t0 d tð Þ þ d t � t0ð Þ þ d t � 2t0ð Þ þ � � �½

þd t � 10t0ð Þ�; V0 ¼ 1 V; t0 ¼ 10 ms
(e) vS tð Þ ¼ V0 u tð Þ þ u t � t0ð Þ þ u t � 2t0ð Þ þ � � �½

þu t � 10t0ð Þ�; V0 ¼ 1 V; t0 ¼ 10 ms

Section 18.14 is prerequisite for the following

problems.

P 18.45 Obtain the corresponding f-domain transfer

function from the s-domain transfer function. Give the

values of the corner frequencies.

(a) Hv sð Þ¼ K s� zð Þ
s�p1ð Þ s�p2ð Þ ; K¼ 1s�1; z¼�102 s�1;

p1 ¼�103 s�1; p2 ¼�104 s�1

(b) Hi sð Þ¼K s� z1ð Þ s� z2ð Þ
s�p1ð Þ s�p2ð Þ ; K¼ 1; z1¼�10s�1;

z2 ¼�102 s�1; p1¼�103 s�1; p2¼�104 s�1

(c) Hv sð Þ¼K s� zð Þ2
s s�pð Þ2 ; K¼ 1s�1; z¼�102 s�1;

p¼�103 s�1

(d) Hz sð Þ ¼ Rs s � zð Þ
s2 þ 2ao0s þ o0

2
; R ¼ 1 kO;

z ¼ �102 s�1; a ¼ 0:2; o0 ¼ 104 s�1

(e) Hy sð Þ¼g s2þ2a1o1sþo2
1

� �
s2þ2a0o0sþo0

2
; g¼100mS;

a1¼0:5;o1¼103s�1; a0¼0:2;o0¼105s�1:

P 18.46 Obtain the corresponding s-domain transfer

function from the f-domain transfer function. Give the

values of the poles and zeros.

(a) Hv j2pfð Þ ¼ K 1þ j f=f0ð Þ
1þ j f=f1ð Þ 1þ j f=f2ð Þ ;K ¼ 100;

f0 ¼ 1 kHz; f1 ¼ 100Hz; f2 ¼ 10 kHz

(b) Hv j2pfð Þ ¼ K jðf=f0Þ 1þ j f=f0ð Þ
1þ j f=f1ð Þ2 1þ j f=f2ð Þ ;

K ¼ 100; f0 ¼ 1kHz; f1 ¼ 100Hz; f2 ¼ 10kHz

(c) Hv j2pfð Þ ¼ K 1þ j f=f0ð Þ 1þ j f=f1ð Þ
j f =f0ð Þ 1þ j f=f2ð Þ2 ; K ¼ 100;

f0 ¼ 1 kHz; f1 ¼ 100Hz; f2 ¼ 10 kHz :

(d) Hz j2pfð Þ ¼ R
j f=f0ð Þ 1þ j f=f1ð Þ2

1� f=f0ð Þ2þ2aj f=f0
h i

1þ j f=f2ð Þ
;

R ¼ 10kO; f0 ¼ 1kHz; f1 ¼ 100Hz;

f2 ¼ 10kHz; a ¼ 0:2
(e) Hy j2pfð Þ¼

g
jf=f0ð Þ 1þjf=f1ð Þ2

1� f=f0ð Þ2þ2a0j f =f0ð Þ
h i

1� f=f1ð Þ2þ2a1j f=f0ð Þ
h i;

g¼1S; f0¼1kHz; f1¼100Hz; f2¼10kHz; a0¼0:2;
a1¼0:3.

Section 18.15 is prerequisite for the following

problems.

P 18.47 The op amp in Fig. P 18.22 has input impe-

dance Ri ¼ 10MO, output impedance Ro ¼ 100O,
and gain-bandwidth product fT ¼ 1MHz. The source

impedance is negligible and the load impedance is

RL ¼ 10 kO.

(a) Obtain an expression for the step response of the

inverting amplifier.

(b) Plot the time required for the step response to reach

90% of the steady-state value versus the amplifier

dc voltage gain Av0 ¼ R2=R1 for 10 � Av 0 � 100.

(c) Assume a 15 V symmetric supply, rail-to-rail

operation, and a slew rate of 10V= ms. Which of

slew rate and output swing determines the maxi-

mum allowable amplitude of a step input (for

linear operation)?

P 18.48 Assume the op amp in Fig. P 18.23 has

input impedance Ri ! 1, output impedance Ro ! 0,

intrinsic bandwidth f0 ¼ 10Hz, and gain-bandwidth

product fT ¼ 1MHz. The source impedance is a

+

– RLvL

vS

R1

R2

+
–

Fig. P 18.22 See Problem P 18.47
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negligible fraction of R1 and the load impedance is

RL ¼ 10 kO. Show that the voltage transfer function of

the circuit is

Hv ¼ �mZ2
mþ 1ð ÞR1 þ Z2

; Z2 ¼ R2

1þ sR2C
:

Under what conditions is

Hv ffi � Z2
R1

a good approximation?

P 18.49 Assume the op amp in Fig. P 18.24 has

input impedance Ri ! 1, output impedance Ro ! 0,

intrinsic bandwidth f0 ¼ 10Hz, and gain-bandwidth

product fT ¼ 1MHz. The source resistance is

RS ¼ 200O and the load resistance is RL ¼ 5 kO. (a)
Obtain an expression for the step response. (b) Plot the

0–90% rise time versus the dc voltage gain Av0 of the

circuit for 10 � Av0 � 100. (c) If the slew rate is

5V= ms, and the output swing is unlimited, what is

the maximum amplitude of a step input vS ¼ V0 u tð Þ
for which the amplifier is linear?

P 18.50 Figure P 18.25 shows a transimpedance

amplifier (current-to-voltage converter). (a) Show

that the transimpedance is given by Hz ¼ �R. (b)

Obtain expressions for the transimpedance and step

response if the op amp has input impedance Ri ! 1,

output impedance Ro ! 0, intrinsic bandwidth f0, and

gain-bandwidth product fT .

Section 18.16 is prerequisite for the following

problems.

P 18.51 Obtain an expression for the transimpedance

transfer functionHz for the circuit in Fig. P 18.26. Show

that the expression is dimensionally consistent and give

conditions under whichHz ffi g r ZL. If those conditions

are met, what is the current transfer function? Which of

the two transfer functions is least dependent on source

and load impedance?

P 18.52 Obtain an expression for the voltage trans-

fer function Hz for the circuit shown in Fig. P 18.27.

Show that the expression is dimensionally consistent

and give conditions under which Hv ffi b1b0ZLR
�1
S .

If those conditions are met, is there another transfer

function that is approximately independent of source

and load impedance?

P 18.53 Obtain expressions for all four transfer

functions for the circuit in Fig. P 18.28. Show that

each expression is dimensionally consistent. Is there a

+

–
iS

R
RL

vL

Fig. P 18.25 See Problem P 18.50

VL

+

–

ZLZ4
gV2

V2

+

–

Z2

Z3

rI1

Z1ZSIS

I1

+
–

IL

Fig. P 18.26 See Problem

P 18.51

+

–
R1 R2

RL

RS

vS

vL

+
–

Fig. P 18.24 See Problem P 18.49

+

– RLvL

vS

R1

R2

n

p
o

C

+
–

Fig. P 18.23 See Problem P 18.48
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transfer function that is approximately independent of

source and load impedances? Under what conditions?

Section 18.17 is prerequisite for the following

problems.

P 18.54

(a) Obtain the voltage transfer function Hv ¼ VL=VS

for the circuit in Fig. P 18.29. Express the transfer

function in the form

Hv sð Þ ¼ Ko0s

s2 þ 2ao0 sþ o0
2

and express the parameters K, a, and o0 in terms

of the circuit parameters. The source and load are

not shown. You may assume that the source

impedance is a negligible fraction of RG and the

output impedance is a negligible fraction of the

load impedance.

(b) Show that the poles are complex conjugates if

RQ ¼ RG ¼ R.

The pole-zero plots in Fig. P 18.30 are refer-

enced in several subsequent problems. Pay

attention to the scales; e.g., in plot (a), the

real pole is at p0 ¼ �6p	 104 s�1.

P 18.55 Each pole-zero plot in Fig. P 18.30 repre-

sents the voltage transfer function of a circuit. The dc

steady-state component of the response of each asso-

ciated circuit to a 1V step input is 10 V. Obtain

expressions for the step responses.

P 18.56 (a) Show that if the source resistance is

negligible, the form of voltage transfer function of the

circuit in Fig. P 18.31 is

Hv sð Þ ¼ K
s� zð Þ
s� pð Þ

+

–

+

–

+

–

vS

vL

RG

RQ

RF RF

R

10R

10R

C
C

Fig. P 18.29 See Problem

P 18.54

vS ZL

RS Z1

Z2

i0

Z3
+
–

b i0

v0

+
+
–

–
mv0

iL

VL

+

–
Fig. P 18.28 See Problem

P 18.53

VL

b0 i0 b1i1

Z0

i1
+

–

RS

vS Z1 Z2 Z3 ZL

iL

+
–

Fig. P 18.27 See Problem

P 18.52
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Express the pole and the zero in terms of the circuit

parameters.

(b) Show how you would modify the circuit to obtain

a single real pole. What is the voltage transfer

function in that case?

(c) Show how you would modify the circuit to obtain

a single real zero. What is the voltage transfer

function in that case?

P 18.57 (a) Show that if loading is negligible, the

poles of the voltage transfer function for the circuit in

Fig. P 18.32 are given by

p1; p2 ¼ 1

2t
k � 2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � 4k

p� �
; t ¼ RC

Re(s)

s–1
Im(s)

104p
3

4

–4

–3–6

–3

–2–5

–2

–5 –1

2

–3

4

–4

–6 –5 –2

–2

3
2

–3

–1–4 –1–2–4–8

3

–3

4

(a) (b)

(c) (d)

(e) (f )
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–1

s–1
Im(s)

100

s–1
Im(s)

20p

s–1

104p

Re(s) s–1

100

s–1
Im(s)

20

s–1
Im(s)

200p

s–1
Im(s)

200p

Re(s) s–1

20

Re(s) s–1

200p
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200p

Re(s) s–1

20p

Fig. P 18.30 See Problem

P 18.55
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C

C
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Fig. P 18.31 See Problem P 18.56
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(b) Draw pole-zero plots for t ¼ 1= 2pð Þ ms and for

k ¼ 0:5; 1:0; 1:5; 2:0; 2:5.

(c) For what values of k is the circuit stable?

(d) For what value of k is the circuit critically

damped?

(e) For what values of k is the circuit underdamped?

(f) For what value of k is the damping factor equal

to 1?

(g) What is the dc voltage gain of the circuit (if the

circuit is stable)?

(h) Show that if the poles are complex conjugates

p; p�ð Þ, then pj j ¼ 1=t
(i) Show that if the circuit is underdamped,

k ¼ 2� 2dffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ d2

p
where d is the damping factor.

(j) Show that if the circuit is underdamped,

k ¼ 2� 2a

where a is the peaking factor.

(k) Show that

k ¼ 2þ 2 cos ∡pð Þ

P 18.58 Using one or more of the circuits like that

in Fig. P 18.31 (possibly with one of the capacitors

omitted) and one or more of the circuits like that in

Fig. P 18.32, and assuming loading is negligible,

design a cascade circuit whose voltage transfer func-

tion is represented by the pole-zero plot in:

(a) Fig. P 18.30(b)

(b) Fig. P 18.30(c)

(c) Fig. P 18.30(d)

(d) Fig. P 18.30(f)

Note: We cannot use the same procedure for the pole-

zero plots in Fig. P 18.30(a) and (e) because the

circuits available (here) cannot provide complex or

right-half plane zeros.

Section 18.18 is prerequisite for the following

problems.

P 18.59 Refer to Fig. P 18.33, where circuits 1 and

2 have voltage transfer functions Hv1; Hv2, respec-

tively, as shown. The diagram represents a larger

circuit in which the output of circuit 1 is fed back

through circuit 2 to the input of circuit 1.

R Hv2

Hv1

vin
vout

+

–

+

–

R

R o

va

R

Fig. P 18.33 See Problem P 18.59

+
–

C

C

R R

R1 kR1

RS

vS

vL
RL

+
–

Fig. P 18.32 See Problem P 18.57

+

–

R1 R2

RL
CRS

vS

vL

+
–

Fig. P 18.34 See Problem P 18.60

Rivi

CF

Ro1gvi

+

–

+
–

CF

Ri

Ro2

mv2
v2

+

–

vo

+

–

Ri = 100MΩ, Ro1 = 10kΩ, Ro2 = 100 Ω, CF = 50pF, g = 1mS, |m| = 105

Fig. P 18.35 See Problem P 18.61
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Fig. P 18.36 See Problem

P 18.62
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Fig. P 18.37 See Problem P 18.63
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(a) Loading is negligible. Obtain an expression for

the overall voltage transfer function Hv sð Þ ¼
Vout sð Þ=Vin sð Þ.

(b) Let

Hv1 sð Þ ¼ K1

s� p1

where p1 lies in the right-half-plane, making

circuit 1 unstable. If possible, find a transfer

function Hv2 sð Þ such that the overall system is

stable.

(c) Explain how this stabilization can work (physi-

cally), in apparent contradiction of the discussion

of pole-zero cancellation in the text.

P 18.60 Obtain an expression for the voltage trans-

fer function of the circuit shown in Fig. P 18.34. Is the

circuit stable?

P 18.61 In Fig. 18.35, m can be positive or negative.

For which sign (if either) is the circuit model stable?

Section 18.20 is prerequisite for the following

problems.

P 18.62 A source vS must drive a certain inductive

load, where the important output is the load current.

It is found that the direct approach, illustrated by

Fig. P 18.36(a), yields a step response that is too

sluggish (long transient). It is proposed that the

+
–

C1

C2

C0

R0

R0 = 2.15kΩ, R = 23.7 kΩ, C0 = 1.65 μF, C1 = 15nF, C2 = 50pF

R0

R

vS

RS RLvL
n

p
a

b

R

+
–

Fig. P 18.38 See Problem P 18.65
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Fig. P 18.39 See Problem P 18.66

718 18 Laplace Transformation and s-Domain Circuit Analysis



arrangement in Fig. P 18.36(b), with a suitable

choice for the components R;C, will speed up the

response. If this is so, show how and discuss any

limitations on this approach.

P 18.63 Match each transfer-function pole-zero plot

in Fig. P 18.30 to a step response in Fig. P 18.37.

P 18.64 The finite poles and zeros of the voltage

transfer function for a certain circuit are

z1 ¼ 0; z2 ¼ �20p s�1; p1 ¼ �2p	 106 s�1;

p2 ¼ 62:8 �1þ jð Þ 	 103 s�1; p3 ¼ p2
�:

The voltage gain of the circuit equals 50 dB at

f ¼ 10 kHz.

(a) Obtain expressions for the voltage transfer func-

tion and the step response of the circuit.
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Fig. P 18.40 See Problem

P 18.67
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(b) Which pole(s) is (are) dominant, if any? Use

graphs of the step response and an approximate

step response to justify your answer.

P 18.65 : Refer to Fig. P 18.38, where the source

resistance RS is negligible.

(a) Find the voltage transfer function and the poles

and zeros. Is there a dominant pole?

(b) Obtain an expression for and plot the step

response. If you identified a dominant pole in

part (a), use graphs to justify your opinion.
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Fig. P 18.41 See Problem

P 18.68
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Section 18.21 is prerequisite for the following

problems.

P 18.66 Figure P 18.39 shows pole-zero plots

for voltage transfer functions. The dc voltage gain

of each is 10. Draw a Bode voltage gain plot for the

associated circuit.

P 18.67 Refer to the Bode plots of voltage gains in

Fig. P 18.40, where the abscissas are frequency in Hz

and the ordinates are gain in dB

(a) Which have a pole at the origin?

(b) Which have a zero at the origin?

(c) Which have one or more finite zeros not at the

origin?

(d) Which of the associated step responses are under-

damped and exhibit overshoot and ringing?

P 18.68 Match each Bode plot in Fig. P 18.40 with

the corresponding pole-zero plot in Fig. P 18.41.

Pay attention to the scales given in the labels for the

pole-zero plots.

P 18.69 Figure P 18.42 shows pole-zero plots

for voltage transfer functions. The value of each

transfer function for s ¼ 0 is 104 Obtain the asso-

ciated f-domain voltage transfer function in standard

form and construct the corresponding Bode gain

plot.
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Fig. P 18.42 See Problem

P 18.69
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Chapter 19

Active Filters

Fundamentally, a filter is a circuit whose purpose is to

separate one or more signals from one or more others.

Filtering allows you to select a particular radio station

from the hundreds that are simultaneously present at

your radio’s antenna. Filtering is used to process radar

and sonar echoes, to clean up old recordings, and in a

host of other applications. Filters are present in virtu-

ally all electronic systems for communication, control,

instrumentation, echolocation (radar, sonar, infrared),

image processing, and (of course) signal processing. It

is hard to think of a significant electronic system that

does not involve filtering.

A filter can be implemented (built) in various ways:

• A passive filter contains only passive components

(resistors, capacitors, and inductors).

• An active filter usually contains not only passive

components, but also one or more active devices

(e.g., op amps).

• A digital filter achieves filtering by operating on

sample values of the input via a special-purpose

digital computer (often called a DSP, for digital-

signal-processor) and subsequently converting the

output samples back to a continuous signal. In

contrast, passive and active filters described above

are called analog filters. We do not treat digital

filters. However, just as active filters have dis-

placed passive filters in many applications, digital

filters are displacing active filters in a great many

applications.

Passive filters require no external power supply (an

advantage), but can be large and heavy at low (audio

and below) frequencies if inductors are required. Also,

because passive filters provide no gain (only attenua-

tion), the number of components (which is related to

performance) in a passive filter is limited. Active

filters can be smaller, lighter, and more accurate than

passive filters, but require an external power supply

and might have shorter lives (e.g., an inductor will

normally outlive an op amp). A passive filter might

be preferred in applications where a power supply is

not otherwise required, but active filters are especially

advantageous in applications where a power supply is

already present.

In this chapter, we treat a few active filter circuits

that incorporate op amps as the active components. At

this writing, gain-bandwidth products for the fastest

off-the-shelf op amps are in the neighborhood of

1GHz, so op-amp-based active filters are limited to

relatively low-frequency applications – typically

where frequencies of interest are below 100 MHz.

Thus the circuits we describe are similarly limited.

However, principles involved are more generally

applicable and useful.

19.1 Gain

The simplest filters, and the only ones treated in this,

are intended to selectively pass or reject sinusoidal

inputs based upon their frequencies. Such filters are

classified according to their gain characteristics.

Figure 19.1 shows idealized graphs of gain versus

frequency for four common types of filters. The mean-

ings of lowpass, bandpass, bandstop, and highpass

should be evident from the graphs. On the graphs,

the minimum passband gain is denoted by A1 and

the maximum stopband gain by A2. In general, the

gain A fð Þ can be voltage gain, current gain, magnitude

of transimpedance, or magnitude of transconductance,

T.H. Glisson, Introduction to Circuit Analysis and Design,
DOI 10.1007/978-90-481-9443-8_19, # Springer ScienceþBusiness Media B.V. 2011
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depending upon the natures of the source and load. But

often, the input and output are voltages, and a filter is

described by its voltage gain.

Each of the four filters in Fig. 19.1 is characterized

by one or more passbands, where the gain equals or

exceeds A1; one or more stopbands, where the gain is

no larger than A2; and one or more transition bands,

where the gain is between A1 and A2. For example, if

the frequencies f2; f3 are half-power frequencies, the

bandpass filter of Fig. 19.1(b) has stopbands f < f1
and f > f4, transition bands f1 < f < f2 and

f3 < f < f4, and passband f2 < f < f3.

A lowpass or bandpass filter is described in part by

its bandwidth, which is the width of the passband,

often defined by the half-power (–3 dB) frequency or

frequencies. For example, if the frequencies f2; f3 are

half-power frequencies, the bandwidth of the bandpass

filter is f3 � f2. A bandstop or highpass filter is

described in part by the width of the stopband, often

defined by the half-power (–3 dB) frequency or fre-

quencies.

The transition from passband to stopband often is

characterized by its slope, in decibels per decade.

A filter having a steep transition (or transitions) is

said to have a sharp cutoff. A bandpass filter whose

bandwidth is much smaller than its center frequency is

called a narrowband filter.

Filters often are described (as in Fig. 19.1) in terms

of gain alone. But in many applications, a property

called group delay is at least as important.

19.2 Group Delay

Recall (Chapter 15) that distortionless transmission

requires frequency-independent gain and linear phase

shift. Ideally, a filter possesses these characteristics in

the passband(s), at least to a degree acceptable for the

intended application. In the passband(s), the transfer

function of a distortionless filter has the form

H ¼ Aff �2p f t0ð Þ ¼ A exp �j2p f t0ð Þ (19.1)

where A and t0 are independent of frequency. The group

delay of a filter is denoted by D fð Þ and defined by

D fð Þ ¼ � 1

2p
dF fð Þ
df

(19.2)

f f

ff

f1 f2

f1 f2

f3 f1 f2 f3 f4

f1 f2 f3 f4 f5

(a) lowpass

A1

A2
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A2

A1

A2

A1

A2

(c) highpass (d) bandstop

(b) bandpass

A( f )

A( f ) A( f )

A( f )

Fig. 19.1 Common types of

filters
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where F fð Þ is the phase shift of the filter. Thus, the

group delay of a distortionless filter, described by

(19.1), is given by

D ¼ t0 (19.3)

which is the actual delay suffered by a signal (in

the passband). Both gain and group delay are indepen-

dent of frequency in the passband(s) of a distortionless

filter.

A sharp-cutoff filter typically has poorer group-

delay characteristics than does a less-sharp filter hav-

ing the same bandwidth. It is possible to design a filter

that meets demanding specifications on both gain and

group delay by first designing a filter based on desired

gain alone and subsequently adding (in cascade) an

all-pass delay equalizer whose gain is frequency-

independent and whose group delay complements

that of the filter such that overall group delay is nearly

frequency independent. A good filter (including an

associated delay equalizer, if necessary) generally

has sharp transitions and almost frequency-independent

passband gain and group delay. The price paid for this

performance is complexity (more components) and

possibly a lengthy delay.

The usual application of the kinds of filters illu-

strated by Fig. 19.1 is separating one signal from

another when the two signals occupy different bands

on the frequency axis. In this chapter, we consider

only applications of this kind. There are many other

kinds of filters, such as integrating and differentiating

filters, notch filters, comb filters, noise-weighting fil-

ters, delay equalizing filters, and matched filters. Some

of these you have encountered in previous chapters,

and others of which you might encounter in subsequent

courses or in later practice.

Henceforth, filter means a circuit designed to sepa-

rate one signal from another when the two signals

occupy different bands on the frequency axis. Gener-

ally desirable properties of such a filter are:

1. Frequency-independent gain and group delay in the

passband(s),

2. sharp transition(s) from passband(s) to stopband(s),

and

3. a sufficiently large difference (dB) between nomi-

nal passband gain and maximum stopband gain,

such that the desirable signal is passed to the

load but other (unwanted) signals are adequately

suppressed.

19.3 A Simple Two-Pole Active Filter

Refer to Fig. 19.2. We assume R � RS, where RS is

the source resistance. By inspection of the circuit,

vn ¼ vout. For an ideal op amp, vp ¼ vn and vout is

independent of the load.

Applying Kirchhoff’s current law to the circuit

gives

V1 � Vin

R
þ V1 � Vout

R
þ sC1 V1 � Voutð Þ ¼ 0

) 2þ st1ð ÞV1 � 1þ st1ð ÞVout ¼ Vin;

Vout � V1

R
þ sC2Vout ¼ 0 ) V1 ¼ 1þ st2ð ÞVout;

(19.4)

where

t1 ¼ RC1; t2 ¼ RC2: (19.5)

The solutions to the node Equations (19.4) are

V1 ¼ 1þ st2ð ÞVin

1þ 2st2 þ s2t1t2
;

Vout ¼ Vin

1þ 2st2 þ s2t1t2
;

(19.6)

from which we obtain expressions for the input imped-

ance

Zin ¼ Vin

Iin
¼ VinR

Vin � V1

¼ 1þ 2st2 þ s2t1t2
st2 1þ st1ð Þ R (19.7)

and the voltage transfer function

Hv sð Þ ¼ Vout

Vin
¼ 1

t1t2s2 þ 2t2sþ 1

¼ t1t2ð Þ�1

s2 þ 2t�1
1 sþ t1t2ð Þ�1

; (19.8)

+

–

C1

C2

R vout

v1

vin

Riin

Fig. 19.2 A two-pole active filter
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which is a low-pass transfer function, having dc gain

Hv 0ð Þj j ¼ 1.

We consider the input impedance in the sequel, and

focus first on the transfer function. The poles of the

transfer function are given by

p1; p2 ¼ �t2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t22 � t1t2

p
t1t2

¼ � 1

t1
� 1

t1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� t1

t2

r
: (19.9)

In filtering applications, the circuit in Fig. 19.2 is

almost always used to provide complex conjugate

poles. Therefore we assume t1> t2, which from

(19.9) implies that C1>C2. The poles are given by

p; p� ¼ 1

t1
�1� j

ffiffiffiffiffiffiffiffiffiffiffiffiffi
t1
t2

� 1

r� �
: (19.10)

We may write the voltage transfer function in terms

of the upper-half-plane pole p as

Hv sð Þ ¼ pj j2
s� pð Þ s� p�ð Þ

¼ pj j2
s2 � 2Re pð Þsþ pj j2

¼ o2
0

s2 � 2Re pð Þsþ o2
0

; (19.11)

where

o0 ¼ pj j ¼ 1ffiffiffiffiffiffiffiffiffi
t1t2

p ; Re pð Þ ¼ � 1

t1
:

The frequency-domain transfer function is

Hv j2pfð Þ ¼ 1

1� f=f0ð Þ2þj2
ffiffiffiffiffiffiffiffiffiffiffi
t2=t1

p
f=f0ð Þ : (19.12)

The denominator is a quadratic factor having peak-

ing factor a ¼ ffiffiffiffiffiffiffiffiffiffiffi
t2=t1

p
, and the bandwidth is some-

times defined as the corner frequency f0. This is the

half-power bandwidth only if a ¼ 1=
ffiffiffi
2

p
.

We may write the transfer function (19.12) as

Hv j2pfð Þ ¼ Q

Q 1� f=f0ð Þ2
h i

þ j f=f0ð Þ
(19.13)

where

Q ¼ 1

2

ffiffiffiffiffi
t1
t2

r
¼ � 1

2

pj j
Re pð Þ ¼

1

2 cos yð Þ ; y ¼ ∡p:

(19.14)

Comparing the right sides of (19.8) and (19.11) shows

that

Re pð Þ¼�t�1
1 ¼� 1

RC1

;

pj j2 ¼ t1t2ð Þ�1¼ R2C1C2

� ��1
: (19.15)

It follows that

C1 ¼ � 1

Re pð ÞR ;

C2 ¼ 1

pj j2 R2C1

¼ �Re pð Þ
pj j2 R :

(19.16)

If the resistance R and the pole p are specified, the

circuit parameters are determined. We can determine

R from a specification on input impedance. From

(19.7),

Zin ¼ 1þ 2st2 þ s2t1t2
st2 1þ st1ð Þ R

Let

s0 ¼ 1ffiffiffiffiffiffiffiffiffi
t1t2

p (19.17)

Then

Zin sð Þ ¼ 1þ 2t2s0 s=s0ð Þ þ s=s0ð Þ2
t2s0 s=s0ð Þ 1þ t1s0 s=s0ð Þ½ �R

and

Zin j2pfð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffi
t1=t2

p
1� f=f0ð Þ2
h i

þ 2j f=f0ð Þ
j f=f0ð Þ 1þ j

ffiffiffiffiffiffiffiffiffiffiffi
t1=t2

p
f=f0ð Þ� � R

(19.18)

It can be shown (after some tedious mathematics)

that the minimum input impedance (magnitude) in

the passband occurs for f ¼ f0. From (19.18), the

minimum input impedance (magnitude) is given by
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Zin f0ð Þj j ¼ 2j

j 1þ j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t1=t2ð Þp� �

					
					R ¼ 2Rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ t1=t2ð Þp
¼ 2Rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ C1=C2ð Þp ¼ 2Rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ pj j=Re pð Þ½ �2

q
¼ 2Rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4Q2
p (19.19)

Example 19.1. Design a filter having poles

p; p� ¼ 5
ffiffiffi
2

p
p 1� jð Þ � 103 s�1 and minimum

input impedance (magnitude) min Zinj j ¼ 10kO:
Solution: From (19.14),

Q ¼ � 1

2

pj j
Re pð Þ ¼

p� 104 s�1ffiffiffi
2

p
p� 104 s�1

¼ 1ffiffiffi
2

p

From (19.19),

R ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4Q2

p
Zin f0ð Þj j

¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4Q2

p
min Zinj j ¼

ffiffiffi
3

p

2
� 10 kO

ffi 8:66 kO

From (19.15),

t1 ¼� Re pð Þ�1¼ 5
ffiffiffi
2

p
p� 103 s�1

h i�1

ffi 45:02 ms;

t2 ¼ 1

pj j2t1
¼ 1

p� 104 s�1ð Þ2t1
ffi 22:51 ms

From (19.16)

C1 ¼ � 1

Re pð ÞR ffi 5:20 nF;

C2 ¼ 1

pj j2R2C1

ffi 2:60 nF

and the circuit external to the op amp in Fig.

19.2 is specified. Figure 19.3 shows a graph

of voltage gain versus frequency for the filter.

Exercise 19.1. How many independent speci-

fications can be met by the two-pole filter in

Fig. 19.2?

Exercise 19.2. Design a two-pole filter for

which f0 ¼ 20 kHz, peaking factor a ¼ 0:5,

and minimum passband input resistance

min Rinð Þ ¼ 20 kO. Use a resistor from the

E24 series.

The virtue of the two-pole circuit in Fig. 19.2 is its

simplicity. But it can only provide poles (no zeros), so

it can implement only lowpass filters. The slightly

more complex Sallen-Key circuits treated in the next

section can implement lowpass and highpass filters.

In principle, lowpass and highpass Sallen-key filters

can be cascaded to implement bandpass and band-

stop filters, but such implementations are inefficient,

requiring more components than other, comparable

implementations. The state-variable biquadratic filter

treated in Section 19.5 can implement a much wider

variety of filters.

19.4 Sallen-Key (VCVS) Filters1

Figure 19.4 shows lowpass and highpass versions

of second-order (two-pole) filters that are variants

of what are called Sallen-Key or VCVS filters. The

10 100 103 104 105 106

f (Hz)

Av (dB)

–90

–80

–70

–60

–50

–40

–30

–20

–10

0

10

Fig. 19.3 See Example 19.1

1Invented in 1955 by R.P. Sallen and E.L. Key of MIT Lincoln

Laboratory.
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s-domain voltage transfer functions for the filters in

Fig. 19.4 are

HvLP sð Þ ¼ k þ 1ð Þ
stð Þ2þ 2� kð Þ stð Þ þ 1

; t ¼ RC (19.20)

for the lowpass filter and

HvHP sð Þ ¼ k þ 1ð Þ stð Þ2
stð Þ2þ 2� kð Þ stð Þ þ 1

; t ¼ RC (19.21)

for the highpass filter. The poles of both transfer func-

tions are given by

p; p� ¼ 1

2t
�2þ k � j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4k � k2

p
 �
; t ¼ RC:

(19.22)

For k ¼ 0, the poles are real and equal (to � 1=t). For
k> 2, the poles are in the RHP and the circuits are

unstable. We are interested primarily in stable circuits

having complex-conjugate pole, so we consider values

of k in the range 0< k< 2. The lowpass VCVS filter

has no finite zeros. This property limits the kinds of

lowpass filters that can be implemented as cascades of

VCVS sections. A similar restriction applies to the

highpass VCVS filter, which has no zeros other than

a double zero at s ¼ 0.

Exercise 19.3. Derive (19.20), (19.21), and

(19.22).

Exercise 19.4. Refer to (19.22). Show that

pj j ¼ t�1, independent of k.

Exercise 19.5. What are the maximum pass-

band voltage gains of the VCVS sections

described by (19.20) and (19.21)?

The frequency-domain voltage transfer functions

for the VCVS filters in Fig. 19.4 are

HvLP j2pfð Þ ¼ k þ 1ð Þ
1� f=ftð Þ2þj 2� kð Þ f=ftð Þ

¼ K

Q 1� f=ftð Þ2
h i

þ j f=ftð Þ
(19.23)

and

HvHP j2pfð Þ ¼ � k þ 1ð Þ f=ftð Þ2
1� f=ftð Þ2þj 2� kð Þ f=ftð Þ

¼ �K f=ftð Þ2

Q 1� f=ftð Þ2
h i

þ j f=ftð Þ
; (19.24)

where

Q¼ 1

2� k
; K ¼ ðkþ 1ÞQ; ft ¼ 1

2pt
¼ 1

2pRC
:

(19.25)

The maximum passband voltage gain for both fil-

ters equals k þ 1. The voltage gains must be accounted

for to avoid overload when cascading VCVS sections;

e.g., the op-amp supply voltage must be large enough

to accommodate the output swing.

The phase shifts are given by

+

–

vin

vin

vout

vout

C

C

R R

R1 kR1

R1 kR1

(a) lowpass filter

+

–C C
R

R

(b) highpass filter

Fig. 19.4 VCVS (Sallen-Key) filters
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FvLP fð Þ ¼ � tan�1 f=ft

Q 1� f=ftð Þ2
h i

8<
:

9=
; (19.26)

and

FvHP fð Þ ¼ p� tan�1 f=ft

Q 1� f=ftð Þ2
h i

8<
:

9=
;: (19.27)

The group delays for the two filters are identical,

and are given by

D fð Þ ¼ � 1

2p
dFvLP fð Þ

df
¼

tQ 1þ f=ftð Þ2
h i

Q2 1� f=ftð Þ2
h i2

þ f=ftð Þ2

(19.28)

Figure 19.5 shows graphs of gain and group for a

single lowpass VCVS section and for three values of

the parameter k. The gain is normalized to the dc gain

and the group delay is normalized to the time constant

t ¼ RC. Both are plotted versus frequency, normal-

ized to the corner frequency ft ¼ 2ptð Þ�1
.

Both gain and group delay appear to be almost

independent of frequency for frequencies below

0:1ft, so the filters should provide high-fidelity trans-

mission for signals confined to that band. Both gain

and group delay become increasingly frequency-

dependent with increasing k for frequencies above

0:1ft, and the filters would introduce both amplitude

distortion and delay distortion for signals in that band.

However, in many applications of low-pass filtering,

the sinusoidal components of signals of interest

decrease in amplitude with increasing frequency,

such that components above 0:1ft might be consider-

ably weaker than those below 0:1ft, in which case the

net distortion could be small.

The gain of the highpass VCVS filter is essentially

that of the lowpass filter, flipped horizontally. The

group delay of the highpass filter is identical to that

of the lowpass filter. Thus, for the highpass VCVS

filter, the gain and group delay are almost independent

of frequency above 10ft. In many applications of high-

pass filtering, the most significant components of the

signals of interest lie above 10ft, in which cases net

distortion could be small.

Equations (19.20) and (19.21) assume the op amp is

ideal. More exact relations can be obtained using the

frequency-dependent model for an op amp, but the

slight improvement in accuracy is usually not worth

the trouble. Figure 19.6 compares voltage gain versus

frequency of a lowpass VCVS filter for ideal and non-

ideal (frequency-dependent) op amps having equal dc

voltage gains. The circuit parameters used are

R ¼ 500 kO, C ¼ 31:83 pF, k ¼ 0:5, and R1 ¼ 50 kO
corresponding (approximately) to a half-power band-

width of 10 kHz and a dc voltage gain of 1þ k ¼ 1:5.

The ideal op amp has infinite input resistance, zero

output resistance, and intrinsic voltage gain m0 ¼ 105.

The non-ideal op amp has input resistance 5MO,
output resistance 100O, dc voltage gain m0 ¼ 105,

and bandwidth f0 ¼ 10Hz. You can see from the

graph that the difference between the voltage gains

computed using these models is slight.

(dB)
Av

k + 1

k = 0.5 k = 1.0 k = 1.5

f / fRC

D
τ

0
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0.01 0.1 1 10
f / fRC

0.01 0.1 1 10
–50

–40

–30

–20
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0

10

(a) gain (b) group delay

Fig. 19.5 Gain and group delay of lowpass VCVS filters. See Fig. 19.4(a)
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The input impedances of the VCVS filters in

Fig. 19.4 are given by

ZinLP ¼ 1� f=fRCð Þ2þj 2� kð Þ f=fRCð Þ
j f=fRCð Þ j f=fRCð Þ þ 1� k½ � R; fRC ¼ 1

2pRC
(19.29)

and

ZinHP ¼ 1� f=fRCð Þ2þj 2� kð Þ f=fRCð Þ
j f=fRCð Þ j 1� kð Þ f=fRCð Þ þ 1½ � R; fRC ¼ 1

2pRC
(19.30)

Figure 19.7 shows graphs of input impedance

(magnitude) versus frequency for the lowpass and

highpass VCVS filters for two values of the parameter

k and normalized to the resistance R. The magnitude of

the input impedance of the lowpass filter decreases

monotonically with increasing frequency in the pass-

band. The magnitude of the input impedance of the

highpass filter increases monotonically with increas-

ing frequency in the passband.

The minimum magnitude of the input impedance

of either filter occurs at the passband edge and is

given by

ZinHP j2pfRCð Þj j ¼ ZinLP j2pfRCð Þj j

¼ 2� kð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1� kð Þ2

q R: (19.31)

Figure 19.8 shows a graph of the input impedance

(magnitude) of a single VCVS circuit at the passband

edge versus the parameter k. For both the lowpass and

the highpass VCVS filters, the minimum magnitude of

the input impedance occurs near f ¼ fRC. The magni-

tude of the input impedance at the passband edge is a

fraction of the resistance R for values of k in the

neighborhood of k ¼ 2. As we show in the sequel,

some designs call for values of k near 2.

The output impedances of the lowpass and high-

pass VCVS filters in Fig. 19.4 are the same and are

given by

Zout ¼ 1� ð f=fRCÞ2 þ 3jð f=fRCÞ
mð f ÞRþ jð f=fRCÞRo � ð f=fRCÞ2Ro

� ðk þ 1ÞRoR

1� ð f=fRCÞ2 þ ð2� kÞjð f=fRCÞ
(19.32)
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Fig. 19.6 Gain versus frequency for a typical general-purpose

op amp
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Fig. 19.7 Input impedance (magnitude) of the VCVS circuits in Fig. 19.4
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where

fRC ¼ 1

2pRC
(19.33)

and

m fð Þ ¼ m0
1þ j f =f0

; (19.34)

and where Ro is the output resistance of the op amp,

which is typically 100O or less, m0 is the intrinsic dc

voltage gain of the op amp, which is typically 105 or

greater, and f0 is the intrinsic bandwidth of the op amp,

which is typically on the order of 10 Hz.

At dc, the output resistance is given by

Zout 0ð Þ ¼ k þ 1ð ÞRo

m0
(19.35)

and is quite small.

In most applications, fT � fRC � f0, R � Ro, and

the frequencies of interest are those in the passband,

where f 
 fRC. Thus

m fRCð Þ ffi m0
j fRC=f0

¼ m0 f0
j fRC

¼ fT
j fRC

and

fTR

j fRC
þ j

f

fRC

� �
Ro � f

fRC

� �2

Ro ffi fTR

j fRC
;

where fT ¼ m0 f0 is the unity-gain frequency (gain-

bandwidth product) of the op amp. With these approx-

imations, (19.32) reduces to

Zout ffi
1� f=fRCð Þ2þ3j f=fRCð Þ
h i

k þ 1ð Þj fRCRo

1� f=fRCð Þ2þ 2� kð Þj f=fRCð Þ
h i

fT

(19.36)

It can be shown that the maximummagnitude of the

output impedance given by (19.36) occurs for f ¼ fRC;
i.e., at approximately the passband edge, where

Zout j2pfRCð Þj j ffi 3 k þ 1ð Þ
2� kð Þ

fRC
fT

Ro (19.37)

For any value of k, the maximum magnitude of the

output impedance (in the passband) occurs at the pass-

band edge, or for f ffi fRC, and is a function of k and of

fRC=fT , where fT is the unity-gain frequency (gain-

bandwidth product) of the op amp. Figure 19.9

shows a graph of the maximum magnitude of the

output impedance, normalized to Ro, versus k, for

fT ¼ 1MHz, which is a typical value for a general-

purpose BJT op amp, and for fRC ¼ 100 kHz, which is

on the order of the largest bandwidth one would

attempt with such an op amp.

From Figs. 19.8 and 19.9, increasing k decreases

the magnitude of the input impedance and increases

the output impedance. To minimize loading in a cas-
cade of VCVS filters, the filters should be cascaded in

the order of increasing values of k.

Zin ( fRC)

R

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2
0

0.3

0.6

0.9

1.2

1.5

k

Fig. 19.8 The minimum input impedance (magnitude) of a

VCVS filter decreases with increasing k
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Fig. 19.9 The maximum output impedance (magnitude) of a

VCVS filter increases with increasing k
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19.5 State-Variable Biquadratic Filter

A function of the form

G sð Þ ¼ b2s
2 þ b1sþ b0

a2s2 þ a1sþ a0
(19.38)

is called a biquadratic function because it is the ratio

of two quadratic functions of the independent variable

(s, in this case).

Most major manufacturers of integrated circuits

offer integrated circuits (ICs) called biquads, which

(with a few external components) can implement a

voltage transfer function having the form of (19.38).

A typical biquad IC simultaneously provides outputs

corresponding to the voltage transfer functions

HLP sð Þ ¼ b0
a2s2 þ a1sþ a0

;

HBP sð Þ ¼ b1s

a2s2 þ a1sþ a0
;

HHP sð Þ ¼ b2s
2

a2s2 þ a1sþ a0
:

(19.39)

which, as the subscripts indicate, represent lowpass,

bandpass, and highpass filters. With the addition of an

op amp (or summing IC) and a few resistors, the

circuit also can provide a full biquadratic voltage

transfer function of the form (19.38), which can be

used to provide delay equalization or a more complex

second-order transfer function.

In this section, we treat the state-variable biquad

shown in Fig. 19.10. National Semiconductor’s MF10

biquad IC contains two state-variable filters similar to

the one shown in Fig. 19.10 in a single 20-pin DIP

package about 2.6� 0.6 cm. Other manufacturers offer

similar circuits. The capacitors and the resistors

denoted by R and 10R in Fig. 19.10 are internal. The

resistors RG; RF; RQ are provided externally to achieve

a specified transfer function. The internal resistors in

most such ICs are switched-capacitor resistors,2 so an

accurate external clock is required to establish the

internal resistances denoted by R and 10R. To keep

things simple, we treat the internal switched-capacitor

resistors as ohmic resistors, where R ¼ 100 kO, and we

assume the capacitance is fixed at C ¼ 1 nF. Below,

we obtain the lowpass, bandpass, and highpass transfer

functions for the filter in Fig. 19.10.

The leftmost op-amp circuit in Fig. 19.10 is a

summing amplifier with two inverting inputs and one

non-inverting input. The other two op-amp circuits are

inverting integrators.3 By inspection, the inputs and

outputs of the integrators are related as

VB ¼ �VH

st
; VL ¼ �VB

st
; t ¼ RFC: (19.40)

By voltage division,

V2 ¼ RQ

10Rþ RQ
VB: (19.41)

By Kirchhoff’s current law,

V2 � VS

RG
þ V2 � VH

R
þ V2 � VL

10R
¼ 0

) V2 ¼ 10RVS þ 10RGVH þ RGVL

10Rþ 11RG
:

(19.42)

Equating the right sides of (19.41) and (19.42)

gives

RQ

10Rþ RQ
VB ¼ 10RVS þ 10RGVH þ RGVL

10Rþ 11RG
:

(19.43)

We can use (19.40) to express any two of

VB; VH; VL in terms of the third. For example, using

(19.40) to express VL and VH in terms of VB leads to

RQ

10Rþ RQ
VB ¼ 10RVS � 10RGVBst½ �st� RGVB

10Rþ 11RGð Þst
(19.44)

from which we obtain the bandpass voltage transfer

function

HvBP sð Þ ¼ VB

VS
¼ 10 R

RG
st

10ðstÞ2 þ RQð10Rþ11RGÞ
RG 10RþRQð Þ stþ 1

2Switched-capacitor resistors are discussed in Chapter 8.

3The resistors denoted by 10R provide dc feedback for the

integrators.
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We define

t0 ¼ t
ffiffiffiffiffi
10

p
¼ RFC

ffiffiffiffiffi
10

p
;

Q ¼
ffiffiffiffiffi
10

p
RG 10Rþ RQ

� �
RQð10Rþ 11RGÞ ; KBP ¼

ffiffiffiffiffi
10

p RQ

RG
(19.45)

to obtain

HvBP ¼ KBPst0

Q 1þ s2t02ð Þ þ st0
(19.46)

The bandpass voltage transfer function is expressed

as a function of frequency by

HvBP j2pfð Þ ¼ KBP j f=fcð Þ
Q 1� f=fcð Þ2
h i

þ j f=fcð Þ
(19.47)

where

fc ¼ 1

2pt0
¼ 1

2p
ffiffiffiffiffi
10

p
RFC

(19.48)

The parameter fc is the center frequency, Q is the

quality factor, and K0 is the maximum passband gain

(the gain for f ¼ fc). If Q � 1, the half-power band-

width is given (approximately) by

W ffi fc
Q

(19.49)

The center frequency, quality factor (or band-

width), and maximum passband gain are determined

by the three external resistors RG; RF; RQ. If we

assume R and C are fixed, and that the center fre-

quency, bandwidth, and maximum passband gain are

specified, then from (19.45) and (19.48), the design

equations are

RF ¼ 1

2p
ffiffiffiffiffi
10

p
fc C

; Q ¼ fc
W

;

RG ¼ Q

ffiffiffiffiffi
10

p
R

KBP
;

RQ ¼ 10
ffiffiffiffiffi
10

p
RGR

10Rþ 11RGð ÞQ� ffiffiffiffiffi
10

p
RG

:

(19.50)

Example 19.2. Refer to Fig. 19.10. Assume

R ¼ 100 kO and C ¼ 1 nF. Specify the exter-

nal resistors RG; RF; RQ to obtain a bandpass

filter having center frequency fc ¼ 10 kHz,

bandwidth W ¼ 500Hz, and maximum pass-

band gain KBP ¼ 100. Construct a plot of gain

versus frequency as a check on the design.

Solution: From (19.50) we find

RF ¼ 5:033 kO; Q ¼ 20; RG ¼ 63:246 kO;
RQ ¼ 5:932 kO: Figure 19.11 shows graphs of

gain versus frequency, normalized to the

maximum gain, given by HvBP j2pfcð Þj j ¼
KBP ¼ 100. Thus

Av ¼ 20 log
HvBP j2pfð Þ

KBP

				
				 dB:

In Fig. 19.11(a), 100Hz 
 f 
 1MHz on a

logarithmic scale. In Fig. 19.11(b), 9:75 kHz 

f 
 10:25 kHz on a linear scale, to show

that the half-power (�3 dB) bandwidth is as

specified.

+

–

+

–

+

–

10R

10R

R
C

C
RF

RF

RG

RQ

vH

vL

vB

vS v2

v2

Fig. 19.10 State-variable filter
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Exercise 19.6. Show that the lowpass and

highpass transfer functions for the filter in

Fig. 19.10 are

HvLP sð Þ ¼ KLP

Q 1þ st0ð Þ2
h i

þ st0
;

t0 ¼ t
ffiffiffiffiffi
10

p
;

KLP ¼ � 10R

RG
Q; (19.51)

and

HvHP sð Þ ¼ KHP st0ð Þ2

Q 1þ st0ð Þ2
h i

þ st0
;

t0 ¼ t
ffiffiffiffiffi
10

p
;

KHP ¼ � R

RG
Q: (19.52)

where Q is given by (19.45).

The expressions given above for lowpass, band-

pass, and highpass filters are useful for designing

single-stage (one-biquad) filters. But often, the

required selectivity cannot be achieved with a single

stage. For applications requiring two or more stages, it

is useful to express the transfer functions in terms of

their poles. All three transfer functions have the same

denominator and thus the same poles, given by

p1; p2 ¼ �1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4Q2

p
2Qt0

: (19.53)

In most applications requiring two or more poles,

the poles are complex, in which case Q> 0:5 and

p; p� ¼ �1� j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Q2 � 1

p
2Qt0

: (19.54)

The complex poles are determined by the two para-

meters Q; t0, such that

Re pð Þ ¼ s ¼ � 1

2Qt0
; Im pð Þ ¼ o0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Q2 � 1

p
2Qt0

:

(19.55)

If the poles are specified, then we find from (19.55)

that

Q ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o0

s


 �2þ1

r
; t0 ¼ � 1

2Qs
: (19.56)

Example 19.3. Using the biquad in

Fig. 19.10, with R ¼ 100 kO and C ¼ 1 nF,

design a low-pass filter having poles p; p� ¼
2p fp exp �j3p=4ð Þ, with fp ¼ 4 kHz, and dc

voltage gain HvLP 0ð Þj j ¼ 10.

Solution: From (19.51), the dc gain is

		HvLP 0ð Þ		 ¼ KLP

Q

				
				 ¼ 10R

RG
:

The specified dc gain is 10. Thus

RG ¼ R ¼ 100 kO:

100

(a)

(b)

103 104 105 106
–80

–60

–40

–20

0

9.75 9.9 10 10.1 10.25
–4

–3

–2

–1

0

Av (dB)

f (Hz)

f (kHz)

Av (dB)

Fig. 19.11 See Example 19.2
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The real and imaginary parts of the pole

p are

s ¼ Re pð Þ ¼ 2pfp cos
3p
4

� �
¼ � 2pWffiffiffi

2
p ;

o0 ¼ Im pð Þ ¼ 2pfp sin
3p
4

� �
¼ 2pWffiffiffi

2
p :

From (19.56)

Q ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o0

s


 �2

þ1

r
¼ 1ffiffiffi

2
p ;

t0 ¼ � 1

2Qs
¼ 1

2
ffiffiffi
2

p
QpW

:

From (19.50)

RQ ¼ 10
ffiffiffiffiffi
10

p
RGR

10Rþ 11RGð ÞQ� ffiffiffiffiffi
10

p
RG

ffi 270:58 kO;

Q ¼ fc
W

) fc ¼ WQ;

RF ¼ 1

2
ffiffiffiffiffi
10

p
pfc C

¼ 1

2
ffiffiffiffiffi
10

p
pWQC

ffi 17:79 kO;

and the filter is specified. Figure 19.12 shows a

graph of the gain versus frequency. As a check,

we compute

HvLP j2pWð Þj j ¼ KLP

Q 1þ j2pWt0ð Þ2
h i

þ j2pWt0

						
						

ffi 7:071 ffi 10ffiffiffi
2

p

which is 3 dB below the dc gain, as specified.

The input impedance of the state-variable filter in

Fig. 19.10 is given by

Zin fð Þ¼RG 1� K0j f=fcð Þ
Q 1� f=fcð Þ2
h i

þ j f=fcð Þ

0
@

1
A
�1

; (19.57)

where

K0 ¼ RQ

ffiffiffiffiffi
10

p
RQ

RGð10Rþ RQÞ : (19.58)

The input impedance for f ¼ fc is given by

Zin fcð Þ ¼ RG 10Rþ RQ

� �
10Rþ 11RGð Þ

90R2 þ 110RGRþ 11RGRQ
: (19.59)

Figure 19.13 shows a graph of the magnitude of the

input impedance (normalized to RG) versus frequency,

in the vicinity of the center of the passband, for the

filter considered in Example 19.2. The input imped-

ance (magnitude) is maximum at the passband center,

and, from (19.57), approaches RG for f ! 0 and

f ! 1. It is good practice to calculate the input

impedance to see if loading – especially frequency-

selective loading – is a concern. In this case, if

RG � RS, where RS is the source resistance, loading

might be negligible.

The output impedance for each output of the state-

variable filter in Fig. 19.10 is quite small, as is evident

from the fact that the associated transfer functions are

independent of the load impedance. Of course, this is

because the op amps are assumed to be ideal, but a

tedious analysis using ac models for the op amps also

shows that the output impedances are negligible if the

load impedance is ten or more times the op-amp output

impedance, which is typically in the neighborhood of

100O.
In any case, if loading is a concern, it can be

effectively eliminated by buffering with a voltage

follower.

Av (dB)

f (Hz)

1 10 100 103 104 105
–60

–50

–40

–30

–20

–10

0

10

Fig. 19.12 See Example 19.3

19.5 State-Variable Biquadratic Filter 735



19.6 Modern Filter Design

Modern filter design (which has been around since at

least 1930) consists of various procedures for obtain-

ing the poles of a filter from constraints on the fre-

quency response of the filter. We limit our discussion

of modern filter design to lowpass filters having no
finite zeros.

Figure 19.14 illustrates (in part) typical specifica-

tions on gain for a lowpass filter, consisting of the

upper edge of the passband (the bandwidth) W, the

minimum and maximum allowable gains in the pass-

band, the lower edge fstop of the stopband, and the

maximum allowable gain in the stopband.

Specifications on gain illustrated by Fig. 19.14 do

not uniquely determine the transfer function of a low-

pass filter. There are various ways of imposing the

required additional constraints, each leading to a dif-

ferent filter characteristic. Three common ones are:4

• Butterworth lowpass filters, whose gains are as

frequency-independent as possible in the passband

and decrease monotonically with increasing fre-

quency above the passband;

• Bessel lowpass filters, whose group delays are as

frequency-independent as possible in the passband;

• Type I Chebyshev lowpass filter, whose gains

ripple between specified maximum and minimum

values in the passband and decrease sharply and

monotonically above the passband.

Butterworth filters attempt to minimize amplitude

distortion in the passband, Bessel filters attempt to mini-

mize delay distortion in the passband, and type I Cheby-

shev filters attempt to achieve a sharp transition to a deep

stopband. Of these three types and for any particular set

of specifications on gain, imposed as illustrated by

Fig. 19.14, a type I Chebyshev filter requires the fewest

poles and a Bessel the most. Also for the same set of

specifications, a Bessel filter has the best delay charac-

teristic and the Chebyshev the worst. A Butterworth

filter is intermediate in terms of both gain and delay,

and is probably the most commonly used of the three.

Other types, not treated here, are Chebyshev Type

II filters, which allow ripple in the stopband but not the

passband, and elliptic (Cauer) filters, which allow

ripple in both the passband and stopband. These filters

have finite zeros, and cannot be implemented using the

VCVS circuits described above. They can be imple-

mented using biquads, such as the state-variable filter

described in Section 19.5. You will learn more about

these and other kinds of filters if you take a subsequent

course in signal processing.

We note that the filter circuits treated here each

provide two poles. Although it is possible to design

and build first-order (single-pole) sections, there is no

good reason to do so. With integrated op amps or

biquads, a two-pole section is no more costly than a

single-pole section and generally provides better per-

formance. Thus, active filters (other than delay equal-

izers) are almost always of even order.

Horowitz and Hill5 present a simplified design pro-

cedure for Butterworth, Chebyshev I, and Bessel filters

using one or a cascade of VCVS sections, based upon

the data given in Table 19.1. The procedure is

described and illustrated below.

19.6.1 VCVS Butterworth Filters

For all sections of a Butterworth filter,

RC ¼ 1

o0

¼ 1

2pf0
¼ 1

2pfRC
(19.60)

f (kHz)

Zin
RG

8.5 8.8 9.1 9.4 9.7 10 10.3 10.6 10.9 11.2 11.5
1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

Fig. 19.13 Input impedance (normalized to RG) versus fre-

quency, in the vicinity of the center of the passband, for the

filter considered in Example 19.2

4Look up Butterworth filter in Wikipedia for more complete

descriptions of these filter types.

5Horowitz, Paul and Winfield Hill, The Art of Electronics,
Cambridge University Press, New York, 1989, pp 273–276.
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where f0 ¼ fRC is the specified half-power bandwidth.

Refer to Table 19.1, the two rows opposite N ¼ 4 in

the column headed k under Butterworth. To obtain

a four-pole lowpass Butterworth filter, cascade two

lowpass VCVS sections. Design the first section

(Fig. 19.4(a)) using k ¼ 0:152 and the second using

k ¼ 1:235. Choose R to give an acceptable minimum

input impedance and use (19.60) to determine C.

Example 19.4. Using three VCVS sections in

cascade, design a six-pole lowpass Butterworth

filter having half-power frequency f0 ¼ 10 kHz

and minimum input impedance (magnitude)

greater than 100 kO.
Solution: From (19.60), for each section,

RC ¼ 1

2pfRC
¼ 15:92 ms (19.61)

From Table 19.1, the values of k for the

three sections are 0.068, 0.586, and 1.483.

The sections should be cascaded in that order,

such that the section having the largest input

impedance comes first. From (19.29), the input

impedance (magnitude) for f ¼ fRC and

k ¼ 0:068 is Zin fRCð Þj jk¼0:068 ¼ 1:41R. Choos-

ing R ¼ 100 kO will exceed the specifications.

From (19.61)

C ¼ 1

2pfRCR
¼ 1

2pð Þ 10 kHzð Þ 100 kOð Þ
¼ 159 pF

The filter is a cascade of three sections like

that in Fig. 19.4(a), with

R ¼ 100 kO; C ¼ 159 pF

for all three, and k ¼ 0:068 for the first,

k ¼ 0:586 for the second, and k ¼ 1:483 for

the third. Figure 19.15 shows graphs of voltage

gain, phase shift, and group delay versus fre-

quency and step response versus time for the

filter. The voltage gain and the step response

are normalized to the dc gain, given by

Hv 0ð Þ ¼ 1þ k1ð Þ 1þ k2ð Þ 1þ k3ð Þ ¼ 4:21
) Av 0ð Þ ¼ 12:48 dB:

Note that the duration of the transient

response is approximately 10:5=f0 ffi 1ms

f

passband

Av (dB)

stopband

W

maximum passband gain

maximum stopband gain

∞

minimum passband gain

fstop

Fig. 19.14 Design specifications for lowpass

filters

Table 19.1 Design parameters for VCVS filters: N is the

number of poles and l is the scaling factor for Bessel and

Chebyshev sections6

N Butterworth Bessel Chebyshev

k k l k l

2 0.586 0.268 –1.738 0.842 1.231

4 0.152 0.084 1.432 0.582 0.597

1.235 0.759 1.606 1.660 1.031

6 0.068 0.040 1.607 0.537 0.396

0.586 0.364 1.692 1.448 0.768

1.483 1.023 1.908 1.846 1.011

8 0.038 0.024 1.781 0.522 0.297

0.337 0.213 1.835 1.379 0.599

0.889 0.593 1.956 1.711 0.861

1.610 1.184 2.192 1.913 1.006

6Adapted from Table 5.2 in Horowitz and Hill (ibid).
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19.6.2 VCVS Bessel Filters

The procedure for designing a Bessel filter as a cas-

cade of VCVS sections differs from that for a Butter-

worth filter, in that the frequency fRC for each section

must be scaled by the factors l given in Table 19.1.

Example 19.5. Using three VCVS sections in

cascade, design a six-pole lowpass Bessel filter

having half-power frequency f0 ¼ 10 kHz and

minimum input impedance (magnitude)

greater than 100 kO.
Solution: From Table 19.1, the values of the

scale factor l for the three sections are 1.607,

1.692, and 1.908. This means, for example,

that for the first section fRC ¼ 1:607f0, where

f0 is the specified overall half-power fre-

quency. Thus the RC products for the three

sections are:

RCð Þ1¼
1

2pfRC1

¼ 1

2pl1f0
¼ 1

2p 1:607ð Þ 10kHzð Þ
¼ 9:904ms

RCð Þ2¼
1

2pfRC2
¼ 1

2pl2f0
¼ 1

2p 1:692ð Þ 10kHzð Þ
¼ 9:406ms

RCð Þ3¼
1

2pfRC3
¼ 1

2pl3f0
¼ 1

2p 1:908ð Þ 10kHzð Þ
¼ 8:431ms

We choose R ¼ 100 kO for all sections, for

which value the input impedance (of the first

section) will meet or exceed the specification

Zinj j � 100 kO. The required values for the

capacitances are then

C1 ¼RC1

R
¼ 9:904 ms

100 kO
¼ 99:04 pF

C2 ¼RC2

R
¼ 9:406 ms

100 kO
¼ 94:06 pF

C3 ¼RC3

R
¼ 8:431 ms

100 kO
¼ 84:31 pF

f
f0

f0 Dv ( f )

Av (f ) (dB)

f
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Fig. 19.15 See Example 19.4
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The filter is a cascade of three sections like

that in Fig. 19.4(a), R ¼ 100 kO and the capac-

itance values given above, and with k ¼ 0:040

for the first, k ¼ 0:364 for the second, and

k ¼ 1:023 for the third. Again, VCVS sections

should generally be cascaded in the order

implied by Table 19.1. Figure 19.16 shows

graphs of voltage gain, phase shift, and group

delay versus frequency and step response ver-

sus time for the filter. The voltage gain and the

step response are normalized to the dc gain,

given by

Hv 0ð Þ ¼ 1þ k1ð Þ 1þ k2ð Þ 1þ k3ð Þ ¼ 2:87
) Av 0ð Þ ¼ 9:16 dB

Exercise 19.7. The maximum amplitude of

the input to an eight-pole lowpass Chebyshev

filter is 500 mV. The op amps are dual-supply,

rail-to-rail. What supply voltage is required?

19.6.3 VCVS Chebyshev Filters

The procedure for designing a VCVS Chebyshev filter

is like that for a VCVS Bessel filter, except that the

frequency f0 is not the half-power frequency. It is the

frequency at which the voltage gain begins its plunge

into the stopband. Also, whereas the voltage gains of

Butterworth and Bessel filters are monotonically

decreasing in the passband, the voltage gain of a

Chebyshev filter can ripple throughout the passband.

The voltage gain of a Chebyshev filter designed using

the parameters in Table 19.1 exhibits a 0.5 dB pass-

band ripple.

Example 19.6. Design a six-pole lowpass

Chebyshev filter having 0.5 dB passband

ripple, bandwidth f0 ¼ 10 kHz; and minimum

input impedance (magnitude) of at least 100 kO.
Obtain the voltage transfer function for the filter

and plot the gain, phase shift, and group delay

versus frequency, for 0:1f0 
 f 
 10f0.
Solution: From Table 19.1, the values of the

scale factor l for the three sections are 0.396,

f

f0

f0 Dv ( f )

Av (f ) (dB)

f
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f
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Fig. 19.16 See Example 19.5
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0.768, and 1.011. This means, for example,

that for the first section fRC ¼ 0:396f0, where

f0 is the specified passband edge. Thus the RC

products for the three sections are:

RCð Þ1 ¼
1

2pfRC 1

¼ 1

2pl1 f0
¼ 1

2p 0:396ð Þ 10 kHzð Þ
¼ 40:19 ms

RCð Þ2 ¼
1

2pfRC2
¼ 1

2pl2 f0
¼ 1

2p 0:768ð Þ 10 kHzð Þ
¼ 20:72 ms

RCð Þ3 ¼
1

2pfRC3
¼ 1

2pl3 f0
¼ 1

2p 1:011ð Þ 10 kHzð Þ
¼ 15:74 ms

We choose R ¼ 100 kO for all sections, for

which value the input impedance (of the first

section) will meet or exceed the specification

Zinj j � 100 kO. The required values for the

capacitances are then

C1 ¼RC1

R
¼ 40:19 ms

100 kO
¼ 401:906 pF

C2 ¼RC2

R
¼ 20:72 ms

100 kO
¼ 207:233 pF

C3 ¼RC3

R
¼ 15:74 ms

100 kO
¼ 157:423 pF

The filter is a cascade of three sections like

that in Fig. 19.4(a), with R ¼ 100 kO and the

capacitance values given above, and with

k ¼ 0:537 for the first, k ¼ 1:448 for the sec-

ond, and k ¼ 1:846 for the third. Again, VCVS

sections should generally be cascaded in the

order implied by Table 19.1. Figure 19.16

shows graphs of voltage gain, phase shift, and

group delay versus frequency and step

response versus time for the filter. The voltage

gain and the step response are normalized to

the dc gain, given by

Hv 0ð Þ ¼ 1þ k1ð Þ 1þ k2ð Þ 1þ k3ð Þ ¼ 10:71
) Av 0ð Þ ¼ 20:59 dB:

The 0.5 dB passband ripple is not visible

on the scale used for gain in Fig. 19.16.

Figure 19.18 shows the gain in the passband on

a scale that makes the ripple visible.

From Figs. 19.15, 19.16, and 19.17, the voltage

gain at f ¼ 10f0 is about�120 dB for the Butterworth,

about �100 dB for the Bessel, and about –140 dB for

the Chebyshev.

Of the three types treated here, the Chebyshev

has the steepest and the Bessel the least steep initial
transition from passband to stopband, with the Butter-

worth somewhere in between. Of course, for frequen-

cies well above the corner frequency, the slope of the

gain is � 20n dB=decade for all three, where n is the

filter order (number of poles).

The Butterworth has the flattest passband gain and

a sharp knee (downward turn) at the half-power fre-

quency. The Bessel voltage gain exhibits a bit more

droop in the passband and a gentler knee. The Cheby-

shev exhibits passband ripple. The others do not.

The Bessel step response exhibits the fastest rise

time and no ringing, the Butterworth a slightly longer

rise time and some ringing, and the Chebyshev exhi-

bits a fast rise, but with considerable ringing and a

long settling time.

The Chebyshev has (by far) the worst delay charac-

teristic of the three. The Bessel has the best delay

characteristic and the Butterworth delay characteristic

is somewhere in between.

Which of the three types one chooses depends upon

the relevant performance criteria. Generally, for some

audio applications (such as telephone-quality speech),

delay distortion is less important than gain distortion,

and one might choose a Butterworth or Chebyshev.

For video signals, delay distortion is at least as impor-

tant as gain distortion, and Bessel might be a good

choice. For digital (binary pulse) signals, delay distor-

tion is perhaps more important than gain distortion –

so much so that none of the filters described above

might meet performance criteria, and one might incor-

porate delay equalization or use other kinds of filters

not treated here.7

7Ability to achieve frequency-independent delay in the passband

is one of the more important justifications for using certain kinds

of digital filters.
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19.7 Problems

In the problems that follow, plot all gains (normalized

appropriately) in dB . Also, most problems require use

of a computer and/or simulation software.

P 19.1 Refer to Fig. P 19.1. (a) By inspection, deduce

the dc voltage gain and the voltage gain for f ! 1. (b)

Assume the source resistance is negligible and obtain

the voltage transfer function for the circuit. What kind of

filter is this? (c) Obtain an expression for the frequency

at which the gain is 6 dB below its maximum value.

P 19.2 The four poles of a certain lowpass filter are

given by

pk ¼ j2pW exp
j 2k þ 1ð Þo

8

� 
; k ¼ 0; 1; 2; 3

where W ¼ 15 kHz. Use two state-variable biquads

in cascade to implement the filter. Construct plots

of gain and group delay versus frequency, for

100Hz 
 f 
 1:5MHz.

P 19.3 See Fig. P 19.2. (a) Let t ¼ RC and obtain an

expression for the voltage transfer function. (b) Let

f

f0

f0Dv ( f )

Φv ( f )

π
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R ¼ 10 kO and C ¼ 15:92 pF. Plot the voltage gain in

dB, normalized to the dc voltage gain, for 0.01 Hz 

f 
 100 kHz. What kind of filter is this?

P 19.4 See Fig. P 19.3. (a) Let t ¼ RC and obtain an

expression for the voltage transfer function. (b) Let

R ¼ 10 kO and C ¼ 15:92 pF. Plot the voltage gain

versus frequency for 1 Hz 
 f 
 100 kHz. What kind

of filter is this?

P 19.5 See Fig. P 19.4. (a) Let t ¼ RC and obtain an

expression for the voltage transfer function. (b) Let

R ¼ 10 kO and C ¼ 15:92 pF. Plot the voltage gain

versus frequency for 100 Hz 
 f 
 10 kHz. What

kind of filter is this?

P 19.6 The three outputs of a state-variable biquad

can beweighted and summed as illustrated by Fig. P 19.5

to provide a voltage transfer function of the form

Hv ¼ K
s� zð Þ s� z�ð Þ
s� pð Þ s� p�ð Þ :

Design such a filter for which K ¼ 20, p ¼
2pW �1þ j8ð Þ, and z ¼ �p, with W ¼ 5 kHz. Con-

struct plots of voltage gain and group delay versus

frequency, for 10Hz 
 f 
 500 kHz. What kind of

filter is this?

P 19.7 Design a four-pole lowpass VCVS Butter-

worth filter having half-power frequency 5 kHz and

minimum input impedance (magnitude) 200 kO. Con-
struct plots of gain and group delay versus frequency

for 50Hz 
 f 
 500 kHz. If the supply voltage is

� 15V, what is the maximum allowable amplitude

of an input (for linear operation)?

P 19.8 Design a four-pole lowpass VCVS Bessel

filter having half-power frequency 5 kHz and mini-

mum input impedance (magnitude) 200 kO. Construct
plots of gain and group delay versus frequency for

50Hz 
 f 
 500 kHz. If the supply voltage is

� 15V, what is the maximum allowable amplitude

of an input (for linear operation)?

P 19.9Design a four-pole lowpass VCVSChebyshev

filter having passband edge frequency 5 kHz, passband

ripple 0.5 dB, and minimum input impedance (magni-

tude) of 200 kO. Construct plots of gain and group

delay versus frequency for 50Hz 
 f 
 500 kHz. If

the supply voltage is � 15V, what is the maximum

allowable amplitude of an input (for linear operation)?
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P 19.10 Design an eight-pole lowpass VCVS

Butterworth filter having half-power frequency

50 kHz and minimum input impedance (magnitude)

200 kO. Construct plots of gain and group delay

versus frequency for 500Hz 
 f 
 5MHz. If the

supply voltage is � 15V, what is the maximum

allowable amplitude of an input (for linear opera-

tion)?

P 19.11 Design an eight-pole lowpass VCVS

Bessel filter having half-power frequency 50 kHz and

minimum input impedance (magnitude) 200 kO. Con-
struct plots of gain and group delay versus frequency

for 500Hz 
 f 
 5MHz. If the supply voltage is

� 15V, what is the maximum allowable amplitude

of an input (for linear operation)?

P 19.12 Design an eight-pole lowpass VCVS

Chebyshev filter having passband edge frequency

50 kHz, passband ripple 0.5 dB, and minimum input

impedance (magnitude) 200 kO. Construct plots of

gain and group delay versus frequency for 500Hz 

f 
 5MHz. If the supply voltage is � 15V, what is

the maximum allowable amplitude of an input (for

linear operation)?

P 19.13 Design a four-pole highpass VCVS Butter-

worth filter having half-power frequency 5 kHz and

minimum input impedance (magnitude) 200 kO. Con-
struct plots of gain and group delay versus frequency

for 50Hz 
 f 
 500 kHz. If the supply voltage is

� 15V, what is the maximum allowable amplitude

of an input (for linear operation)?

P 19.14 Design a four-pole highpass VCVS Bessel

filter having half-power frequency 5 kHz and mini-

mum input impedance (magnitude) 200 kO. Construct
plots of gain and group delay versus frequency for

50 Hz 
 f 
 500 kHz. If the supply voltage is

� 15 V, what is the maximum allowable amplitude

of an input (for linear operation)?

P 19.15 Design a four-pole highpass VCVS Cheby-

shev filter having passband edge frequency 5 kHz,

passband ripple 0.5 dB, and minimum input imped-

ance (magnitude) 200 kO. Construct plots of gain

and group delay versus frequency for 50Hz 

f 
 500 kHz. If the supply voltage is � 15V, what is

the maximum allowable amplitude of an input (for

linear operation)?

P 19.16 Design an eight-pole highpass VCVS But-

terworth filter having half-power frequency 50 kHz

and minimum input impedance (magnitude) 200 kO.
Construct plots of gain and group delay versus fre-

quency for 500Hz 
 f 
 5MHz. If the supply voltage

is � 15V, what is the maximum allowable amplitude

of an input (for linear operation)?

P 19.17 Design an eight-pole highpass VCVS

Bessel filter having half-power frequency 50 kHz

and minimum input impedance (magnitude) 200 kO.
Construct plots of gain and group delay versus fre-

quency for 500Hz 
 f 
 5MHz. If the supply voltage

is � 15V, what is the maximum allowable amplitude

of an input (for linear operation)?

P 19.18 Design an eight-pole highpass VCVS

Chebyshev filter having passband edge frequency

50 kHz, passband ripple 0.5 dB, and minimum input

impedance (magnitude) 200 kO. Construct plots of

gain and group delay versus frequency for 500Hz 

f 
 5MHz. If the supply voltage is � 15V, what is

the maximum allowable amplitude of an input (for

linear operation)?

P 19.19 If two four-pole lowpass VCVS Butter-

worth filters are connected in cascade, is the result a

Butterworth filter? Justify your answer.

P 19.20 If two two-pole lowpass VCVS Chebyshev

filters are connected in cascade, is the result a Cheby-

shev filter? Justify your answer.

P 19.21 If two eight-pole lowpass VCVS Bessel

filters are connected in cascade, is the result a Bessel

filter? Justify your answer.

P 19.22 Three sinusoids having frequencies 0:01f0,

f0, and 100f0 are applied (individually) to the input

terminals of a two-pole lowpass Butterworth filter

having half-power bandwidth f0 and dc gain 10 dB.

The rms amplitude of each is 200mV.What are the

(approximate) peak amplitudes of the outputs?

P 19.23 Three sinusoids having frequencies 0:01f0,

f0, and 100f0 are applied (individually) to the input

terminals of a four-pole lowpass Butterworth filter

having half-power bandwidth f0 and dc gain 20 dB.

The rms amplitude of each is 200mV.What are the

(approximate) peak amplitudes of the outputs?

P 19.24 Three sinusoids having frequencies 0:01f0,

f0, and 100f0 are applied (individually) to the input

terminals of a six-pole lowpass Butterworth filter

having half-power bandwidth f0 and dc gain 30 dB.

The rms amplitude of each is 200mV.What are the

(approximate) peak amplitudes of the outputs?

P 19.25 Three sinusoids having frequencies 0:01f0,

f0, and 100f0 are applied (individually) to the input

terminals of an eight-pole lowpass Butterworth filter

having half-power bandwidth f0 and dc gain 40 dB.

The rms amplitude of each is 200mV.What are the

(approximate) peak amplitudes of the outputs?
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Appendix: Answers to Exercises

1. Chapter 1

Exercise 1.1. Physical law.

Exercise 1.2. (a), (b), (f), (g), (i), (j) are quantities. (c),

(d), (e), (n) are units. (k) is neither. (l), (m) could be

quantities if we could devise suitable definitions and

measurements. (h) could be a quantity if we define

color in terms of frequency.

Exercise 1.3. (a) W (b) J (c) A (d) W (e) s (f) Nm ¼ J.

Exercise 1.4. SI 1
L

R t0
�1 vðt0Þdt0� � ¼ SI i½ � ¼ A.

Exercise 1.5. (a) No, (b) Yes.

Exercise 1.6. (a) 10�4 As�1, (b) 104 Vs�1, (c) 105 VA,

(d) 1010m s�2.

Exercise 1.7. (a) 5mVs�1¼5mV
ms ¼5nV

ms , (b) 25kAms¼
25Ams¼25MAns, (c) 100mJms�1¼ 100mJms�1¼
100 Js�1.

Exercise 1.8. (a) No space, milli (b), (e) first m is

meter, second is milli (c), (d) meter

Exercise 1.9. Av ffi 1=b; b determines the gain.

Exercise 1.10. x ffi 5:064.

Exercise 1.11. (a) 0:495, (b) 5, (c) 1, (d) 3:02, (e) 50.

Exercise 1.12. (a) i0, (b) 0.
Exercise 1.13. (a) 2:015� 103, (b) 16:38� 106,

(c) 759� 10�3, (d) 462� 10�6, (e) 4:792� 103.

2. Chapter 2

Exercise 2.1. I ¼ 2Nqp=T where qp is the charge of a

proton. SI 2Nqp=T
� � ¼ Cs�1 ¼ A.

Exercise 2.2. h ¼ u2=ð2gÞ; SI u2=ð2gÞ½ � ¼ m.

Exercise 2.3. q ¼ d
ffiffiffiffiffiffiffiffiffiffiffi�f=k

p
; SI d

ffiffiffiffiffiffiffiffiffiffiffi�f=k
ph i

¼ C.

Exercise 2.4. F x1ð Þ ¼ x0
ffiffiffiffiffi
kf

p 1

x1
þ 1

x1 � x0

� �
;

SI x0
ffiffiffiffiffi
kf

p 1

x1
� 1

x1 � x0

� �� �
¼ V.

Exercise 2.5. d ¼ x2avab
kq� xavab

; SI
x2avab

kq� xavab

	 

¼ m.

Exercise 2.6. i2 ¼ �10 mA.
Exercise 2.7. w1 ¼ w0r1=r0.
Exercise 2.8. 14.4 nm.
Exercise 2.9. 1 kO.
Exercise 2.10. (a) 9:5 O (b) 127 O.
Exercise 2.11. 49:9 kO from the E96 series.
Exercise 2.12. (a) 4:3 kO� 5% (b) 459 kO� 0:1%.

Exercise 2.13. Various answers

Exercise 2.14. Because 298 K ¼ 25�C, 298 K is the

reference temperature.

Exercise 2.15. a10 ¼ 0:0042 K�1.

Exercise 2.16. 4.
Exercise 2.17. 10.2.

Exercise 2.18. (a) (i) 0:42O, (ii) 4:08O; (b) (i) 0:33O,
(ii) 3:23O
Exercise 2.19.

103 104 105 106 107 108 109

0.01

0.1

1

10

0.001

f (Hz)

d 20 (mm) d 100 (mm)

T.H. Glisson, Introduction to Circuit Analysis and Design,
DOI 10.1007/978-90-481-9443-8, # Springer ScienceþBusiness Media B.V. 2011
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3. Chapter 3

Exercise 3.1. vbd ¼ 15 V; vcd ¼ 5V; vda ¼ �20 V;

v1 ¼ �5 V; vb ¼ 15V.

Exercise 3.2. (a) The series connection of elements

1 and 2 is in parallel with the series connection of

elements 3 and 4. (b) The parallel connection of

elements 1, 2, and 3 is in series with element 4.

Exercise 3.3. vab ¼ v1 � v2 � v3, vac ¼ v1 � v3, vbd ¼
v2 þ v3.

Exercise 3.4. No. i2 ¼ i1þi3 so the sources aren’t

independent.

Exercise 3.5. Let Rnm ¼ RnRm

Rn þ Rm
; I1 ¼ R23I0

R1 þ R23

;

I2 ¼ R13I0
R2 þ R13

; I3 ¼ R12I0
R12 þ R3

.

Exercise 3.6. v1 ¼ R1

R1 þ R2

v0.

Exercise 3.7.

i1¼ R3v2� R2þR3ð Þv1
R1R2þR1R3þR2R3

; i3¼R2

R3

R3v1� R1þR3ð Þv2
R1R2þR1R3þR2R3

.

Exercise 3.8. vac ffi �0:015v0; vbc ffi 0:463v0.

Exercise 3.9. að Þ � i1þ va
R1

þva� vd� v2� v1ð Þ
R2

¼ 0;

dð Þ vd
R4

þ vd� v2
R3

þvd� v2� v1� va
R2

¼ 0.

Exercise 3.10. ðbÞ vb � R1i1
R1 þ R2

þ vc
R3

þ vc þ v2
R4

¼ 0;

ðcÞ vc
R3

þ vc þ v2
R4

þ vb � R1i1
R1 þ R2

¼ 0.

Exercise 3.11. Choose node c as reference node.

vb ¼ R1R2R3 i1 þ i2ð Þ þ v1
R1R2 þ R1R3 þ R2R3

.

Exercise 3.12. No. v3 ¼ v1þv2 so the sources aren’t

independent.

Exercise 3.13. i1 ¼ R2 þ R3ð Þva � R3vb
R1R2 þ R1R3 þ R2R3

.

Exercise 3.14.

i1 ¼ RBv0 þ R2R3 � R2R4ð Þi0
RARB � R2

2

;

i2 ¼ R2v0 þ RA R3 � 5R4ð Þi0
RARB � R2

2

;

RA ¼ R1 þ R2; RB ¼ R2 þ R3 þ R4:

Exercise 3.15. Answer given in problem statement.

4. Chapter 4

Exercise 4.1. ia ¼ � 3

2R0

þ 1

R1

� �
va þ 3v0

2R0

� i0.

Exercise 4.2.

Req ¼ R1 2R0
2 þ 4R0R2 þ R2

2Þð
2R0

2 þ 4R0R2 þ R2
2 þ 2R1 R0 þ R2ð Þ .

Exercise 4.3. a ¼ �2; b ¼ 19=5; g ¼ 6=5; d ¼ �1.

Exercise 4.4. 8:77 O.

Exercise 4.5. (a) vx ¼ R0R1R2

R1 R0 þ R2ð Þ þ R0R2

i0 � i1ð Þ

(b) vx ffi � R1R2

R1 þ R2

i1 (c) 1:06%.

Exercise 4.6. (a) RT ¼ 0:91R, vT ¼ 0:91Ri0� 0:48v0
(b) RN ¼ 0:91R, iN ¼ i0 � 0:53 v0=Rð Þ:

Exercise 4.7. vT ¼ v0 þ 4v1 þ 12Ri0
7

, RT ¼ 12

7
R:

Exercise 4.8. iN ¼ i0 þ 7v0 þ 4v1
12R

; RN ¼ 12

7
R.

Exercise 4.9. vT ¼ R2�R1ð Þv2i1
R2i1� v2

, RT ¼ R2v2�R1R2i1
R2i1� v2

.

Exercise 4.10. RN ¼ R2 3R1 þ 2R2ð Þ
R1 þ R2

.

5. Chapter 5

Exercise 5.1. Answer given in problem statement.

Exercise 5.2.

pR ¼ ð1=9RÞ V0 � 2RI0ð Þ2 cos2 o0 tð Þ � 0

p2R ¼ ð2=9RÞðV0 þ RI0Þ2 cos2 o0 tð Þ � 0

pi ¼ �ð2=3ÞðV0I0 þ RI0
2Þ cos2 o0 tð Þ 	 0

pv ¼ �ð1=3RÞðV0
2 � 2RI0V0Þ cos2 o0 tð Þ

pR> 0 and p2R> 0 so the resistors consume energy.

pi < 0, so the current source produces energy. If

V0
2�2RI0V0 > 0, then Pv < 0 and the voltage source

produces energy. If V0
2�2RI0V0 < 0, then pv > 0 and

the voltage source consumes energy.

Exercise 5.3. P ¼ 25mW; V ¼ 5V; w ¼ 50mJ.

Exercise 5.4. P ffi 547mW:

Exercise 5.5. Answer given in problem statement.

Exercise 5.6.

p̂ ¼ P0

2
1þ cos yð Þ½ � ¼ P0 cos

2 y
2

� �
Exercise 5.7. Answer given in problem statement.
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Exercise 5.8.

VS

VS = 12.6V, RS = 0.1 Ω

IS RS

RS

IS = = 126A, RS = 0.1 Ω
RS

VS

IL max = IS = 126APL max = 4RS

VS
2

4

IS
2 RS=
4

≅  397W;

+
–

Exercise 5.9. There are two solutions:

RT ffi 179O
0:557O

	 

; VT ffi 189V

10:6V

	 

) IN ffi 1:06A

19:0A

	 

.

Exercise 5.10. 1=2.

Exercise 5.11. 1þ cos y1 � y2ð Þ.
Exercise 5.12. Let x1 tð Þ ¼ x2 tð Þ ¼ cos o tð Þ )
x1x2 ¼ cos2 o tð Þ ¼ 1

2
; x1 x2 ¼ cos o tð Þ cos o tð Þ ¼ 0.

Exercise 5.13. 1.

Exercise 5.14. p tð Þ¼ I20R

2
þ I20R

2
cosð4pf tÞ; p̂¼ 1:5kW;

P¼ 750W.

Exercise 5.15.

PR1
¼R2

R1

i0� i1ð Þ2; PR2
¼R2

R2

i0� i1ð Þ2; i0� i1ð Þ2

¼ 1

2
I20þ I21�2I0I1 cos yð Þ� �

Pi0 ¼�I20R

2
þ I0I1R

2
cos yð Þ; Pi1 ¼�I21R

2
þ I0I1R

2
cos yð Þ:

Exercise 5.16. ðaÞ 25mA ðbÞ 5 VðcÞ 10ffiffi
2

p V ðdÞ 10ffiffi
2

p mA.

Exercise 5.17.

PR ¼ V2
0 þ I0Rð Þ2

4R
; Pi ¼ � 1

4
V0I0 þ I20R
� �

;

Pv ¼ �V2
0 � V0I0R

4R
; PR þ Pi þ Pv ¼ 0:

Exercise 5.18. (a) 4 s, (b) 10�7%.

Exercise 5.19. Yes. Measure peak and divide by
ffiffiffi
2

p
.

Exercise 5.20. 1:037 kO.
Exercise 5.21. The load voltages are equal and given

by VL ¼ V0

2
:

Exercise 5.22. Pmax ¼V2
0 RþR0ð Þ
4RR0

; PV0
¼� V2

0

2R0

Rþ2R0

RþR0

� �
; PR0

¼ V2
0

4R0

Rþ2R0

RþR0

� �2

; PR ¼ V2
0R

4 RþR0ð Þ2 .
Exercise 5.23. 0.5.

Exercise 5.24. PL ¼ 2RL R2
0I

2
0 þ V2

0

� �
R0 þ R1 þ 2RLð Þ2 ¼ 25mW:

6. Chapter 6

Exercise 6.1. Rin ¼ R1 R2 þ R3 RLkð Þk ¼
R1 R2R3 þ R2RL þ R3RLð Þ

R1R3 þ R1RL þ R2R3 þ R2RL þ R3RL

Rout ¼ R3 R2 þ R1 RSkð Þk ¼
R3 R2R1 þ R2RS þ R1RSð Þ

R1R3 þ R1RS þ R2R1 þ R2RS þ R3RS
,

(b) and (c) same as (a).

Exercise 6.2. g ¼ m=R.

Exercise 6.3. vab ¼ RoRL

Ro þ RL

� �
RiRS

Ri þ RS

� �
gis.

Exercise 6.4. Rin ¼ R1

1þ b
.

Exercise 6.5. vT ¼ RoRL

Ro þ RL

� �
RiRS

Ri þ RS

� �
gis;

RT ¼ RoRL

Ro þ RL
.

Exercise 6.6.

vout ¼ 7m� 1ð Þv1 � 1þ 4mð Þv2 þ 11b� 4m� 1ð ÞRi1
m� 19

.

Exercise 6.7. m1 ¼ 0.

Exercise 6.8. m ¼ gR0.

Exercise 6.9.

Rin ¼
Ri Rf RL þ Roð Þ þ RLRo

� �
Rf RL þ Roð Þ þ RLRo þ Ri Ro þ RL mþ 1ð Þ½ � ;

Rout ¼
Ro Rf Ri þ RSð Þ þ RiRS

� �
Rf þ Ro

� �
Ri þ RSð Þ þ mþ 1ð ÞRiRS

:

Exercise 6.10.

Ri

Ro

v1 mv1

+

–

+
–

(a) Ri ¼ Ri1, Ro ¼ Ro2, m ¼ Ro1Ro2

Ro1 þ Ri2
b2g1,

(b) VCCS: Ri ¼ Ri1, Ro ¼ Ro2, g ¼ Ro1

Ro1 þ Ri2
b2g1,

CCVS: Ri ¼ Ri1, Ro ¼ Ro2, r ¼ Ri1Ro1Ro2

Ro1 þ Ri2
b2g1

CCCS: Ri ¼ Ri1, Ro ¼ Ro2, b ¼ Ri1Ro1

Ro1 þ Ri2
b2g1.
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Exercise 6.11.

RT = 7.5 Ω

RN = 7.5 ΩVT = 15V IN = 2A+
–

Exercise 6.12. No. Magnitudes only.

Exercise 6.13. 7.5 W.

Exercise 6.14. Two.

Exercise 6.15. RL=RS � 19:

Exercise 6.16. RL=RS 	 0:053:

Exercise 6.17. 8=9 ffi 0:889:

Exercise 6.18. 0:63 	 RL=RS 	 1:58:

Exercise 6.19. D ¼ Ri þ RSð Þ Ro þ RLð Þ

Hv ¼ mRiRL

D
, Hr ¼ mRiRSRL

D
;

Hg ¼ mRi

D
; Hi ¼ mRiRS

D
:

Exercise 6.20. D ¼ RS þ Rið Þ Ro þ RLð Þ,

Av ¼ rRL

D
, Ai ¼ rRS

D
,

Ag ¼ r

D
, Ar ¼ rRSRL

D
.

Exercise 6.21. D ¼ RS þ Ri1ð Þ Ro1 þ Ri2ð Þ Ro2 þ RLð Þ

Av ¼ rbRo2RL

D
; Ai ¼ rbRSRo2

D
;

Ag ¼ rbRo2

D
; Ar ¼ rbRSRo2RL

D
:

Exercise 6.22. Av ¼ AiRL=RS, Ag ¼ Ai=RS, Ar ¼ RLAi.

Exercise 6.23. (a) a ¼ 1=RL; (b) a ¼ 1=RS;

(c) a ¼ 1=RS; (d) a ¼ 1:

Exercise 6.24. Results follow immediately from rela-

tions among the gains (see Example 7.12).

Exercise 6.25. Usually no, because increasing the out-

put resistance of the source increases the power wasted

(decreases the power transferred to the load).

Exercise 6.26. No, they are consistent because Ai ¼
RSAv=RL.

Exercise 6.27. AP ¼ 6:31� 1010:

Exercise 6.28. PA ¼ 0:5mW:

Exercise 6.29. Follows immediately from

Exercise 6.24.

Exercise 6.30. D ¼ Ro þ RLð Þ RS þ Rið Þ

AvdB ¼ 20 log
RiRoRLg

D

� �
; AidB ¼ 20 log

RSRiRog

D

� �
;

APdB ¼ 10 log
4RS

RL

� �
þ 20 log

RiRoRLg

D

� �
:

Exercise 6.31. 114 dB.

7. Chapter 7

Exercise 7.1. (a) (ii), (b) (iv), (c) (i), (d) (iii).

Exercise 7.2. (a) (iii), (b) (iv), (c) (i), (d) (ii).

Exercise 7.3. vL ¼ �R4

R3

1þ R2

R1

� �
vS.

Exercise 7.4. vL ¼ v1 þ v2.
Exercise 7.5.

Rin¼
m0þ1ð ÞRLRiR1þ R1þRið Þ R2 RLþRoð ÞþRoRL½ �þRiR1Ro

R2 RoþRLð ÞþRL RoþR1ð ÞþR1Ro
:

Exercise 7.6. Rout ffi Av

m0 þ Av
Ro:

Exercise 7.7. Exact: Rin ¼ 974 GO; Rout ¼ 808 mO
Approx: Rin ¼ 990 GO; Rout ¼ 808 mO.
Exercise 7.8. Answer given in problem statement.

Exercise 7.9. Inverting amp: Exact Av ¼ 99;Rin ¼
10 kO; Rout ¼ 10:01mO.
Approx: Av ffi 99:01; Rin ffi 10 kO; Rout ffi 9:9mO.
Non-inverting amp: Av ¼ 101; Rin ¼ 97:1GO;Rout ¼
10:1mO
Approx: Av ffi 101; Rin ffi 99GO; Rout ffi 10:1mO:
Exercise 7.10. Answer given in problem statement.

Exercise 7.11. PAmax ¼ 78:1 mW (virtually any op

amp will satisfy this requirement).

Exercise 7.12. R0
L ¼ RL R1þR2ð Þ ffi 998Ok ;

PA max ¼ V2
CC

4R0
L

ffi 157mW.

8. Chapter 8

Exercise 8.1.

0
t

v

0
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Exercise 8.2.

Exercise 8.3. i tð Þ ¼ 2pf V C cos 2pftð Þ, max i tð Þj j ¼
2pf V C ¼ 31:42A:
Exercise 8.4.

Exercise 8.5. lim
t!1 vC tð Þ ¼ RI0:

Exercise 8.6. The model is unrealistic if i0 has a

dc component, because the charge on the capacitor

would grow without bound (mathematically). Also, if

the voltage vC is the quantity of interest, the resistor is

irrelevant, and one must wonder why it is in the

model. We cannot find the voltage vC t1ð Þ at any

time t1 unless we know (or are given) v t0ð Þ for some

time t0 	 t1 and an expression for the current i0 tð Þ for
t0 	 t 	 t1.

Exercise 8.7. R ffi 101O:

Exercise 8.8. C ffi 39:1 pF:

Exercise 8.9. ffi 50 ms at 1; ffi 250 ms at 2:

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

v (V)

t (µs)

Exercise 8.10. vC; i2.

Exercise 8.11. 4C.

Exercise 8.12. No, because the models would still allow

capacitor voltages to change instantaneously.

Exercise 8.13.

X5R ) �55�C to 85�C;� 15%;

Y5V ) �30�C to 85�C; þ 22%; �82%;

Z5U ) 10�C to 85�C; þ 22%; �56%:

Exercise 8.14. Any combination __ __ __, where the

first character is X, or Y, the second is 5 or 7, and the

third is A,B,C,D,E,F,P,R,S,T, or U.

Exercise 8.15.

0 1 2 3 4 5 6 7 8 9 10 11 12
0

0.1

0.2

0.3

t (ms)

w (fJ )

dv

dt
4ms ≤ t < 5ms: C = 0

5V

4ms

dv

dt
0 ≤ t < 4ms: C = (20pF) = 25 nV

–10V

2ms

dv

dt
5ms ≤ t < 7ms: C = (20pF) = –100 nV

5V

2ms

dv

dt
10ms ≤ t < 12ms: C = (20pF) = 50nV

v (t)

t (ms)

–100nV

50nV

25nV

t (µs)

v (t) (V)

etc...

6

4

–2

3 6 8

12

4

1
C s

V10mA

5nF
× t ; 0 ≤ t < 3 μs× t =  2 × 106∫0

t i (t ′) dt ′ =
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Exercise 8.16. t¼RC;exp �t=tð Þ¼1=
ffiffiffi
2

p ) tffi866ns.

Exercise 8.17. vC tð Þ¼14:14þ31:6cos 2pf0 tð ÞV; f0¼
20kHz:

Exercise 8.18. (a) ffi 10:9MHz, (b) ffi 11V:

Exercise 8.19.

vout ¼ 0; t 	 0
�V0 sin 2p ftð Þ= 2 p f RCÞ; t > 0ð
	

Exercise 8.20. (a) VCC � 25V, (b) ffi 5 ns:

Exercise 8.21. C ffi 563 mF.

Exercise 8.22. V ¼ IR; 99I ¼ 99
V

R
¼ CVo0 ) C ¼

99

o0R
ffi 158 mF:

Exercise 8.23. f<18:4Hz:

Exercise 8.24.

t ¼ � Td

ln 1� 2DV=Vmaxð Þ :

9. Chapter 9

Exercise 9.1. H.

Exercise 9.2. 97:18 mm; 0:724O:
Exercise 9.3.

Exercise 9.4. v tð Þ ¼ 2 p f I1 cosð2 p f tþ p=4Þ:
Exercise 9.5.

i tð Þ ¼ 0; t< 0; i tð Þ ¼ V0t=LÞ 1� e�t=t
� �

;
�

t � 0:

Exercise 9.6.

1.5

1.0

–0.5

3 6 8

12
t (µs)

i (t) (µA)

4
0

Exercise 9.7. Answer implied by problem statement.

Exercise 9.8. vL ¼ R2V0

R1 þ R2ð Þ exp � t

t

 �
. Other ans-

wers implied by problem statement.

Exercise 9.9.

iL tð Þ ¼ I0; t 	 0; iL tð Þ ¼ I0 exp � t

t

 �
; t> 0; t ¼ L

R

vL tð Þ ¼ 0; t 	 0; vL tð Þ ¼ � LI0
t

exp � t

t

 �
; t> 0:

Exercise 9.10. L.

Exercise 9.11. w tð Þ ¼ 1

4
LI2 1þ cos 4pf tð Þ½ �:

Exercise 9.12. 0V; V0=R:

Exercise 9.13. 0V; I0:

Exercise 9.14. f ¼ 0:01R= 2pLð Þ:
Exercise 9.15. Vac rms ffi 1:2 mV; g ffi 2:65� 10�6:

Exercise 9.16. L ffi 31:8mH:

Exercise 9.17. Answer implied by problem

statement.

Exercise 9.18. (a) Answer implied by problem

statement.

(b) No. i1 could have dc component.

Exercise 9.19. (a) Dots at tops of coils. (b) Reverse

one winding.

Exercise 9.20. n ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
RL=RS

p
:

Exercise 9.21. n1n2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
RL=RS

p
:

Exercise 9.22. i tð Þ ¼ nv tð Þ
2Rþ n2RL

:

v(t)

t (ms)

–50mV

25mV

12.5mV

0 4

5 7

1210

5mA
12.5mV; 0 £ t <4ms, etc...

4ms

di
L

dt
= (10mH) =
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10. Chapter 10

Exercise 10.1. Answers given in problem statement.

Exercise 10.2. z real)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Re2 zð Þþ Im2 zð Þ

p
¼

ffiffiffiffi
z2

p
¼ zj j.

Remaining exercises: answers given in problem

statement.

11. Chapter 11

Exercise 11.1. i tð Þ ¼ I0 þ I1 � I0ð Þu t� t0ð Þ þ
I2 � I1ð Þu t� t1ð Þ:
Exercise 11.2. IL ¼ V0

R1 þ R2

; VC1
¼ R2I; VC2

¼ 0:

Exercise 11.3. vL tð Þ ¼ vL 1ð Þ 1� exp �t=tð Þ½ �u tð Þ;
t ffi 148:52 ms; vL 1ð Þ ffi 334:75V:

–200 0 200 400 600 800
0

100

200

300

400

vL (V)

t (µs)

Exercise 11.4. LC
d2vC
dt2

þ L

R

dvC
dt

þ vC ¼ 0; t> 0;

SI LC½ � ¼ s2; SI L=R½ � ¼ s:

Exercise 11.5. (a) R0 ffi 79:1 kO; R<R0 )
overdamped (b) R¼ 10R0 ) vC tð Þ ¼ 2 Yj jexp �t=tð Þ
cos o0 tþyð Þu tð Þ; 2 Yj jffi503mV;tffi1:58ms;

o0 ffi 6:29�106 s�1; yffi�1:57; R¼R0) vC tð Þ¼ Y t

exp �t=tð Þu tð Þ; Yffi 6:33�107Vs�1; tffi 158ns

R¼R0=10) vC tð Þ¼Y exp �t=t1ð Þ�½ exp �t=t2ð Þ�u tð Þ;
Yffi5:03V; t1ffi3:16ms; t2ffi7:93ns:

Exercise 11.6. n cycles ffi 1; 1:6; 4; 8; Yes.

Exercise 11.7. Answer implied by problem statement.

Exercise 11.8. d ! 1:

Exercise 11.9. Answer implied by problem statement.

Exercise 11.10.

0

2

4

6

–5

0

5

0 20 40 60 80 100 120 140 160

–20

–10

0

10

vC (V)

vC (V)

vC (V)

t  (µs)

0 20 40 60 80 100 120 140 160
t  (µs)

0 20 40 60 80 100 120 140 160
t  (µs)

a

b

c

Exercise 11.11.

4
d3vo
dt3

þ14
d2vo
dt2

þ8
dvo
dt

þvo¼4
d3vS
dt3

þ4
d2vS
dt2

þ4
dvS
dt

þvS

v:¼
1

8

14

4

0
BB@

1
CCA st :¼ Polyroots vð Þ st¼

�2:823
�0:5

�0:177

0
@

1
A:

Characteristic roots real and negative, circuit is over-

damped. The circuit cannot be underdamped because

it consists of only resistors and capacitors.

Largest time constant is t3ffi t
0:177

ffi5:65t¼ 56:5s:
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12. Chapter 12

Exercise 12.1. � 2p=3.
Exercise 12.2. Lags.

Exercise 12.3. v2 ¼ V2 cos 2pf tþ yð Þ;V2 ¼ 500 mV;
f ¼ 1 kHz; y ffi 1:26:

Exercise 12.4. 50ff �p=4ð ÞmA:

Exercise 12.5. ~V ¼ V0ff f� p=2ð Þ:
Exercise 12.6. ~I¼50ffp=3mAffi 25þj43:3ð ÞmA; leads:
Exercise 12.7. i tð Þ ¼ I0 cos 2pf tþ yð Þ; I0 ¼ 50mA;

f ¼ 4MHz; y ¼ p=3:

Exercise 12.8.

Re

Im

V2
~

V1
~

I
~

p / 3

–p / 4

Exercise 12.9. Answer implied by problem statement.

Exercise 12.10. Answer implied by problem statement.

Exercise 12.11. ~I ffi 20:7ffp=2mA

) i tð Þ ffi �20:7 sin 2pf0 tð ÞmA:

Exercise 12.12. ~I ffi 6:37ff � p=2mA

) i tð Þ ffi 6:37 cos o t� p=2ð ÞmA.

V
~

I
~

Re

Im

Exercise 12.13. 178 kO:
Exercise 12.14.

ffiffiffiffiffi
10

p ffi 3:16:

Exercise 12.15. vðtÞ ffi 146 cos o t� 0:350ð ÞmV:

Exercise 12.16. ~I ¼ ~I1 þ ~I2 ffi 14:1ff �0:065mA )
i tð Þ ffi 14:1 cos o t� 0:065ð ÞmA; f ¼ 100 kHz:

Exercise 12.17. Z¼R2þ oLð Þ2R1

R2
1þ oLð Þ2þ

R3

1þ oCR3ð Þ2þ

j
oLR2

1

R2
1þ oLð Þ2�

oCR2
3

1þ oCR3ð Þ2
" #

:

Exercise 12.18. ~I¼
~V

Z
¼1�o2LCþjoC R1þR2ð Þ

R1þjoLð Þ 1þjoCR2ð Þ V0;

i tð Þ¼I0cos otþyð Þ; I0¼1:14mA; y¼�0:44:

Exercise 12.19. f ¼ 5 kHz; R ffi 469O; L ffi 3:85mH;

f ¼ 1 kHz; R ffi 540O; C ffi 52:7 mF:
Exercise 12.20. f ¼ 5 kHz; R ffi 500O; L ffi 61:7mH;

f ¼ 1 kHz; R ffi 540O; C ffi 1:65 nF:

Exercise 12.21.

469

121

1.20

–0.516

–3.02

540

0.010

Im (Z ) (Ω)

Im (Z ) (Ω)
Re (Z ) (Ω)

Im (Y ) (mS)

Im (Y ) (mS)Re (Y ) (mS)

Re (Y ) (mS)

Re (Z ) (Ω)

f = 5 kHz f = 1 kHz

f = 5 kHz f = 1 kHz

1.85

752 Appendix: Answers to Exercises



Exercise 12.22.
~VT ffi 2:47ff � 0:251ð ÞV; ZT ffi 107ff � 1:34ð ÞO:
Exercise 12.23. Resonant frequency is

o ¼ R1 þ R2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LR2

1C� L2
p if R2

1C> L. Otherwise circuit is

not resonant.

Exercise 12.24. Two resonant frequencies: f1 ffi
67:1 kHz; f2 ffi 13:3 kHz:

13. Chapter 13

Exercise 13.1. Load: Sffi 112þ j298ð ÞVA; Pffi112W

Source impedance: Sffi 90:1þ j68:0ð ÞVA;Pffi 90:1W

Voltage source: S ffi 202þ j365ð ÞVA; P ffi 202W:

Exercise 13.2. Source: ffi 790VAR, Capacitor:

ffi �802VAR, Inductor: ffi 12:2 VAR:

Exercise 13.3. pf ¼ 1.

Exercise 13.4. See figure below. Each side of the

power triangle equals V2
rms times the corresponding

side of the admittance triangle.

Exercise 13.5. (a) ffi 17:5 kVAR (b) pf ffi 0:87.

Exercise 13.6. Answer implied by problem statement

Exercise 13.7. Answer implied by problem statement

Exercise 13.8. The equivalent series reactances XL and

XT must be non-negative (capacitor doesn’t pass dc)

and RL ¼ RT if RT 6¼ 0. If RT ¼ 0 (not realistic), then

RL should be the value that draws the maximum cur-

rent from the (current-limited) source.

Exercise 13.9. (a) Answer implied by problem statement.

(b) No, (c) Yes.

Exercise 13.10.

(a) f ¼ 0ðdcÞ (b).

105 106 107 108 109
0

0.25

0.5

0.75

1

1.25

f (Hz)

Pn ( f ) h ( f )

Exercise 13.11. 18 dB.

14. Chapter 14

Exercise 14.1. Answer implied by problem statement.

Exercise 14.2. No.

Exercise 14.3. Both are zero.

15. Chapter 15

Exercise 15.1. vL ffi 8:40 cos o1 tþ 0:82ð Þ
þ12:23 cos o2 t� 0:06ð Þ þ 9:00 cos o3 t� 0:75ð Þ:
Exercise 15.2.

|S | =Vrms
2 |Y | Q = Vrms

2 Im (Y )

= BYVrms
2

P = Vrms
2 Re (Y ) = GYVrms

2

|Y|

Im(Y ) = BY  

Re (Y ) = GY  

(b) Y = GY + jBY

(a) S = P + jQ

q

q

Hv Hi Hz Hy

Hv 1 Z�1
S ZL Z�1

S
ZL

Hi Z�1
L ZS 1 Z�1

L
ZS

Hz ZS ZL 1 ZLZS
Hy Z�1

L Z�1
S ZLZSð Þ�1 1
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Exercise 15.3. Current transfer: Zin!0; Zout!1;

Transimpedance: Zin!0; Zout!0; Transadmittance:

Zin!1; Zout!1.

Exercise 15.4. Hi jo1ð Þ ¼ ZS
ZL jo1ð Þ

K

1þ jo1=o0

.

Exercise 15.5. 10Wm�1.

Exercise 15.6. Av ffi 33 dB; Ai ffi 50 dB.

Exercise 15.7. Yj j ffi 17:8 mS:

Exercise 15.8. Because 1� f=f0 is not a linear

factor (no j).

16. Chapter 16

Exercise 16.1. Average value: xdc ¼ A0ffy0 ¼ 500mV

Third harmonic: f ¼ 3f0 ¼ 6kHz; T ¼ 1

3f0
ffi 167ms;

A3 ¼ 500ffiffiffiffiffi
10

p mV; y3 ¼ 3p
6
¼ p

2
:

Fifth harmonic: A5 rms ¼ A5ffiffiffi
2

p ¼ 500ffiffiffi
2

p ffiffiffiffiffi
26

p mV:

Fundamental: f0 ¼ 2 kHz; y1 ¼ p
6
; A1 rms ¼ 500ffiffiffi

2
p ffiffiffi

2
p

mV ¼ 250mV:

Exercise 16.2. 5f0 ¼ 1:5 kHz ) f0 ¼ 300Hz ) T ¼
1

f0
ffi 3:33ms:

Exercise 16.3. Only the third, whose frequencies are

harmonics of a fundamental.

Exercise 16.4. P1 ¼ 3:125mW; P2 ¼ 500 mW; P3 ¼
125 mW; P4 ¼ 43:25 mW; P5 ¼ 18:49 mW:

P ¼ 3:812mW; � ¼ 0:994:

Exercise 16.5. X0 ¼ �10mV, X1 ¼ 25mV, X3 ¼
12:5ff � 0:785ð ÞmV, X5 ¼ 6:25ff � 1:57ð ÞmV, all

others ¼ 0.

Exercise 16.6. Average value ¼ dc component ¼
X0 ¼ 1V

Period T ¼ 2ms Fundamental frequency

f0 ¼ 1

T
¼ 500Hz

Third harmonic: A3 ¼ 2 X3j j ffi 632mV;

y3 ¼ � 1

1þ j3
ffi �1:25;

1

3f0
ffi 667 ms

Fifth harmonic:
A5ffiffiffi
2

p ¼
ffiffiffi
2

p
X5j j ¼ 277mV

Fundamental: f0 ¼ 500Hz; y1 ¼ �X1 ffi �0:785;

A1=
ffiffiffi
2

p ¼ ffiffiffi
2

p
X1j j ¼ 1V.

Exercise 16.7.

Exercise 16.8. Answer implied in problem statement.

Exercise 16.9. a0 ¼ xdc; b0 ¼ 0:

Exercise 16.10.

Exercise 16.11. Ak ¼ V0

k2
; yk ¼ kp; k ¼ 1; 2; � � � ;

X0 ¼ xdc; Xk
V0

2k2
�1ð Þk; k ¼ �1;�2; � � � ; a0 ¼ xdc;

b0 ¼ 0; ak ¼ V0

k2
�1ð Þk; bk ¼ 0; k ¼ 1; 2; � � � :

Exercise 16.12.

Exercise 16.13. Xk ¼ V0 sa
kp
2

� �
: k ¼ 0;�1;�2; � � � :

Exercise 16.14.
T

2
� t

2
<t 	 T

2
þ t
2
.

Exercise 16.15. Xk ¼ x0t
2T

sa2
kpt
2T

� �
¼ x0t

2T
sinc2

kt
2T

� �
;

Xk ¼ x0sa
2 kp

2

� �
¼ x0sinc

2 k

2

� �
:

Exercise 16.16.

Exercise 16.17.

(a) Yk ¼ �R2 1þ joR1Cð Þ
R1 1þ joR2Cð ÞV0 sa

2 kp
2

� �
, (b).

K 0 1 2 3

ak Vð Þ 2.0 1.0 0.4 0.2

bk Vð Þ 0.0 1.0 0.8 0.6

f kHzð Þ 4 8 12 16 20 24 28 32

Ak mAð Þ 0.00 45.02 31.83 15.01 0.00 9.00 10.61 6.43

yk 0.00 0.00 0.00 0.00 0.00 3.14 3.14 3.14

k 0 1 2 3 4 5 6 7

Ak mVð Þ 0.00 405.29 0.00 45.03 0.00 16.21 0.00 8.27

Bk Vð Þ 0.00 1.46 0.00 0.83 0.00 0.02 0.00 0.01

k 1 2 3

Ak Vð Þ 6.37 3.18 2.12

yk �1.57 1.57 �1.57

k 0 1 2 3

Ak mVð Þ 1.00 1.41 0.89 0.63

yk 0.00 0.52 1.05 1.57

ak mVð Þ 1.00 1.23 0.45 0.00

bk mVð Þ 0.00 �0.71 �0.78 �0.63
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Exercise 16.18.

( )mVAk

kθ
π

10Hz

f

10Hz

f

5

4.167

3.333

2.5

1.667

0.833

0
0 2 4 6 8 10 12 14 16

0 2 4 6 8 10 12 14 16

0

–0.1

– 0.2

– 0.3

– 0.4

– 0.5

Exercise 16.19.

17. Chapter 17

Exercise 17.1.

1 10 100 1.103
40

60

80

100

120

Av (dB)

f (Hz)

Exercise 17.2. Answer implied by problem statement.

Exercise 17.3. (a) Av 0ð Þ ¼ 100; Av Wð Þ ¼ 100
� ffiffiffi

2
p

;

(b) Zin 0ð Þ ffi 10 kO; Zin j2pWð Þj j ffi 14:14 kO; Zout 0ð Þ
ffi 0:038O; Zout j2pWð Þj j ffi 39:78O:

( )mVkX

kθ
π

( )Hzf

( )Hzf

3

2

1

0

0.6

0.4

0.2

0

–0.2

–0.4

–0.6
–100 0 100

–100 0 100
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Exercise 17.4.

Exercise 17.5. C ffi 3:98 pF:

Exercise 17.6. Both ratios ffi 1:

18. Chapter 18

Exercise 18.1. F sð Þ ¼ �2a= s2 � a2ð Þ; jsj<a, 2-sided.

Exercise 18.2. (a) Two, (b) right, (c) both, (d) left.

Exercise 18.3. All.

Exercise 18.4. Answer implied by problem statement.

Exercise 18.5. Answer implied by problem statement.

Exercise 18.6. Answer implied by problem statement.

Exercise 18.7. Answer implied by problem statement.

Exercise 18.8.

75

(a)
125

5

0

v (t – t0) (V)

t (μs)

(b)
25 75 t (μs)

v (t – t0) (V)

5

( )Hzf ( )Hzf

( )Hzf

( )Hzf( )Hzf

( )Hzf

( )dB

( )dBo

o

Z

R

( )dBo

o

Z

R

( )dBo

o

Z

R

( )dB

( ) dB
Zin

Ri

Zin

Ri

Zin

Ri

50

40

30

20

10

20

Inverting Amplifier

Non-Inverting Amplifier

Voltage Follower

0

–20

–40

–80

–60

20

0

–20

–40

–80–20

–60

0

0

150

0

0

50

50

100

–50

–50

–100

–150

20

40

60

80

0.1 10 1´103 1´105 1´107
0.1 10 1´103 1´105 1´107

0.1 10 1´103 1´105 1´1070.1 10 1´103 1´105 1´107

0.1 10 1´103 1´105 1´107
0.1 10 1´103 1´105 1´107
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v tð Þ¼V0 u tð Þ�u t� tð Þ½ �)V sð Þ¼V0

1� exp �stð Þ
s

� �
;

L v t� t0ð Þf g¼V0

1� exp �stð Þ
s

� �
exp �st0ð Þ:

Exercise 18.9. SI b3½ � ¼ s�1; SI a2½ � ¼ s�1:

Exercise 18.10. SI K½ � ¼ A s�1.

Exercise 18.11. I sð Þ¼ K 1þ c3s
3þc2s

2þc1sþc0
s4þa3s3þa2s2þa1sþa0

� �
;

c3 ¼ b3�a3 ¼ �5s3; c2 ¼ 1s2; c1 ¼ �2s; c0 ¼ 0:

Exercise 18.12. Answer implied by problem statement.

Exercise 18.13. Answer implied by problem statement.

Exercise 18.14.

Hi ¼ 1

s2LCþ L=RSþRLCð Þsþ1þRL=RS
; Hv ¼RL

RS
Hi;

Hz ¼RLHi.

Exercise 18.15. First answer implied by problem

statement. Yes.

Exercise 18.16. Hv¼VL

VS
¼ 1

1þ stð Þ ; Hi¼ RS

RLþ jXL
Hv;

Hy¼ Hv

RLþ jXLð Þ 1þ stð Þ ; Hz¼RSHv:

Exercise 18.17. t ¼ RC; p ¼ �1=t

gv tð Þ ¼ exp ptð Þu tð Þ ¼ exp �t=tð Þu tð Þ;
SI gv tð Þ½ � ¼ 1ðdimensionlessÞ

hv tð Þ ¼ d tð Þ � 1=tð Þ exp �t=tð Þu tð Þ;
SI hv tð Þ½ � ¼ SI d tð Þ½ � � SI 1=t½ � ¼ s�1:

Exercise 18.18.

Hv ¼ R2

R0

� �
1þ j f=f0ð Þ
1þ j f=f1ð Þ ; f0 ¼ 1

2pR0C
; f1 ¼ 1

2pR2C

Hi ¼ RSR2

RLR0
1þ j f=f0ð Þ
1þ j f=f1ð Þ ; Hz ¼ RSR2

R0
1þ j f=f0ð Þ
1þ j f=f1ð Þ ;

Hy ¼ R2

RLR0
1þ j f=f0ð Þ
1þ j f=f1ð Þ :

Exercise 18.19. Answer implied by problem statement.

Exercise 18.20. Answer implied by problem statement.

Exercise 18.21. IL ¼ b2I2 ¼ b1b2I1 ¼ b1b2IS No.

I1
b1I1 b2I2

I2IS RS RL

IL

Exercise 18.22. Answer implied by problem

statement; Yes.

Exercise 18.23.

Im(s)
103s-1

Re(s)
103s-1

−1.83

1.83

1−1−2

−0.8

Exercise 18.24. Same as in the referenced example.

19. Chapter 19

Exercise 19.1. Three, one of which must be minimum

passband input resistance. The other two must specify

the poles, either directly or indirectly.

Exercise 19.2. R ¼ 24 kO, C1 ffi 663 pF; C2 ffi 166 pF:

Exercise 19.3. Answer implied by problem statement.

Exercise 19.4. Answer implied by problem statement.

Exercise 19.5. Lowpass: HvLP 0ð Þ ¼ k þ 1; Highpass:

HvHP 1ð Þ ¼ k þ 1:

Exercise 19.6. Answer implied by problem statement.

Exercise 19.7. VCC ffi �15V:

Appendix: Answers to Exercises 757
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Index

A
AC and DC, 36

AC resistance, 37–39

Active circuit, 141

Active device, 141

Adder, inverting, 205

Admittance, 395

of circuit elements (table), 393

comparing magnitudes of (convention), 396

expressed in dB, 396–397

as a function of frequency, 396

generalized, or s-domain, 669

normalized, in dB, 396

SI unit, 395

triangle, defined, 414

Alternating current (AC), 36

American wire gauge (AWG), 35–36

Ammeter, symbol for, 72

Amplifiers, 197

capacitance coupled, 626

in cascade, 624

bandwidth, 625

difference, 206

effective load on, 220

input bias-current compensation, 218, 627, 633

inverting, 204

input and output resistance, 213

voltage transfer characteristic, 213

non-inverting, 204

input and output resistance, 212

voltage transfer characteristic, 214

transconductance, 207, 210

transresistance, 206

Amplitude distortion, 570

Angle, units of, 5

Angular frequency of a sinusoidal signal, 383

Apparent power

defined, 484

delivered to a balanced load, 530

and line current, 484, 532

SI unit (VA), 484

Approximations

asymptotic, 13

basic, 11

and checking results, 93

Asymptotic gain plots, 555–565

error in, 558

linear factors, 555

low-and high-frequency asymptotes, 557

quadratic factors, 562

Asymptotic phase plots, 565–569

linear factors, 566

procedure, 567

quadratic factors, 567

Available power, 175, 177. See also Power, available

Available voltage and current, 175

Average power. See also Power, average

conservation of, 126

defined, 126

dissipated by a resistor, 126, 132

B
Balanced load, 333

branch currents and line voltages in, 529

Balanced power, 332–333

Balanced wye-delta transformations, 528

Balun, 333

Bandwidth

amplifiers in cascade, 625

filter, 569

half-power (3 dB), defined, 571

other definitions, 572

reactive-feedback circuit, 617

reference gain for, 571

resistive-feedback amplifiers, 612

signal, 569–570

slew rate limitations, 622

Basic approximation, 11

Biquad. See Filter, biquadratic
Bode plot. See also Asymptotic gain plot

asymptotic approximation to, 555–556

defined, 555

and pole-zero plot, 700

relation to pole-zero plot, 692

Branch currents and line voltages, relations among, in balanced

three-phase loads, 529

Breakdown of a dielectric, 240

Buffer. See Voltage follower
Bypass capacitor, 266–267
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C
Capacitance, 239

junction, 255

parasitic, 255

physical basis, 237

required for power-factor correction, 532

residual, 255

sheet, 240

SI unit, 239

stray, 255

temperature coefficient, 258, 259

variation with temperature, 258, 259

wire-to-wire and wire-to-ground, 256

Capacitance coupling

amplifiers, 626

cascaded stages, 273

input-bias-current compensation, 276, 627

input impedance, 626

non-inverting amplifier, 627

vs. direct coupling, 626
Capacitive load, 408

and leading power factor, 490

Capacitors

admittance, 395, 680

applications, 262

bypass, 266–267

digital systems, 270

in rectifier circuits, 268

specifying, 266

charge on, 239

circuit model for, 454

construction, 239

continuity of voltage across, 243, 245

coupling, 271

dissipation factor for, 455

electrolytic, 240

energy storage and power dissipation in, 260

equivalent series inductance, 454

equivalent series resistance, 262, 454

impedance, 392–393, 681

loss angle, 455

marking, 240

in parallel, 253

parallel-plate, 239

power dissipation in, 454

for power-factor correction, 491–496, 531–534

quality factor for, 454

self-resonance in, 454

in series, 252–253

standard (E-series) values, 240

switched, 279

symbols for, 242

terminal characteristics, 242

thin-film, 240

Cascaded circuits, 174, 691

Characteristic equation

first-order differential equation, 357

second-order differential equation, 360

Characteristic roots

first-order differential equation, 357

passive RC and RL circuits, 368

Charge

conservation of, 19

electron and proton, 19

properties, 19

SI unit, 19

Checking your work, 432–435, 675

Circuit analysis, s-domain, 669–670

Circuit diagram, 49–81

annotating, 51–52

and schematics, 49

series and parallel connections, 53

Coils

air-core, inductance of, 303

air-core, Wheeler’s formula for, 335

magnetically coupled, 319

quality factor of, 439, 442

radio-frequency (rf), 442

short air core, inductance of, 303

coupled, 322

Commutativity

elements in series and parallel, 88

transfer functions, 691

Compensated voltage divider, 255

Compensation, by pole cancellation, 698

Complex frequency, 653–654

Complex-frequency domain, 653

Complex numbers, 345–353

angle of, 349

arithmetic using, 345

conjugate of, 346

dimensioned, 345

magnitudes of, 347, 349

magnitudes, ordering, 345–347

polar form, 348–349

radial and angular coordinates of, 349

real and imaginary parts of, 345

rectangular form, 348

relation of rectangular to polar form, 348, 349

Complex plane, 348

Complex power, 479–520

angle of, 483

calculating, 482

conservation of, 486–487

dissipated (passive sign convention), 486

dissipated in a balanced three-phase load, 530

expressions for, 480

and resonance, 487

SI unit, 480

superposition of, 496

Complex representation of a sinusoidal signal, 388

Conductance, 26–27

of a resistor, 55

Conductivity, 27

Conductor, 50

Conservation of power

apparent (not conserved), 483

average power, 126

complex, 486–487

instantaneous power, 128

peak power (not conserved), 120

reactive, 483
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Controlled source. See Dependent source
Corner frequency, transfer function, 552

Cosine, why used as standard form for a sinusoidal signal, 383

Coulomb’s law, 19

Coupled coils,

dot convention, 321, 326

Coupling capacitor, 271, 626

Coupling coefficient, 320

defined, 320

Crest factor, 157

defined, 152

Critically damped. See Second-order circuit
Current, 20

conduction, 5

defined, 20

displacement, 5

how annotated on circuit diagrams, 51–52

Current divider, 58, 66–67

Current gain, 180

in dB, 185

Current loading factor, 176

Current-to-voltage converter, 206

input-bias-current compensation, 218

Current transfer, 176, 186

D
dB (decibel)

acoustic power expressed in, 547

current and voltage ratios, 547

current gain and voltage gain in, 547

defined, 184

normalized transadmittance and transimpedance in, 549

power ratios expressed in, 546

DC and AC, 36

DC gain

from differential equation, 358, 362

from transfer function, 552

DC resistance, 37

DC steady state, defined, 354, 404

Decibel. See dB
Delta function, 658

Laplace transform of, 659

Dependent source

defined, 166

intrinsic parameters of, 167

types and terminal characteristics, 167

Derating. See Power dissipation
Design of linear op-amp circuits, guidelines for, 222, 637

Dielectric, 239, 253

breakdown, 240

materials, 240

Differentiating circuits, 262

Digital logic circuit, power dissipation in, 282

Dimensionless quantities, 5

Dimensions, 5

Diode, in half-wave rectifier, 269

Dirac delta. See Delta function
Dirac, Paul, 658 (fn)

Direct current (DC), 36

Dirichlet, Peter Gustave, 589 (fn), 597

Displacement current, 238

Distortionless transmission, 570

Dominant pole. See Pole, dominant

Dot convention

coupled coils, 321, 326

ideal transformer, 327

transformer, 325

Double-subscript notation, 52

E
Effective conductance, 412

Effective load, 220, 628

inverting and non-inverting amplifiers, 629

Effective resistance, defined, 408

Effective rms value, 132

Electric field, 22

energy exchange with, 23

SI unit, 24

Electric potential, 23

Engineering notation, 14

Equivalent circuits, 85

elements in series and parallel, 85

significance of, 101

source transformations, 91

Thevenin and Norton source models, 93–100

Equivalent resistance

approximating, 90–91

using known source, 89–90

Equivalent series resistance of a capacitor, 262

E series, 29

standard tolerances, 30

table, 31

ESL. See Capacitor, equivalent series inductance
ESR. See Capacitor, equivalent series resistance
Euler’s identity, 349–351, 388, 389

Exponential order, 657

F
Faraday, Michael, 302 (fn)

Faraday’s law of induction, 302, 319

Feedback, 207

advantages of, 207

negative, linear stable operation, 208

positive and negative, 207

and stability, 207, 208

Feedback amplifiers

input bias-current compensation, 627

inverting vs. non-inverting, 634
precision of external resistors, 635

rules and guidelines for design, 633, 634, 636

small or fractional gain, 634

specifying the feedback resistor, 629

Filter

active, digital, and passive, 723

analog, defined, 723

bandwidth of, 569, 724

Bessel, 736

biquadratic, 732–736

Butterworth, 736

Chebyshev I, 736

classification by gain, 569, 723–724

desirable properties of, 725
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Filter (cont.)
distortionless, 725

narrowband, 724

passbands, transition bands and stopbands, 559, 569, 724

passive, defined, 723

sharp-cutoff, 724

types, described, 569

VCVS

design procedure, 737

gain and group delay, 729

input impedance, 730

output impedance, 731

transfer functions, 728

Filter capacitor, 268–270

Finite-time integrator, 265

First-order circuit, 355

RC and RL, 358
Follower. See Voltage follower
Forced response, 356, 357, 404, 683, 694

Fourier coefficients

amplitude-scaled signal, 600

composite waveforms, 595

DC shift, 599

defined, 585

integral formula for, 588

negated signal, 596

operational properties, 597

SI unit of, 585

superposition of, 596

table of, 592–595

Fourier series

AC and DC components of, 583

amplitude-phase form, defined, 583

circuit analysis using, 600–601

convergence of, 589, 597–599

exponential form, 585

forms of, summary, 586

fundamental component of, 583

fundamental frequency and period of, 583

harmonics, 583

interval of expansion, 589

mean-squared amplitude of, 598

quadrature form of, 586

relations among forms of, 588

Four-quadrant inverse tangent. See Inverse tangent
Frequency-domain, 402–403

analysis, 653

Frequency of a sinusoidal signal, 383

Frequency response

defined, 572

relation to voltage transfer function, 573

measuring, 572–573

G
Gain, 545

in dB, 546

intrinsic, 167

overall, 182

Gain-bandwidth product

of a feedback amplifier, 612, 616

of an op amp, 610

specifying, 636

Gibbs, Josiah Willard, 599–600 (fn)

Gibbs’ phenomenon, 599–600

Greek alphabet, 10

Ground-loop current, 331

Ground symbol, as potential reference in

circuit diagrams, 52

Group delay, 724

Gyrator, 334, 444

H
Half-power bandwidth. See Bandwidth
Half-wave rectifier, 268

Heaviside, Oliver, 664 (fn)

I
Ideal op amp. See Op amp

Ideal transformer, 326

as model for a real transformer, 327

Impedance, 391

angle of, 393

of circuit elements (table), 393, 669

comparing magnitudes (convention), 394

expressed in dB, 396–397

as a function of frequency, 394

generalized, or s-domain, 669

normalized, in dB, 396–397

SI unit, 391

Impedance matching

for maximum power transfer, 504

using L sections, 506–510

using transformers, 504

Impedance triangle, 414

and power triangle, 491

Impulse, as a model for a current or voltage pulse, 684. See also
Delta function

Impulse response, 684–688

Independent source, 56

Inductance, 302

of an air-core coil, 303

of a coil, 302

limits of lumped-constant model, 315

mutual (see Mutual inductance)

parasitic, 314–316

self, 302

of a wire, 314

Inductive kick, 318–319

Inductive load, 408

and lagging power factor, 490–491

Inductors

air-core and iron-core, 304

circuit-diagram symbols, 304

circuit model for, 451

continuity of current in, 305

energy storage and power dissipation in, 313

in parallel, 312–313

parasitic capacitance in, 451

quality factor of, 451

reducing ripple using, 316–318

self-resonance in, 451

in series, 312
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terminal characteristics, 305–307

variable, 304

Initial phase of a sinusoidal signal, 383

Initial tolerance of a resistor, 137

Input bias current compensation

in capacitively coupled amplifiers, 276–279

direct-coupled and capacitance-coupled amplifiers, 627

Input bias currents, 217

Input impedance, inverting and non-inverting amplifiers, 627

Input offset voltage, 216–217

Input resistance, 164

for maximum transfer, 174–178, 186

op amp, 201

op-amp circuits, 210, 213–215

two-port circuits, 172–174, 210

Insertion gain, 504

Insertion loss, 503–504

Instantaneous amplitude of a sinusoidal signal, 383

Instantaneous phase of a sinusoidal signal, 383

Instantaneous power

defined, 114

dissipated, 114

dissipated by a resistor, 116

Institute of Electrical and Electronic Engineering, 1

Integrating circuits, 263–265

Internal impedance, 421

Internal resistance, 96, 122

independent sources, 55, 98

Inverse tangent

four-quadrant, 348

in software and pocket calculators, 348

two-quadrant, 348

Inverting amplifier

bandwidth, 612

capacitively coupled, 276

in cascade, 624

circuit diagram and parameters, 611

dc voltage gain, 612

effective load, 629

gain <10, 634

gain-bandwidth product, 612–615, 633

output impedance, 615

power-conversion efficiency, 632

reactive-feedback, 617

rules and guidelines for design, 636

s-domain transfer function, 690

specifying op-amp power dissipation, 636

voltage-transfer function, 617

Isolation transformers. See Transformer, isolation

J
Joule’s law, 116, 480

K
Kirchhoff, Gustav, 56 (fn)

Kirchhoff’s current law, 56

Kirchhoff’s voltage law, 62

L
Laplace transform

condition for existence, 657

convergence of, 655–656

of current or voltage, 654

dimension of, 654

inversion using partial fractions, 663

one-sided, 657

operational properties, 659

region of convergence, 655

shorthand notation for, 657

SI unit, 686

table of pairs, 659

two-sided, 653

Leakage current, 254

Leakage resistance, 253–255

parallel-plate capacitor, 254

Left-sided function, 656

Lenz’s law, 302

Linear factor

angle of, 566

angle of, piecewise-linear approximation, 566

standard-form transfer function, 552

Line voltage and branch currents, relations among in balanced

three-phase loads, 529

Loading factor

current and voltage, 176

input, interstage, output, 178

Look-back method, for finding Thevenin or Norton equivalent

resistance, 99

Loop, 63

Lossless circuit model, in sinusoidal steady state, 405

L sections, for impedance matching, 506

Lumped-parameter model, 447

limits on applicability, 315, 447

M
Magnetic field, 301

Magnetic flux, 301–303, 323

Matching transformer. See Transformer, matching

Mathematical notation, 9–10

Maximum power transfer, 496

impedance matching for, 504

broad maximum, 145

condition for, 496

and design (discussion), 143

matching networks, 144

and Thevenin equivalent source, 144

and Thevenin source models, 147

Maximum power transfer efficiency, 147, 496, 504

Mean squared amplitude, 126

when additive, 147

Mesh, 63

Mesh analysis, described, 63

Mesh current, defined, 63

Metric wire gauge (MWG), 36

Modern filter design, 736

Multiple switching times, 250

Mutual inductance, 319–320

dot convention, 321

parasitic, 323–324

sign of, 321

sign of, for transformers, 325
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N
Negative resistance, using a switched capacitor, 280

Node, 57

Node analysis, 58

Non-inverting amplifier

bandwidth, 612

capacitance coupled and input-bias compensation, 627

capacitively coupled, 277

in cascade, 624

circuit diagram and parameters, 611

dc voltage gain, 612

effective load, 629

gain-bandwidth product, 612

input and output impedance, 613, 615, 627

power conversion efficiency, 632

reactive-feddback, 617

rules and guidelines for design, 636

s-domain transfer function, 690

specifying op-amp power dissipation, 636

voltage-transfer function, 617

Non-physical element, power dissipated by, 139

Norton equivalent, 96, 421

ac circuits, 421–432

circuit, 98, 100

current and resistance, 96

as current divider (ac circuits), 429

impedance, 421

resistance, 96

s-domain, 670

O
Ohm’s law, 25

generalized, 392, 669

in terms of conductance, 27

One-sided Laplace transform. See Laplace transform
Op amp, 198ff

ac model, 609

bandwidth and slew rate, compared, 622

circuit-diagram symbol, 199

compensation capacitor, 609

constraints on supply voltages, 199

dc model, 201

gain-bandwidth product, 610, 616

ideal, defining properties, 203

ideal, use in design, 207

idle power dissipation, 632

input impedance, 610

integrated, 617

internal construction (BJT, JFET, MOSFET), 614–617, 639

intrinsic dc voltage gain, 198, 610–611

intrinsic parameters, 609

intrinsic voltage gain in dB, 611

intrinsic voltage transfer function, 609

kinds of, 638

output current limit, 636

output impedance, 610

output swing, 619

power dissipation, 628–632

power supply constraints, 199

rail-to-rail, 200, 620, 636

range of linear operation, 200

s-domain intrinsic voltage transfer function, 689

s-domain model, 689

saturated, 200, 202

slew rate, 621

specifying, 630, 631

symmetric power supply for, 199

terminals and voltage reference, 199

typical parameter values, 201, 616–617

unity-gain frequency, 610

Open circuit, 53

Open-loop dc voltage gain, 207

Operational amplifier. See Op amp

Operator notation, 375

Order

of a circuit, 353

of a differential equation, 353

Out of phase, 386

Output current limit, 216

specifying, 637

Output impedance

op-amp circuits (table), 613

Thévenin and Norton source models, 422

Output resistance, 96

for maximum transfer, 186

op-amp circuits, 210

Thevenin and Norton source models, 165

two-port circuits, 163

Output swing

design guideline, 623

op amp, 619

and rms amplitude, 620

and supply voltage, 636

Output transformer. See Transformer, output

Overdamped. See Second-order circuit

P
Parallel connection, 55

equivalent admittance of, 399

sinusoidal current sources, 402

Parasitic mutual inductance, 323–324

Parasitic or residual properties, 447

Partial-fraction expansion

complex-conjugate poles, 665

distinct poles, 664

repeated poles, 667

Passband. See Filters
Passive circuit, 141

stability of, 695

Passive device, 141

Passive RC and RL circuits, characteristic roots of, 368

Passive sign convention, 114, 116

Peak amplitude of a sinusoidal signal, 383

Peaking factor, 552

Peak power, 120–121

Period of a sinusoidal signal, 384

Permittivity, 239

Phase delay, 384

how measured, 573

Phase distortion, 570

Phase lag and lead, 386

Phase opposition, 386
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Phase quadrature, 386

Phase reference, 386

Phase shift, 545

Phasor, 388

current and voltage, 388

diagram, 390

and Kirchhoff’s laws, 389–390, 397

limitations of, 394

magnitude of, 481

polar form, 388

rectangular form, 389

rms amplitude, 481

Piecewise-constant source, 250

Polar arithmetic, 349–351

Polar form of a complex number, 348

Pole

defined, 663, 692

dominant, 697

finite and infinite, 692

on imaginary axis, 693

LHP, 693

RHP, 693

Pole-zero cancellation, 697

Pole-zero plot

and Bode plot, 700

defined, 692

relation to Bode plot, 694

Port, defined, 163

Power, 113

apparent, 484

available, 122, 142

average, 126

complex, 479

consumption, average residential, 524

in dB, 184

delivered by a balanced three-phase source, 530

delivered vs. dissipated, 114, 116
factor (see Power factor)
peak, 120

pulsating, in a single-phase system, 534

reactive (see Reactive power)
SI unit, 114

superposition of, 147

transfer, 121, 142

transfer efficiency, 142

triangle, 491

why important, 113

Power conversion efficiency, 634

Power dissipation, 219

average, residential, 524

balanced three-phase load, 530, 534–535

derating, 135, 640

in digital logic circuits, 283

and effective load, 628

in feedback amplifiers, 219–222, 635

as fraction of maximum, 631

in non-physical elements, 139, 497

op amps and op-amp circuits, 219–222, 628–632

in physical components, 116

in a resistor, 116, 126, 131

slowly varying currents or voltages, 630

specifying, 629–631

Power factor

for capacitive load, 491

defined, 489

for inductive load, 491

lagging and leading, 490

of a motor, 495

Power-factor correction

bulk and local, 494

capacitors for, how rated, 494, 532

example, 492, 532

fundamental principle, 492

practical considerations, 495

residential, 534

three-phase load, 533

Power formulas table of, 133

Power gain

in dB, 185

defined, 183

Power transfer, 500–503

dependence on frequency, 503

efficiency of, 144, 496–497, 503

and internal losses, 147

maximum, 186, 500–501

Proximity effect, 41, 448

Q
Quadratic factor

angle of, 566, 567

asymptotic approximation, 562–563, 568

maximum magnitude of, 564

in standard-form transfer function, 552

when factorable, 552–553, 568

Quality factor, 438

capacitor and inductor, 438–439

rf coil, 442

R
RC circuit, voltages and currents in, 249

Reactance, defined, 408–411

Reactive power, 483

dissipated by a capacitor, 495

dissipated by an inductor, 490

vs. real power, 484
sign of, 483

SI unit, 484

Rectifier, half-wave, 268

Reference potential, defined, 25

Region of convergence. See Laplace transform
Relative phase of a sinusoidal signal, 383

Residential wiring, 524

Residual properties, 447

Resistance

ac and dc, 37

defined, 25

ratio of ac to dc, 38

sheet, defined, 27

SI unit, 25

variation with temperature, 32

Resistivity, 26

metals, variation with temperature, 33
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Resistivity (cont.)
SI unit, 26

superconductors, 34

temperature coefficient, 32

variation with temperature, 32

Resistor, 27

chip, 448

circuit model, 449

color codes, 31

composition, 448

construction of, 27

electrical noise in, 450

impedance of, 450

labeling in circuit diagrams, 55

planar, 449

properties, 31

surface-mount, 448

temperature coefficients, 450

thin-film, 27

Resonance, 435

of common configurations, 439

and energy exchange, 436

parallel, 435

and reactive power, 487

self, of a coil, 442

series, 435

useful (loop) approximation, 439, 440

working definitions, 437

Resonant circuits, power relations for, 487

Resonant frequency, formulas for, 438

rf coil, 441

Right-hand rule, 301, 303

Right-sided function, 656

Ring frequency, 364

Ripple

and bypass capacitors, 266

in half-wave rectifier, 269

in rectifier circuits, 270

reducing with inductance, 316

Ripple factor

defined, 266, 316

half-wave rectifier, 270

RMS amplitude

defined, 130

of a Fourier series, 598

measurement of, 133

notation, in electric power industries, 132

as a pseudo unit, 133

of a sinusoid, 131

time required for measurement, 133, 134

S
Sallen-Key filter. See Filter, VCVS
Sampling function, 591

Schematic, 49

s domain, 653

s-domain circuit analysis, 670ff
common errors in, 677

relation to frequency-domain analysis, 679, 689

Second-order circuit, 360

critically damped response, 367

damping factor, 370–371

differential equation, standard-form, 370

oscillations of underdamped response, 369

overdamped, dominant time constant of, 369

overdamped response, 367

summary, 365–368

underdamped response, 366

Self-contradictory circuit, 56

Self heating, 135–137

Self-inductance. See Inductance
Self-resonance

inductor, 444, 451

capacitor, 454

Series connection

defined, 53

equivalent impedance of, 399

Sheet capacitance, 240

Sheet resistance, 27

Short circuit, 53

SI

function, 7

prefixes, 8

symbols and units, 6

system of units, 5

Signal, 383

Sine-cardinal function, 591

Sinusoidal signal

complex representation, defined, 388

frequency, 383

initial phase, 383

instantaneous amplitude, 383

instantaneous phase, 383

peak amplitude, 383

period, 384

phase delay, 384

phase reference for, 385–388

phasor representation, 388

relative phase, 385

rms amplitude of, 131

standard form, 383

Sinusoidal steady state, 404

analysis, procedure for, 405

and time origin, 385–388

Skin depth, 37

Skin effect, 37, 448

ac and dc resistance, 38

Slew rate, 621

and bandwidth limitations, 622

in design example, 636

design guideline, non-sinusoidal input, 623

sinusoidal input, 621–622

and spike suppression, 624

Snubber, 319

Sound intensity, 184

Source transformations

dc sources, 91

dependent sources, 173

isolated sources, 91

s-domain, 670

sinusoidal sources, 421
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Spectrum

dimension of, 603

line, 604

one-sided, 603

two-sided, 607

s plane, 692–693
Stability

BIBO, 694

op-amp circuits, 207–209

passive circuit, 695

s-plane condition, 694

Standard form

first-order differential equation, 356

second-order differential equation, 370

sinusoidal signal, 383

transfer function, 552

Steady-state

extraneous dc in inductor, 404–405

as forced response, 357, 362

sinusoidal (ac), 385, 404

step response, 355, 362

underdamped step response, 370

Stefan–Boltzmann law, 118

Step function, 684

Step response

first-order circuit, 356–357

forced and unforced components, 356, 362

formal definition (voltage, current, etc,), 684

Laplace transform of, 685–686

second-order circuits (summary), 365–366

SI unit, 686

steady-state and transient components, 355, 357, 365

Step-Up and Step-Down Transformers. See Transformers

Stopband. See filters
Strain gage, 195

Strength of a delta function. See Delta function
Superposition, 374

of power, 147, 496

principle of, 66, 415

proof, 416

when useful, 420

Susceptance, 412

Switched capacitor, 279–284

power dissipation in, 281–284

resistor, 279–281

Switched source, modeling using steps, 682

Switching frequency, in a digital logic circuit, 283

T
Tantalum nitride, 28

Temperature coefficient of resistance (TCR), 34, 137

Temperature coefficient of resistivity, 32

error in linear approximation for selected metals, 35

in parts per million, 32

selected metals, 32

Terminal characteristics

defined, 54, 83

reference direction and polarity for current and voltage, 83

resistor and independent sources, 54

s-domain, 669

significance of, 101

sources and loads, 83

THD. See Total harmonic distortion

Thévenin equivalent

experimental determination, 98, 427–431

frequency-domain, 421

non-physical nature of, 94, 96, 422, 430

resistive circuit, 94–100

s-domain, 679

as voltage divider, 430

Thévenin’s theorem, 93–95, 421–431

Three-phase circuits, 521–535

line and branch currents, line and phase voltages, 525

neutral line, 522

why important, 521

Three-phase load

balanced, 525

Y and D connected, 525

Three-phase power generation and distribution (diagram),

523–524

Three-phase source

abc and acb sequence, 521–525

balanced, 522

wye-and delta-connected, 523

Tight coupling, 322

Time average, 123

alternate definitions, 123

of a constant, 124

existence, 124

linearity, 124

powers and products of sinusoids, 130

properties, 124

of a sinusoid, 124

Time constant

first-order differential equation, 357

RC circuit, 246

RL circuit, 308

second-order response, 364, 365

Time domain, 402–403, 653

Time invariance, 374

Time origin, 385–388

Time translation

Fourier series, 595

s-domain operational property, 661

sinusoid, 384

Total harmonic distortion(problem), 608

Transadmittance

normalized, in dB, 549

transfer function, 540, 679

Transconductance

amplifier (op-amp based), 197

amplifier (voltage-to-current converter), 227

dependent source (intrinsic), 167

s-domain operational property, 661

two-port, 180

Transfer characteristics, 179, 539

Transfer function, 539–540, 679

angle of, 565

and available current and voltage, 543

commutativity, 691

dependence on source and load, 540, 544–545, 552, 679

dimension and unit, 680
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Transfer function (cont.)
frequency-domain, 539ff
gain and phase shift, 545

linear and quadratic factors of, 552

polar form, 545

quadratic factor, 552

s-domain, 678–679

s-domain, relation to frequency domain, 689

standard form, 550, 552

Transfer ratio, 179

Transformer, 324–326

adjustable, 324

air-core, 324

center-tapped, 324

choosing reference directions for currents and reference

polarities for voltages, 327

circuit-diagram symbols, 324

coupling coefficient, 320, 322

dot convention, 325

ideal, 326–327

iron-core, 324

matching, 328

output, 328

source and load transformation using, 329

step-up and step-down, 330–331

turns ratio, 327

Transient response

first-order circuits, 355ff
and pole-zero plot, 697

second-order circuits, 360ff
and unforced response, 356, 697

Transimpedance

normalized, in dB, 549

transfer function, 540, 679

Transresistance

amplifier (op-amp based), 197

amplifier (current-to-voltage converter), 206

dependent source (intrinsic), 167

two-port, 180

s-domain operational property, 661

Triangle inequality, 347

Tuned circuit, gyrator-based, 445

Turns ratio, 327

Two-port

bilateral and unilateral, 172

in cascade, 174

controlling and controlled current or voltage, 172

four types, 173

input and output resistance, 164, 172

intrinsic parameters, 167

models and circuits, 163

Two-quadrant inverse tangent. See Inverse tangent
Two-sided function, 656

U
Unbalanced three-phase load, 332

Underdamped. See Second-order circuit
Unforced response, 356, 405, 683, 694

Unit impulse, 657–659, 684

Unit step function, 353

V
VA. See Volt-ampere

VAC, 133

VAR. See Reactive power, SI unit
Variable-frequency drive, 496

VCVS filter. See Filter, VCVS
VDC, 133

Voltage

defined, 24

drop and rise, 25

how annotated on a circuit diagram, 51

Voltage divider, 59

buffered, 635

compensated, 255

resistive, 66

Voltage follower, 205

bandwidth, 612

circuit diagram and parameters, 611

dc voltage gain, 612

gain-bandwidth product, 612

as impedance buffer, 616

input and output impedance, 613–615

s-domain transfer function, 690

Voltage gain, 180

in dB, 185

Voltage loading factor, 176

Voltage source, constant (dc), symbol, 56

Voltage-to-current converter, 207, 210

Voltage transfer, 176

maximizing, 186

Voltage transfer function, reactive-feedback circuit, 617

Volt-ampere. See Apparent power, SI unit
Volt-ampere-reactive. See Reactive power, SI unit
Voltmeter, symbol for, 72

W
Weight, and mass, 8

Wheeler’s formula, 335

Wiring diagram, 49

Work, 21, 113

Z
Zeros, 663, 692

finite and infinite, 692
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